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Constraint Satisfaction Problem (CSP)

Example for an rCSP instance F

X1 X2 X3 X4 X
Variable set V(F): P

Constraint set C(F):

X1V X2 Vo Txq X2 Vo3 VXS X3 @ X4 P X5

Objective: make as many constraints true as possible

The constraint is a Boolean map w = (f;x.) on
{0, 1}V(F) specified by
@ the constrained variables vector x, = (x,x2,x4) € V(F)?
@ the constraint type function f(a,b,c) =aVv bV —c

General setting: C(K, r) is the set of all constraint-types
f: K" —{0,1}
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Constraint Satisfaction Problem (CSP)

@ CSP decision problem: Can one turn all constraints of an
instance F simultaneously to be true?

@ MAX-CSP optimization problem:

MAX— =
rCSP(F) max > w),
w=(fxe) EC(F)

Both are NP-hard problems in general

Example: MAX-CUT graph parameter:
Maximize the number of crossing
edges between two parts of a vertex
bipartition
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Constraint Satisfaction Problem (CSP)

Colored graphs and CSP instances

aVb\V-c
aV —b\V —c

@ an rCSP instances on
some domain K can be
represented by a colored
directed r-uniform
hypergraph: edges colors
are (subsets of) the
constraint types C(K, r)

@ the decision/optimization
problem translates to the
problem of determining
graph
properties/parameters
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Testing properties

Motivation: Random vertex sampling in approximation
algorithms (Arora-Karger-Karpinski ('95))

G
Sampling from dense graphs “
G(k,G): induced subgraph of G on o =
a set S C V of cardinality k chosen
uniformly at random u3
G(k,G)

‘P graph property: family of graphs invariant under relabeling
vertices

G is =-far from P: we have to add or remove at least ¢|V(G)|?
edges to obtain a member of P



Testing properties
Graph property testing

P is testable if there is a P/ and ¢(¢) s.t.
@ GeP = G(k,G) € P with
probability at least 2/3 for all k
@ Gise-farfromP = G(k,G) ¢ P’
with probability at least 2/3 for
k> q(e)

e-far from P

Examples for testable properties

@ triangle-freeness (Ruzsa-Szemerédi ('78))

@ partition problem properties
(Goldreich-Goldwasser-Ron ('98)), for example:
e MAX-CUT is at least 6n*

@ k-colorability
e the largest clique has size at least dn



Testing parameters

Definition

The graph parameter f is testable if for any € > 0 there exists a
q(e) > 1 such that for any graph G and k > ¢(¢)

P(If(G) = f(G(k,G))| > ¢) <e.

The smallest ¢ satisfying the definition is the sample complexity
of f and is denoted by ¢.

Motivation from approximation algorithms:

Theorem (Alon,F. de la Vega,Kannan and Karpinski ('02))

MAX-rCSP is testable with sample size O(¢~*log(1/¢)).




Convergence of graph sequences and limits

Definition (Lovasz and Szegedy)

The sequence (G,),>1 of simple graphs converges if for every
k > 1 the sequences (G(k, G,)),>1 of random graphs converge
in distribution.

For a non-trivial meaning the graphs need to be dense

The limit object

@ W: [0,1]*> — [0, 1] measurable and symmetric
(W(x,y) = W(y,x)) is called a graphon
@ Sampling from W: G(k, W)
e V(G(k,W)) = [K]
e generate independent X, ..., X; uniform [0, 1] random
variables
e make conditionally independent coin flips with success
prob. W(X;, X;) to decide upon inclusion of ij in E(G(k, W))
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Convergence of graph sequences and limits

Theorem (Lovasz and Szegedy ('06))

For every convergent sequence (G,),>1 of simple graphs there
is a graphon W s.t. for every k > 1 the sequences

G(k, Gy) % G(k, W).

Every graphon is a limit of some sequence.

