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Constraint Satisfaction Problem (CSP)

Example for an rCSP instance F

x1 x2 x3 x4 x5

1 1 0 1 0

Variable set V(F):

x1 ∨ x2 ∨ ¬x4 x2 ∨ ¬x3 ∨ ¬x5 x3 ⊕ x4 ⊕ x5

Constraint set C(F):

Objective: make as many constraints true as possible

The constraint x1 ∨ x2 ∨ ¬x4 is a Boolean map ω = (f ; xe) on
{0, 1}V(F) specified by

the constrained variables vector xe = (x1, x2, x4) ∈ V(F)3

the constraint type function f (a, b, c) = a ∨ b ∨ ¬c

General setting: C(K, r) is the set of all constraint-types
f : Kr → {0, 1}
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Constraint Satisfaction Problem (CSP)

CSP decision problem: Can one turn all constraints of an
instance F simultaneously to be true?

MAX-CSP optimization problem:

MAX−rCSP(F) = max
l∈KV(F)

∑
ω=(f ;xe)∈C(F)

ω(l),

Both are NP-hard problems in general

Example: MAX-CUT graph parameter:
Maximize the number of crossing
edges between two parts of a vertex
bipartition
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Constraint Satisfaction Problem (CSP)

Colored graphs and CSP instances

an rCSP instances on
some domain K can be
represented by a colored
directed r-uniform
hypergraph: edges colors
are (subsets of) the
constraint types C(K, r)

the decision/optimization
problem translates to the
problem of determining
graph
properties/parameters

x1

x2

x3

x4

x5

a ∨ b ∨ ¬c
a ∨ ¬b ∨ ¬c

a⊕ b⊕ c
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Testing properties

Motivation: Random vertex sampling in approximation
algorithms (Arora-Karger-Karpinski (’95))

Sampling from dense graphs

G(k,G): induced subgraph of G on
a set S ⊂ V of cardinality k chosen
uniformly at random

G

G(k,G)

u1

u2u5

u4
u3

P graph property: family of graphs invariant under relabeling
vertices

G is ε-far from P: we have to add or remove at least ε|V(G)|2
edges to obtain a member of P
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Testing properties

Graph property testing

P is testable if there is a P ′ and q(ε) s.t.
G ∈ P =⇒ G(k,G) ∈ P ′ with
probability at least 2/3 for all k

G is ε-far from P =⇒ G(k,G) /∈ P ′
with probability at least 2/3 for
k ≥ q(ε)

P

ε-far from P

Examples for testable properties
triangle-freeness (Ruzsa-Szemerédi (’78))
partition problem properties
(Goldreich-Goldwasser-Ron (’98)), for example:

MAX-CUT is at least δn2

k-colorability
the largest clique has size at least δn
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Testing parameters

Definition
The graph parameter f is testable if for any ε > 0 there exists a
q(ε) ≥ 1 such that for any graph G and k ≥ q(ε)

P(|f (G)− f (G(k,G))| > ε) < ε.

The smallest q satisfying the definition is the sample complexity
of f and is denoted by qf .

Motivation from approximation algorithms:

Theorem (Alon,F. de la Vega,Kannan and Karpinski (’02))

MAX-rCSP is testable with sample size O(ε−4 log(1/ε)).
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Convergence of graph sequences and limits

Definition (Lovász and Szegedy)

The sequence (Gn)n≥1 of simple graphs converges if for every
k ≥ 1 the sequences (G(k,Gn))n≥1 of random graphs converge
in distribution.

For a non-trivial meaning the graphs need to be dense

The limit object

W : [0, 1]2 → [0, 1] measurable and symmetric
(W(x, y) = W(y, x)) is called a graphon
Sampling from W: G(k,W)

V(G(k,W)) = [k]
generate independent X1, . . . ,Xk uniform [0, 1] random
variables
make conditionally independent coin flips with success
prob. W(Xi,Xj) to decide upon inclusion of ij in E(G(k,W))
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Convergence of graph sequences and limits

Theorem (Lovász and Szegedy (’06))

For every convergent sequence (Gn)n≥1 of simple graphs there
is a graphon W s.t. for every k ≥ 1 the sequences

G(k,Gn)
d−→ G(k,W).

Every graphon is a limit of some sequence.

Example: Erdős-Rényi random graphs, G(n, p)
n→∞−−−→ W almost

surely, where W ≡ p

Application of the graph limit theory:

Theorem (Borgs, Chayes, Lovász, Sós and Vesztergombi (’12))

The parameter f is testable iff for every convergent (Gn)n≥1 the
sequence (f (Gn))n≥1 also converges.
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Main problems

What are the limit objects of convergent CSP instance
sequences?

