
Sequential and Parallel Subquadratic Work

Algorithms for Constructing Approximately

Optimal Binary Search Trees

Marek Karpinski

�

Lawrence L. Larmore

y

Wojciech Rytter

z

Abstract

A sublinear time subquadratic work parallel algorithm for

construction of an optimal binary search tree, in a special

case of practical interest, namely where the frequencies of

items to be stored are not too small, is given. A sublinear

time subquadratic work parallel algorithm for construction

of an approximately optimal binary search tree in the general

case is also given. Sub-quadratic work and sublinear time

are achieved using a fast parallel algorithm for the column

minima problem for Monge matrices developed by Atallah

and Kosaraju. The algorithms given in this paper take

O(n

0:6

) time with n processors in the CREW PRAM model.

Our algorithms work well if every subtree of the optimal

binary search tree of depth
(log n) has o(n) leaves.

We prove that there is a sequential algorithm with

subquadratic average-case complexity, by demonstrating

that the \small subtree" condition holds with very high

probability for a randomly permuted weight sequence. This

solves the conjecture posed in [11] and breaks the quadratic

time \barrier" of Knuth's algorithm [10]. This algorithm can

also be parallelized to run in average sublinear time with n

processors.

1 Introduction

The problem of developing a subquadratic time sequen-

tial algorithm computing opt imal binary search trees

(the OBST problem) appears to be very hard. Algo-

rithm for �nding approximately optimal binary search

trees have been found by Allen, Mehlhorn and Unter-

auer [2, 13, 14]. The results of this paper are largely

based on the algorithm for approximately optimal bi-

nary search trees given by Larmore [11]. We show

that there is a sequential algorithm with subquadratic

average-case complexity, where weights are randomly

permuted.

The OBST problem is especially interesting in a

parallel setting, since there is no known NC algorithm

�

Dept. of Computer Science, University of Bonn, 53117

Bonn. This research was partially supported by DFG Grant

KA 673/4-1, and by ESPRIT BR Grant 7097 and ECUS 030.

Email:marek@cs.uni-bonn.de

y

Department of Computer Science, University of Nevada, Las

Vegas, NV 89154{4019, USA. Partially supported by National

Science Foundation grants CCR-9112067 and CCR-9503441.

Email:larmore@cs.unlv.edu

z

Institute of Informatics, Warsaw Univer-

sity, 02{097 Warszawa. Partially supported by DFG Grant Bo

56/142-1. Email:rytter@mimuw.edu.pl

which solves that problem e�ciently, and the problem

of �nding such a parallel algorithm appears to be very

hard [4].

There is an NC algorithm for the special case of

alphabetic trees using n

2

processors [12]. The best

known NC algorithms require O(n

6

) work for optimal

binary search trees and O(n

2

) work for approximately

optimal binary search trees [4, 15].

Sublinear time parallel algorithms sometimes have

much lower total work than NC algorithms. In [8] a

sublinear time algorithm for the OBST problem whose

work is very close to quadratic is given. The fastest

known sequential algorithm for the OBST problem

is the classical algorithm by Knuth [10], which takes

quadratic time. The main theorem of [10] uses, without

stating it in those terms, the Monge property of the

matrix of subtree costs. A matrix M has the Monge

property if, for all i

0

< i

1

and j

0

< j

1

which are

within range, M

i

0

;j

0

+M

i

1

;j

1

� M

i

0

;j

1

+ M

i

1

;j

0

. This

is essentially the same as the quadrangle inequality

introduced by Yao [16] which allowed speedup of certain

dynamic programming algorithms.

We consider the problem in a parallel setting, using

the CREW PRAM model of computation. We present

sublinear time subquadratic work parallel algorithms

for certain special instances of the OBST problem,

We also give sublinear time subquadratic work parallel

algorithms which give approximately optimal binary

search trees in the general case.

De�ne a binary search tree to be �-approximately

optimal if its cost di�ers by at most � from the cost of

the optimal binary search tree. Our main result is:

Theorem 1.1. There exists an O(n

0:6

)-time par-

allel algorithm using n processors which computes the

optimal binary search tree for any sequence in which all

weights are
(

1

n

). Furthermore, there exists an O(n

0:6

)-

time parallel algorithm using n processors which com-

putes an �-approximately optimal binary search tree for

any sequence, where � = o(1).

