
On-line Load Balancing for

Related Machines

Piotr Berman

�

Moses Charikar

y

Marek Karpinski

z

TR-97-007

January 1997

Abstract

We consider the problem of scheduling permanent jobs on related machines in an

on-line fashion. We design a new algorithm that achieves the competitive ratio of 3+

p

8 � 5:828 for the deterministic version, and 3:31= ln 2:155 � 4:311 for its randomized

variant, improving the previous competitive ratios of 8 and 2e � 5:436. We also prove

lower bounds of 2:4380 on the competitive ratio of deterministic algorithms and 1:8372

on the competitive ratio of randomized algorithms for this problem.

�

Dept. of Computer Science & Eng., Pennsylvania State University, University Park, PA16802, USA

Email:berman@cse.psu.edu

y

Department of Computer Science, Stanford University, Stanford, CA 94305-9045. Supported by Stanford

School of Engineering Groswith Fellowship, an ARO MURI Grant DAAH04-96-1-0007 and NSF Award

CCR-9357849, with matching funds from IBM, Schlumberger Foundation, Shell Foundation, and Xerox

Corporation. E-mail: moses@cs.stanford.edu.

z

Dept. of Computer Science, University of Bonn, 53117 Bonn, and International Computer Science Insti-

tute, Berkeley. This research was partially supported by the DFG Grant KA 673/4-1, by the ESPRIT BR

Grants 7097 and EC-US 030. Email:marek@cs.uni-bonn.de

1 Introduction

The problem of on-line load balancing was studied extensively over the years (cf., e.g., [7],

[3], [4], and [2]). In this paper we study the on-line load balancing problem for related

machines (cf. [2]). We are given a set of machines that di�er in speed but are related in

the following sense: a job of size p requires time p=v on a machine with speed v. While

we cannot compare structurally di�erent machines using with a single speed parameter, it

is a reasonable approach when the machines are similar; in other cases it may be a good

approximation.

Our task is to allocate a sequence of jobs to the machines in an on-line fashion, while

minimizing the maximum load of the machines. This problem was solved with a competitive

ratio 8 by Aspnes et al. [2]. Later, it was noticed by Indyk [6] that by randomizing properly

the key parameter of the original algorithm the expected competitive ratio can be reduced

to 2e. For the version of the problem where the speeds of all the machines are the same,

Albers [1] proved a lower bound of 1:852 on the competitive ratio of deterministic algorithms

and Chen et al. [5] proved a lower bound of 1:5819 on the competitive ratio of randomized

algorithms.

Adapting the notation of Aspnes et al., we have n machines with speeds v

1

; : : : ; v

n

and

a stream of m jobs with sizes p

1

; : : : ; p

m

. A schedule s assigns to each job j the machine

s(j) that will execute it. We de�ne the load of a machine i and the load of entire schedule

s as follows:

load(s; i) =

1

v

i

X

s(j)=i

p

j

; Load(s) = max

i

load(s; i)

It is easy to observe that �nding an optimum schedule s

�

is NP-hard o�ine, and impos-

sible on-line. We want to minimize the competitive ratio of our algorithm, i.e. the ratio

Load(s)=Load(s

�

) where s is the schedule resulting from our on-line algorithm, and s

�

is

an optimum schedule.

In Section 2, we describe an on-line scheduling algorithm with competitive ratio 3+

p

8 �

5:828 for the deterministic version, and 3:31= ln 2:155 � 4:311 for its randomized variant. In

Section 3, we prove lower bounds of 2:4380 on the competitive ratio of deterministic algo-

rithms and 1:8372 on the competitive ratio of randomized algorithms for on-line scheduling

on related machines.

1

2 Algorithm

2.1 Preliminaries

The idea of the improvement is the following. There exists a simple algorithm that achieves

competitive ratio 2 if we know exactly the optimum load �: we simply assign each job to

the slowest machine that would not increase its load above 2�. Because we do not know �,

we make a safely small initial guess and later double it whenever we cannot schedule a job

within the current load threshold.

Our innovation is to double (or rather, increase by a �xed factor r) the guess as soon

as we can prove that it is too small, without waiting for the time when we cannot schedule

the subsequent job. Intuitively, we want to avoid wasting the precious capacity of the fast

machines with puny jobs that could be well served by the slow machines. Therefore we

start from describing our method of estimating the necessary load.