4

Example: Erdés-Rényi random graphs, G(n, p) “—=» W almost
surely, where W = p

Application of the graph limit theory:

Theorem (Borgs, Chayes, Lovasz, S6s and Vesztergombi ('12))

The parameter f is testable iff for every convergent (G,),>: the
sequence (f(G,))n.>1 also converges.
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Main problems

What are the limit objects of convergent CSP instance
sequences? J
What hypergraph parameters are efficiently testable? ]

What hypergraph properties are testable, what is their sample
complexity? J
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Limits of colored hypergraphs
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Limits of sequences of combinatorial objects

Previous work:
@ Lovasz-Szegedy('06): graphs
@ Elek-Szegedy(’12): r-uniform hypergraphs (r-graphs)
@ Diaconis-Janson('08): directed graphs

@ Lovasz-Szegedy('12): compact edge colored graphs
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Limits of compact colored hypergraphs

Theorem (Karpinski and Marko)

For a compact Polish space K, the K-colored r-graph limits are
functions of the form

w: [0, 112"\ - k.

Two proof methods, both use the Riesz representation theorem
similar to Lovasz-Szegedy('12) :

@ Generalization of the ultralimit construction of
Elek-Szegedy: direct structural consequences, proof of a
weighted hypergraph version of the Regularity Lemma

@ Generalization of the exchangeability correspondence of
Diaconis-Janson using the representation theorem for
exchangeable random arrays
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Testing and approximation of graph

parameters
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Ground state energy

Example for an energy model (Spin model)

@ G=(V,E)isagraph Ji1
@ ¢; and ¢; are the
possible states
@ Jisa2x?2
symmetric
interaction matrix
Amap ¢: V — {q1,9}
assigns states to the J»n
vertices

Energy of Gw.rt ¢ and J: £4(G,J) = |V(G VIOR > weE(G) J o o)

qi

q2

Ground state energy (GSE) of Gw.r.tJ: £(G,J) = maxy E4(G,J)
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Testing the ground state energy

Related to polynomial time approximation schemes (PTAS) for
MAX-rCSP

Previous work:
@ Borgs-Chayes-Lovasz-S6s-Vesztergombi(’12): GSEs of
graphs are testable
Theorem (Karpinski and Marko)
Given:
@ K: compact Polish color set
@ E: finite layer set
@ G = (G°).ck: E-tuple of K-colored r-graphs
@ J = (J°),ck: r-arrays with J¢ € C(K)?* >4
Fork > ©*log(@©)q" with ® = 2 4" we have

P(I£(G,J) — E(G(k, G),J)| > elE| | |0) <

18/27



Testing the ground state energy

Further contribution: positive testability results related to the
ground state energy notion

@ microcanonical GSE
@ GSE with bias towards certain states
@ GSE for weighted graphs with unbounded weights

@ free energies = log-partition function per vertex
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Nondeterministic testing
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Nondeterministic testing

The complete edge-k-colored
directed graph G is a
(k,m)-coloring of G, if starting
from G after
@ erasing all edges of G
colored with an element of
m+1,... k]
@ discarding the coloring,
orientation, and multiplicity
of the remaining edges

we end up with G.
Notation: G’ = G
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Nondeterministic testing

Definition (Lovasz-Vesztergombi)
P is non-deterministically (ND-) testable if there exist
@ integers k > m,

@ a testable property Q of k-colored directed graphs
(witness)

such that
P={G|GeQ}
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Nondeterministic testing

Previous work:

@ Lovasz-Vesztergombi(’13): ND-testability equivalent to
testability

e non-effective proof using graph limits
@ Gishboliner-Shapira(’14):
qp(e) < t(poly(qo(e/2)))

if P is ND-testable with witness O

e tf(¢): the exponential tower of 2s of height ¢
o effective proof using Szemerédi’s Regularity Lemma
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Nondeterministic testing

Definition (Non-deterministically testable parameter)

f is ND-testable if there are k > m and a testable k-colored
directed graph parameter g such that

f(G) = max ¢(G).

Theorem (Karpinski and Marko)
Upper bounds for sample complexity in ND-testing:
o simple graph parameters: gs(e) < exp®(cq?(¢/2))
@ r-uniform hypergraph parameters:
gr(e) < expr=Dt(c, g, (e) /f¢)
@ in both cases: property testing bounds have same
magnitude
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Further research
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Further research

@ Improve sample bounds for GSE and ND-testing,
characterize efficiently testable graph parameters and
properties

@ Testability of free energies - improve existing bounds,
investigate infinite state models such as the n-vector spin
model

@ Nondeterministic testing with additional global conditions -
analogous equivalence?

@ Algorithmic version of the Hypergraph Regularity Lemma
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Thank You!
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