We use terminology from [9], pages 434{435. Let

K

1

; : : :K

n

be a sequence of n weighted items (keys),

which are to be placed in a binary search tree. We are

1

2 KARPINSKI LARMORE RYTTER

given a sequence � of 2n + 1 weights (probabilities):

q

0

; p

1

; q

1

; p

2

; q

2

; p

3

; : : : ; q

n�1

; p

n

; q

n

where

� p

i

is the probability that K

i

is the search argument;

� q

i

is the probability that the search argument lies

between K

i

and K

i+1

.

Note that

P

p

i

+

P

q

i

= 1. It will be convenient to refer

to the external item E

i

, for 0 � i � n, corresponding to

the probability q

i

.

Let Tree(�) be the set of all full binary weighted

trees with n internal nodes, where the i

th

internal node

(in inorder) has weight p

i

, and the i

th

external node

(the leaf, in the left-to-right order) has weight q

i

. The

tree is \full" in the sense that each internal node has

exactly two sons. The keys fK

i

g are to be stored in

internal nodes of this binary search tree. The external

nodes correspond to intervals between keys. If T is a

such a weighted binary search tree then de�ne the cost

of T to be cost(T) =

P

`(T; v) � weight(v) where the

summation is over all nodes of T , and `(T; v) is the level

of the node v in T , de�ned to be the distance (number

of nodes on the path) from the root.

Let OPT(�) be the set of trees Tree(�) whose cost

is minimal. The OBST problem consists of �nding

any tree T 2 OPT(�). Denote by obst(i; j) the set

OPT(q

i

; p

i+1

; q

i+1

; : : : ; q

j�1

; p

j

; q

j

). The trees which are

elements of this set are said to have width jj � ij. Let

cost(i; j) be the cost of a tree in obst(i; j), and let

weight(i; j) = q

i

+ p

i+1

+ : : :+ p

j

+ q

j

, for i < j. Let

cost(i; i) = weight(i; i) = q

i

.

The values of cost(i; j) are tabulated in an array.

The time to compute all values of cost is O(n

2

), us-

ing Knuth's Theorem [10], essentially making use of

the Monge property of cost , considered as a matrix.

Knuth's algorithm can be easily parallelized by com-

puting all entries on a given diagonal of the array in

parallel. The following lemma was essentially shown in

[8]. It says that costs of all optimal subtrees of width

at most ` can be e�ciently computed in parallel.

Lemma 1.1. All values cost(i; j) for jj � ij � `

can be computed in O(` � log(`)) time with O(n= log(`))

processors.

A matrix M has the Monge property if, for all

i

0

< i

1

and j

0

< j

1

which are within range, M

i

0

;j

0

+

M

i

1

;j

1

� M

i

0

;j

1

+ M

i

1

;j

0

. Monge matrices arise in a

large number of applications. We state several known

results concerning Monge matrices.

Lemma 1.2. If j

0

� j

1

, then there exist i

0

� i

1

such

that the minimum of column j

0

of M is at i

0

, and the

minimum of column j

1

of M is at i

1

.

The following result is by Aggarwal, Klawe, Morey,

Shor, and Wilber [1]. The algorithm developed in

that paper is whimsically known as the \SMAWK"

algorithm, using a permutation of the authors' initials.

Lemma 1.3. If M is an n � m Monge matrix,

all column minima of M can be found in O(n + m)

sequential time.

In the parallel case, we have the following result by

Atallah and Kosaraju [3].

Lemma 1.4. If M is an n � m Monge matrix, all

column minima of M can be found in O(logn logm)

time by n= logn processors, using the CREW PRAM

model of computation.

2 A general structure of the exact algorithm

The main phase of our algorithm uses a form of dynamic

programming quite di�erent from the usual ones for

optimal binary search trees (bottom-up computation of

the costs of optimal subtrees). The new concept of a

\partial tree" is introduced. The costs of all partial trees

are computed by processing the potential nodes of the

trees in in-order. These potential nodes are contained

in a tree which we call an \abstract tree." It is possible

that not all of the nodes of the abstract tree correspond

to nodes in the optimal binary search tree.

Let d > 0 be a given integer. The abstract d-tree T

d

is a full regular binary tree which consists of all possible

nodes at level at most d, and no nodes at higher levels.

Note that T

d

has m = 2

d

� 1 nodes, which we label

v

1

; : : : v

m

in in-order.

Partial subtrees. Assume T is a binary search

tree and v 2 T

d

is identi�ed with an internal node of T

containing the key K

i

. Then T

0

= Partial

T

(v;K

i

) is a

subtree of T which consists of all vertices(internal and

external) of T preceding the node v in in-order, together

with v. We say that T

0

is a partial tree terminating in

(v;K

i

).