Let V = f0; v

1

; : : : ; v

n

g (for later convenience, we assume that the sequence of speeds is

nondecreasing). For v 2 V we de�ne Cap(v) as the sum of speeds of these machines that

have speed larger than v. (Cap stands for capacity, note that Cap (0) is the sum of speeds

of all the machines and Cap(v

n

) = 0.) For a set of jobs J and a load threshold � we de�ne

OnlyFor(v;�; J) as the sum of sizes of these jobs that have p

j

=v > �. (OnlyFor stands for

the work that can be performed only by the machines with speed larger than v if the load

cannot exceed �.) The following observation is immediate:

Observation 1. For a set of jobs J , there exists a schedule s with Load(s) � � only

if OnlyFor(v;�; J)� �Cap(v) for every v 2 V .

Before we formulate and analyze our algorithm, we will show how to use the notions of

Cap and OnlyFor to analyze the already mentioned algorithm that keeps the load under

2� if load � is possible o�-line. We reformulate it to make it more similar to the new

algorithm. Machine i has capacity c

i

= �v

i

equal to the amount of work it can perform

under � load, and the safety margin m

i

to assure that we will be able to accomodate the

jobs in the on-line fashion. In this algorithm the capacity and the safety margin are given

the same value, in the new one they will be di�erent.

(* initialize *)

for i 1 to n do

m

i

 c

i

 �v

i

j 0

(* online processing *)

2

repeat

read(p)

j j + 1

s(j) minfij c

i

+m

i

> pg

c

s(j)

 c

s(j)

� p

forever

This algorithm shares the following property with the new one: the jobs are o�ered

�rst to the machine 1 (the slowest), then to machine 2 etc., so each time the �rst possible

machine accepts the new job. Given a stream of jobs J , we can de�ne J

i

as the stream of

jobs that are passed over by machine i or that reach machine i+ 1 (for 1 � i < n this two

conditions are equivalent, for i = 0 only the latter and for i = n only the former applies).

The correctness of the algorithm is equivalent to the fact that the stream J

n

is empty|it

consists of the jobs passed over by all the machines. From the correctness the load guarantee

follows easily, because the sum of sizes of jobs assigned to machine i is less than the initial

capacity plus the safety margin, i.e. �v

i

+�v

i

, and so the load is less than 2�v

i

=v

i

= 2�.

For the inductive reasonings we de�ne V

i

= f0; v

i

; : : : ; v

n

g and Cap

i

(v) which is the sum

of speeds from V

i

that exceed v.

Observation 2. If there exists a schedule s

�

with Load(s

�

) = �, then for every i = 0; : : : ; n

and every v 2 V

i

OnlyFor(v;�; J

i�1

) � �Cap

i

(v):

Proof. By induction on i. For i = 0 the claim is equivalent to Observation 1. For the

inductive step, after assuming the claim for i, we have to show that

OnlyFor(v;�; J

i

) � �Cap

i+1

(v) for v 2 V

i+1

:

Observe that for any v 2 V

i+1

�f0g, OnlyFor(v;�; J

i

) � OnlyFor(v;�; J

i�1

) and Cap

i+1

(v) =

Cap

i

(v). Thus it su�ces to show that OnlyFor(0;�; J

i

) � �Cap

i+1

(0).

First observe that Cap

i+1

(0) = Cap

i

(0)�v

i

� Cap

i

(v

i

). We consider two cases according

to the �nal value of c

i

in the execution of the algorithm. If it is positive, then machine i

accepted all jobs with size at most m

i

= �v

i

from the stream J

i�1

, hence OnlyFor(0;�; J

i

),

which is the sum of job sizes in J

i

, is at most OnlyFor(v

i

;�; J

i�1

), which in turn is less or

equal to �Cap

i

(v

i

). Because Cap

i

(v

i

) � Cap

i+1

(0), the claim follows.