What hypergraph parameters are efficiently testable?

What hypergraph properties are testable, what is their sample
complexity?
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Limits of colored hypergraphs
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Limits of sequences of combinatorial objects

Previous work:

Lovász-Szegedy(’06): graphs

Elek-Szegedy(’12): r-uniform hypergraphs (r-graphs)

Diaconis-Janson(’08): directed graphs

Lovász-Szegedy(’12): compact edge colored graphs
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Limits of compact colored hypergraphs

Theorem (Karpinski and Markó)
For a compact Polish space K, the K-colored r-graph limits are
functions of the form

W : [0, 1]2
[r]\{∅} → K.

Two proof methods, both use the Riesz representation theorem
similar to Lovász-Szegedy(’12) :

Generalization of the ultralimit construction of
Elek-Szegedy: direct structural consequences, proof of a
weighted hypergraph version of the Regularity Lemma
Generalization of the exchangeability correspondence of
Diaconis-Janson using the representation theorem for
exchangeable random arrays
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Testing and approximation of graph
parameters
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Ground state energy

Example for an energy model (Spin model)

G = (V,E) is a graph
q1 and q2 are the
possible states
J is a 2× 2
symmetric
interaction matrix

A map φ : V → {q1, q2}
assigns states to the
vertices

G
u

v

q1

q2

J11

J22

J12 = J21

φ

Energy of G w.r.t φ and J: Eφ(G, J) = 1
|V(G)|2

∑
uv∈E(G) Jφ(u)φ(v)

Ground state energy (GSE) of G w.r.t J: Ê(G, J) = maxφ Eφ(G, J)
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Testing the ground state energy

Related to polynomial time approximation schemes (PTAS) for
MAX-rCSP

Previous work:
Borgs-Chayes-Lovász-Sós-Vesztergombi(’12): GSEs of
graphs are testable

Theorem (Karpinski and Markó)
Given:

K: compact Polish color set
E: finite layer set
G = (Ge)e∈E: E-tuple of K-colored r-graphs
J = (Je)e∈E: r-arrays with Je ∈ C(K)q×···×q

For k ≥ Θ4 log(Θ)qr with Θ = 2r+7qrr
ε we have

P(|Ê(G, J)− Ê(G(k,G), J)| > ε|E| ‖J‖∞) < ε.
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Testing the ground state energy

Further contribution: positive testability results related to the
ground state energy notion

microcanonical GSE

GSE with bias towards certain states

GSE for weighted graphs with unbounded weights

free energies = log-partition function per vertex
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Nondeterministic testing
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Nondeterministic testing

The complete edge-k-colored
directed graph G is a
(k,m)-coloring of G, if starting
from G after

erasing all edges of G
colored with an element of
[m + 1, . . . , k]

discarding the coloring,
orientation, and multiplicity
of the remaining edges

we end up with G.

Notation: G′ = G
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Nondeterministic testing

Definition (Lovász-Vesztergombi)

P is non-deterministically (ND-) testable if there exist
integers k ≥ m,
a testable property Q of k-colored directed graphs
(witness)

such that
P = {G′ | G ∈ Q}

22 / 27



Nondeterministic testing

Previous work:

Lovász-Vesztergombi(’13): ND-testability equivalent to
testability

non-effective proof using graph limits

Gishboliner-Shapira(’14):

qP(ε) ≤ tf(poly(qQ(ε/2)))

if P is ND-testable with witness Q
tf(t): the exponential tower of 2s of height t
effective proof using Szemerédi’s Regularity Lemma
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Nondeterministic testing

Definition (Non-deterministically testable parameter)
f is ND-testable if there are k ≥ m and a testable k-colored
directed graph parameter g such that

f (G) = max
G′=G

g(G).

Theorem (Karpinski and Markó)
Upper bounds for sample complexity in ND-testing:

simple graph parameters: qf (ε) ≤ exp(3)(cq2
g(ε/2))

r-uniform hypergraph parameters:
qf (ε) ≤ exp(4(r−1)+1)(cr,kqg(ε)/ε)

in both cases: property testing bounds have same
magnitude
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Further research
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Further research

Improve sample bounds for GSE and ND-testing,
characterize efficiently testable graph parameters and
properties

Testability of free energies - improve existing bounds,
investigate infinite state models such as the n-vector spin
model

Nondeterministic testing with additional global conditions -
analogous equivalence?

Algorithmic version of the Hypergraph Regularity Lemma
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Thank You!
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