If T" is a partial tree, the partial cost of T

0

, written

partial cost(T

0

), is the sum of the path weights for all

nodes in T

0

. De�ne partial cost(v; i) to be the minimum

value of partial cost(T

0

) such that T

0

is a partial tree

terminating in (v;K

i

).

Our main algorithm depends on two parameters, `

and d, and consists of three phases.

3 Analysis of the algorithm MAIN

The essential part of the algorithm is Basic-Phase. We

derive recurrence equations, as in dynamic program-

ming, to compute the table partial cost . First we in-

troduce the relation \)" between the nodes of the ab-

stract tree T

d

. The relation u) v means that there is

some binary tree T for which a node identi�ed with v is

the immediate in-order successor, in T , of a node iden-

ti�ed with u. More formally: let u

1

, w

1

be, respectively,

OPTIMAL BINARY SEARCH TREES 3

ALGORITHM MAIN:

Preprocessing-Phase: parallel implementation of Knuth's algorithm.

Compute costs of optimal subtrees of width at most `.

Comment: can be done in parallel time O(`) due to Lemma 1.1

Basic-Phase: computation of optimal costs of partial subtrees.

Assume the nodes of the tree T

d

are listed in in-order v

1

; : : : ; v

m

.

for k = 1 to m do

for each i = 1 : : :n do in parallel

compute partial cost(v

k

; i) using the parallel algorithm

of [3] for the corresponding column minima problem.

Construction-Phase: construction of an optimal binary search tree.

global cost := minfpartial cost(v; n) + (level(v) + 1) � q

n

: v 2 T

d

g;

Comment: global cost is the cost of an optimal tree;

w := a node v 2 T

d

for which minimum is achieved;

construct an optimal tree knowing w and the table partial cost .

the left and right sons of u in T

d

. Let u

2

; u

3

; : : : be the

rightmost branch starting at u

1

and let w

2

; w

3

; : : : be

the leftmost branch starting at u

1

. Then u

i

) v and

v) w

i

for each i. If u) v, we say u is a predecessor

of v, and v is a successor of u. The cost of an optimal

partial tree terminating in a given node v depends on

the cost of a partial tree terminating in a predecessor of

v. Let `(u; v) = maxflevel(u); level(v)g + 1. We intro-

duce two auxiliary tables partial cost 1 and M

v

de�ned

by recurrence equations as follows:

partial cost 1(v; i) = minfpartial cost(u; i� 1)

+level(v) � p

i

+ `(u; v) � q

i�1

: u) vg

Assume u) v and u or v is at the bottom level, i.e.,

`(u; v) = d+ 1. Then for each 1 � i < j de�ne:

M

v

(i; j) = partial cost(u; i) + level(v) � p

j

+cost(i � 1; j) + weight(i � 1; j) � d

If i � j then de�ne M

v

(i; j) = 1. Let ColMin(M

v

; i)

be the smallest value in the i

th

column of M

v

. The

basic dynamic programming recurrence for computing

partial cost is as follows:

partial cost(v; i) =

minfpartial cost 1(v; i); ColMin(M

v

; i)g

Lemma 3.1. (1) The matrix M

v

satis�es the

Monge condition. (2) For a given v, the values

ColMin(M

v

; i), for all 1 � i � n, can be computed in

O(log

2

n) time with n= logn processors.

Proof. (1) By Lemma 2.1 of [11], the matrix

fcost(i � 1; j)g has the Monge property. It is simple to

verify that fweight(i � 1; j)g is also Monge. The other

two terms are trivially Monge since they depend on only

one component. Finally, the sum of Monge matrices is

Monge.

(2) All columnminimaof an n�nMonge matrix can

be computed in O(log

2

n) time with n= logn processors

by a simple divide-and-conquer algorithm.

Lemma 3.2. Assume that the each segment of `

consecutive items contains at least one node at depth

at most d in the optimal binary search tree. Then

the optimal binary search tree can be computed in

O(logn(2

d

+ `)) parallel time with n processors, or in

O(n(2

d

+ `)) sequential time.

Proof. The partial costs can be computed by

traversing the tree T

d

, in in-order and applying the ba-

sic dynamic programming recurrence. The main point

is that the values ColMin can be computed for a given

node in O(logn) time with n processors, by Lemma 3.1.

This proves the following claim:

Claim. Assume the costs of all optimal subtrees rooted

below level d are computed. Then an optimal binary

search tree can be constructed in O(2

d

logn) time with

n processors.

First the optimal costs of subtrees of width ` are

computed. Then (in Basic-Phase) the partial costs are

computed in O(2

d

logn) time with n processors (see

Claim). E�ciency is gained by applying the parallel

algorithm for the column minima problem.