To �nish the proof, we consider the case when the �nal value of c

i

is negative or 0. Then

total size of the jobs accepted by machine i is at least �v

i

, the initial value of c

i

, hence

3

OnlyFor(0;�; J

i

) � OnlyFor(0;�; J

i�1

) � �v

i

, while Cap

i+1

(0) = Cap

i

(0) � v

i

. Because

one of our assumption is OnlyFor(0;�; J

i�1

) � �Cap

i

(0), the claim follows. 2

Observation 2 implies that if a schedule with load � exists, then OnlyFor(0;�; J

n

) �

�Cap

n+1

(0) = 0. Thus the stream J

n

of unscheduled jobs is empty, which means that the

algorithm is correct.

2.2 The new algorithm

The next algorithm is similar, but it proceeds in phases, each phase having a di�erent value

of �. While it is correct for any value of the parameter r > 1, we will later �nd the optimum

r's (they are di�erent in the deterministic and randomized versions).

(* initialize *)

� something very small

for i 1 to n do

m

i

 c

i

 0

j 0, J empty string

(* online processing *)

repeat

read(p)

j j + 1, p

j

 p, append J with p

j

(* start a new phase if needed *)

while OnlyFor(v;�; J)> �Cap(v) for some v 2 V do

� r�; m

i

 �v

i

; c

i

 c

i

+m

i

(* schedule p

j

*)

s(j) minfij c

i

+m

i

> p

j

g

c

s(j)

 c

s(j)

� p

j

forever

We need to prove that the algorithm is correct, i.e. that we never apply min to an

empty set; in other words, for every job we can �nd a machine with su�cient remaining

capacity. We will say that computing this minimum schedules p

j

(even though, for the sake

of argument, we admit the case that the set of machines with su�cient capacity is empty).

Let �

0

be the value of � when the �rst job was scheduled. We view the execution as

consisting of phases numbered from 0 to k, where l-th phase schedules jobs with � = �

l

=

�

0

r

l

. Let J

l

be the stream of jobs scheduled in phase l. Using the same convention as in

4

the analysis of the previous algorithm, we de�ne J

l

i�1

to be the stream of jobs that in phase

l machine i received or machine i� 1 passed over. Now the correctness will mean that the

stream J

l

n

are empty for every phase l.

Because the initial estimate for � may be too low, machines may receive more work than

in the previous algorithm. This is due to the fact that in the initial phases the machines

from the beginning of the sequence needlessly refuse to pick jobs that they would gladly

accept later, thus increasing the load of the end of the sequence. Nevertheless, as we shall

show, this increase is limited.

As a preliminary, we need to analyze the consequences of the test that triggers a new

phase as soon as � is not appropriate for the stream of jobs received so far. First of all,

this implies that every �

i

is appropriate for the stream J

1

� � �J

l

, and in particular, for the

substream J

l

. Therefore

OnlyFor(v;�

l

; J

l

) � �

l

Cap(v) for every phase l and every v 2 V: (#)

This allows to prove, by induction on i, the following

Observation 3. For every i = 0; : : : ; n and every phase l

l

X

t=0

OnlyFor(0;�

t

; J

t

i

) �

l

X

t=0

�

t

!

0

@

n

X

j=i+1

v

j

1

A

For i = 0 this follows simply from the fact that for every phase t � l

OnlyFor(0;�

t

; J

t

0

) = OnlyFor(0;�

t

; J

t

) � �

t

Cap(0) = �

t

0

@

n

X

j=1

v

j

1

A

:

For l = 0 the follows from Observation 2, as the phase 0 is identical to the �rst algorithm

with � = �

0

.

Therefore we may assume that the claim is true for (i; l�1) and (i�1; l). We will prove

the claim for (i; l). We consider two cases, according to the value of c

i

at the end of phase

l. Assume �rst that this value is positive. Subtract formally from both sides of the claim

for i and l the respective sides of the claim for i and l � 1; this way we see that it su�ces

to show that

OnlyFor(0;�

l

; J

l

i

) � �

l

0

@

n

X

j=i+1

v

j

1

A

Because the �nal value of c

i

is positive, in phase l machine i accepted all jobs from the

stream J

l

i�1

that had size bounded by �

l

v

i

, and therefore the stream J

l

i

consists only of the

jobs that must be executed on machines faster than v

i

. Thus the sum of sizes of all jobs

5

in this stream, OnlyFor(0;�

l

; J

l

i

), equals to OnlyFor(v

i

;�

l

; J

l

), which by (#) is at most

�

l

Cap(v

i

). Lastly, Cap(v

i

) �

P

n

j=i+1

v

j

.

Now assume that the �nal value of c

i

in phase l equals some c � 0. This time subtract

from both sides of the claim the respective sides of the claim for i� 1 and l, this way we

can see that it su�ces to show that

l

X

t=0

(OnlyFor(0;�

t

; J

t

i

)�OnlyFor(0;�

t

; J

t

i�1

)) � �

l

X

t=0

�

t

!

v

i

equivalently,

l

X

t=0

(OnlyFor(0;�

t

; J

t

i�1

)� OnlyFor(0;�

t

; J

t

i

)) �

l

X

t=0

�

t

!

v

i

(##)

On the left hand side this inequality has the di�erence between the sum of jobs sizes that

reach machine i and the sum of the job sizes that are passed over by machine i to the

subsequent machines (during the phases from 0 to l). In other words, this is the sum of

sizes of the jobs accepted by machine i during these phases. This sum, say s, is related in

the following manner to c:

0 � c =

l

X

t=0

�

t

v

i

!

� s which implies s �

l

X

t=0

�

t

!

v

i

� (##): 2

Observation 3 implies that

l

X

t=0

OnlyFor(0;�

t

; J

t

n

) � 0

This means that, for every phase t � l,

OnlyFor(0;�

t

; J

t

n

) = 0

Observe that OnlyFor(0;�

t

; J

t

n

) is simply the sum of the sizes of all jobs in J

t

n

. Thus J

t

n

is

empty for every phase t, implying the correctness of the algorithm.

To analyze the competitive ratio, we may assume that Load(s

�

) = 1. Then the penulti-

mate value of � must be smaller than 1 and the �nal one smaller than r. Consider a machine

with speed 1. The work accepted by a machine is smaller than the sum of all �'s up to that

time (additions to the capacity) plus the last � given for the safety margin. Together it is

(r + 1 + r

�1

+ : : :) + r = r(1=(1� r

�1

) + 1) = r(2r � 1)=(r � 1). To �nd the best value

of r, we �nd zeros of the derivative of this expression, namely of (2r

2

� 4r + 1)=(r � 1)

2

,

and solve the resulting quadratic equation. The solution is r = 1+

p

1=2 and the resulting

competitive ratio is 3 +

p

8 � 5:8284.

6

One can observe that the worst case occurs when our penultimate value of � is very

close to 1 (i.e. to the perfect load factor). We will choose the initial value of � to be of the

form r

�N+x

where N is a suitably large integer and x is chosen, uniformly at random, from

some interval < �y; 1� y > (we shifted the interval < 0; 1 > to componsate for the scaling

that made Load(s

�

) = 1). Therefore we can replace the factor r with the average value of

the last �. For negative x this value is r

x+1

, for positive it is r

x

. The average is

Z

0

�y

r

1+x

dx+

Z

1�y

0

r

x

dx =

Z

1

1�y

r

x

dx+

Z

1�y

0

r

x

dx =

Z

1

0

r

x

dx =

r � 1

ln r

Therefore the average competitive ratio is

r � 1

ln r

2r � 1

r � 1

=

2r � 1

ln r

The equation for the minimum value is kind of ugly, but nevertheless the minimum is

achieved for r close to 2.155, and approximately equals 4.311.

3 Lower Bounds

In this section, we will prove deterministic and randomized lower bounds for load balancing

on related machines.

Fix a parameter � > 1. This is used to choose a set of machine speeds and the job

sequence. We will specify � later with di�erent values depending on whether we wish to

obtain deterministic or randomized lower bounds.

Consider n machines M

0

: : :M

n�1

and let v

i

be the speed ofM

i

. The machine speeds are

chosen as follows: v

i

=

1

�

i

, 0 � i � n�2 and v

n�1

=

�

��1

�

1

�

n�1

. Note that v

n�1

=

P

1

i=n�1

1

�

i

.

We consider the job sequence �

i

= j

1

; j

2

: : : j

i

, where j

i

= �

i

. Observe that �

i

is a pre�x of

�

i+1

.

For the job sequence �

i

, the optimal assignment of jobs is to assign the n�1 biggest jobs

to the machines M

0

; : : :M

n�2

and place all the remaining jobs on machine M

n�1

. In other

words, the optimal assignment for �

i

is to assign job j

i�k

to machine M

k

, 0 � k � n � 2

and assign jobs j

1

: : : j

i�n+1

to machine M

n�1

. The optimal load for �

i

is �

i

, which is the

size of the largest job in �

i

.

3.1 Deterministic Lower Bound

We will focus on the load on the 3 fastest machines and demonstrate that, for a su�ciently

small �, the competitive ratio of any deterministic online algorithm is at least �

3

. Assume

7

that � and n satisfy the condition that

v

n�1

=

�

� � 1

�

1

�

n�1

�

1

�

3

(1)

Let A be any online algorithm for load balancing. Suppose the competitive ratio of A

is less than �

3

.

Claim 3.1 A schedules the largest job of �

i

on one of the 3 fastest machines.

Proof: Suppose A schedules the largest job j on some machine other than the 3 fastest

machines. Then j must be scheduled on some machine of speed at most 1=�

3

. The optimal

load is j, but the maximum load in A's schedule is at least �

3

� j, contradicting the fact

that the competitive ratio of A is less than �

3

. 2

Hence assume that the algorithm schedules the largest job only on one of the 3 fastest

machines. This must be true for each sequence �

i

. Hence, all the jobs are scheduled on the

3 fastest machines.

Suppose j is the last job in the request sequence seen so far. Recall that the optimal

load is j. Let l

i

be the sum of the jobs on machine M

i

and de�ne the relative load vector

to be R = (R

0

; R

1

; R

2

) where R

i

= l

i

=j. For brevity, we will use the term `load vector' to

mean `relative load vector'.

Note that the load on machine M

i

is �

i

� l

i

. Since the competitive ratio of A is less than

�

3

, �

i

� l

i

� �

r

� j, i.e. l

i

=j � �

3�i

, i.e. R

i

� �

3�i

.

Thus the components of the load vector are bounded. Call a load vector legal if it

satis�es R

i

� �

3�i

; 0 � i � 2.

Consider the change in the load vector when the next job j

0

= � � j. arrives. Let

R

0

= (R

0

0

; R

0

1

; R

0

2

) be the new load vector. Suppose A schedules j

0

on machine M

k

. Then

R

0

i

= R

i

=�; i 6= k, and R

0

k

= R

k

=�+ 1.

We will choose � such that, starting from the zero load vector, A will certainly reach

a state where the load vector is not legal. This will contradict the assumption on the

competitive ratio of A.

We discretize the space of load vectors and construct a directed graph as follows. Fix

� > 0. We shall lower bound the load vector R by the load vector R

0

where R

0

i

= b

R

i

�

c � �.

The vertices of the graph are 3-tuples (c

0

� �; c

1

� �; c

2

� �) where the c

i

's are non-negative

integers. The vertex set consists of all tuples which are legal load vectors. Since legal load

vectors have bounded components, the vertex set is �nite. Each vertex has 3 edges, an

8

edge corresponding to placing a job on one of the 3 fastest machines. In particular, for

each k, 0 � k � 2, we have an edge from the tuple t = (c

0

� �; c

1

� �; c

2

� �) to the tuple

�

k

(t) = (c

0

0

� �; c

0

1

� �; c

0

2

� �) where c

0

i

= b

c

i

�

c, i 6= k and c

0

k

= b

c

k

�

+

1

�

c. The edge (t; �

k

(t)) is

present only if �

k

(t) is a legal tuple.

We will consider the connected component of the graph containing the tuple (0,0,0).

Call this G(�; �).

We shall say that a tuple t = (t

0

; t

1

; t

2

) is a lower bound for a load vector R =

(R

0

; R

1

; R

2

) if t

i

� R

i

, 0 � i � 2. Note that if R is legal then any lower bound tuple

for R is also legal.

Lemma 3.2 Let L be the load vector at any point and let L

0

be the load vector obtained by

scheduling the next job on machine k. If tuple t is a lower bound for L, then the tuple �

k

(t)

is a lower bound for L

0

.

Consider the sequence of load vectors of A while servicing the job sequence. Let this

sequence be R

0

; R

1

; : : :, where R

0

= (0; 0; 0). Construct a sequence of tuples t

0

; t

1

; : : :, where

t

0

= (0; 0; 0) and t

i+1

= �

k

(t

i

) where R

i+1

is obtained from R

i

by scheduling the last job on

machine M

k

. Using Lemma 3.2, we can show inductively that tuple t

i

is a lower bound for

R

i

. If A has a competitive ratio less than �

3

then each of the R

i

's is legal. But this implies

that the each of the t

i

's is legal. The sequence of t

i

's is an in�nite path in the �nite graph

G(�; �). Hence G(�; �) must have a directed cycle.

We have veri�ed by a computer program that for � = 1:3459, � = 0:0008, G(�; �) has

no cycle. Recall that � and n had to satisfy the inequality (1). For � = 1:3459, this implies

that n � 8. This proves a lower bound of �

3

� 2:4380 on the competitive ratio of any

deterministic online algorithm for load balancing with n � 8 related machines.

We mention that it is possible to give a purely analytic proof of a weaker lower bound

of 2:25. The idea is to �x � = 1:5 and consider the loads on the fastest 2 machines over the

last 3 jobs of the job sequence �

i

as i!1. We omit the details.

3.2 Randomized Lower Bound

Fix a constant m. We consider the distribution over the m job sequences �

1

; : : :�

m

where

the sequence �

i

, 1 � i � m is given with probability

1

m

. In other words, we give the job

sequence �

m

and stop the job sequence after i jobs where i is chosen uniformly and at

random from the set f1; 2; : : :mg. As noted before, the optimal load for �

i

is �

i

, hence the

expected value of the optimal load is

1

m

�

P

m

i=1

�

i

.

9

Consider the schedule produced by a deterministic algorithm for the job sequence �

m

.

Note that any schedule for �

m

induces a schedule for �

i

, 1 � i � m. >From this, we can

compute the expected load incurred by A for the chosen distribution of job sequences.

We compute all possible schedules for �

m

and for each schedule, compute the expected

load for the distribution of job sequences. >From this, we obtain the minimum expected load

for any deterministic algorithm. By Yao's principle, the ratio of the minimum expected load

to the expected value of the optimal load gives us a lower bound for randomized algorithms

versus oblivious adversaries.

A computer program tested all possible schedules for n = 6, m = 14 and � = 1:6 and

computed a lower bound of 1:8372. Note that this implies a randomized lower bound of

1:8372 for any n � 6 machines. For n > 6, we consider n machines with speeds v

i

chosen

as before. For the purpose of analysis, we group the slowest n � 5 machines into a single

machine, i.e. pretend that any job scheduled on the n� 5 slowest machines is scheduled on

a single machine of speed

P

n�1

i=5

v

i

=

�

��1

�

1

�

5

. The load on this single machine is a lower

bound for the maximum load on the slowest n � 5 machines. Observe that this gives us

6 machines whose speeds are the same as the speeds of the machines we use for the case

n = 6. Hence the analysis for n = 6 applies and so does the lower bound of 1:8372.

4 Acknowledgements

We would like to thank Yossi Azar, Amos Fiat, Piotr Indyk and Rajeev Motwani for valuable

discussions and encouragement to write this paper.

References

[1] S. Albers, Better bounds for online scheduling, to appear in Proc. 29th ACM STOC

(1997).

[2] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin and O. Waarts, On-line load balancing

with applications to machine scheduling and virtual circuit routing, Proc. 25th ACM

STOC(1993), pp. 623-631.

[3] Y. Azar, A. Broder, A. Karlin, On-line load balancing, Proc. 33rd IEEE FOCS (1992),

pp. 218-225.

[4] Y. Azar, J. Naor, R. Rom,The competitiveness of on-line assignment, Proc. 3rd ACM-

SIAM SODA (1992), pp. 203-210.

10

[5] B. Chen, A. van Vliet and G. J. Woeginger, A lower bound for randomized on-line

scheduling algorithms, Information Processing Letters, vol.51, no.5, pp. 219-22.

[6] P. Indyk, personal communication.

[7] R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical

Journal 45 (1966), pp. 1563-1581.

11