The �rst phase runs in O(` � logn) time with O(n`)

work, and the second phase runs in O(2

d

logn) time

with O(2

d

n) work.

Finally, the binary search tree is reconstructed using

pointers that are saved during computation of cost and

4 KARPINSKI LARMORE RYTTER

level at most d
are in the abstract d-tree

all nodes at

subtrees of width

at most l

height d

Figure 1: The structure of a binary search tree: d = dlog

�

(

1

�

)e + 2, where � is the smallest total

weight of a segment of ` consecutive items. The abstract d-tree T

d

is shaded.

M .

Lemma 3.3. Let � be the golden ratio (� =

p

5+1

2

�

1:62). Assume that the total weight of each seg-

ment of ` consecutive items is at least �. Then

an optimal binary search tree can be computed in

O(lognmaxf`�; 2

log

�

(

1

�

)

g) parallel time with n proces-

sors.

Proof. Let d = dlog

�

(

1

�

)e + 1,

Claim. Let T 2 OPT (q

0

; p

1

; q

1

; : : : ; p

n

; q

n

).

If v is an internal node of T and the weight of all

items contained in the subtree rooted at v is �, then

level

T

(v) < log

�

(

1

�

) + 2.

Let F

1

= 1, F

2

= 1, F

3

= 2, etc., be the Fibonacci

numbers. By Theorem 2 of [7], similar to results of [6],

a subtree whose root is at level h can have weight at

most 2=F

h+2

. F

n

> 2�

n�4

(see [9] exercise 4, pg. 18),

which proves the claim and the lemma.

4 The proof of our main results related to

parallel constructions

In this section we prove our main results related to

sublinear time parallel computations, as two separate

theorems. The proofs consist of manipulating the

parameters d, `, and �. Let � = 1=(1+log

2

�). We have

� � 0:59023. Hence n

�

logn = O(n

0:6

). We restate

Theorem 1.1 precisely:

Theorem 4.1. Assume q

i�1

+ p

i

+ q

i

�

�

n

for each

i, where � > 0 is a constant. Then an optimal binary

search tree can be computed in O(n

0:6

) parallel time with

O(n) processors.

Proof. We apply Lemma 3.3 with � =

�`

n

. Let

d = log

�

(

n

`

). The work in the �rst phase is O(n`) and

in the second phase it is O(2

d

n). The algorithm has

the smallest minimal work if the phases have nearly

equal work. This occurs when log

�

(

n

`

) = log

2

(`). It

can be calculated that in this case d = log

2

(n) ��. Thus

2

d

logn = O(n

0:6

).

Theorem 4.2. (1) Let a > 1. There is a par-

allel O(n

1+a��

logn)-time n-processor algorithm which

constructs an (n

1�a

logn)-approximately optimal bi-

nary search tree. (2) There is a parallel O(n

0:6

)-

time n-processor algorithm which constructs an o(1)-

approximately optimal binary search tree.

Proof. Let � = n

�a

.

Claim. If each item has weight at least � we can

compute the optimal binary search tree in parallel

O(n

1+a��

logn) time with n processors.

Proof. (of the claim) Take ` = n

a��

, � = ` � � and

apply Lemma 3.3.

We remove a pair consisting of K

i

and E

i

provided

q

i�1

+ p

i

+ q

i

< �. Iterate this process until q

0

i�1

+ p

0

i

+

q

0

i

� � for all i in the remaining sequence. Construct

an optimal binary search tree T

0

for the remaining

items using the algorithm from Claim 1. The tree T

0

has height O(logn) since the weight of each item is

su�ciently large. The cost of T

0

does not exceed the

cost of an optimal tree for the whole sequence.

We now attach the deleted items to T

0

, as fol-

lows. Suppose K

i

; E

i

: : :K

j

; E

j

is a maximal list of

consecutive deleted items. Replace E

i�1

in T

0

by

an almost regular binary search tree whose items are

E

i�1

;K

i

; : : :K

j

; E

j

.

We increase the cost by O(n � n

�a

� logn), which is

O(n

1�a

logn). This proves (1).

We can take a very close (from below) to 0:6=�

and achieve time O(n

0:6

) with n processors and o(1)-

OPTIMAL BINARY SEARCH TREES 5

approximation.

5 The subquadratic average-time sequential

algorithm

We consider now the average case complexity. Assume

that itemsK

1

; : : :K

n

are given, with access probabilities

p

1

; : : : ; p

n

. We consider the problem of �nding an

optimal binary search tree for a random permutation

of the items. For the sake of simplicity, we assume that

every search is successful, i.e., q

i

= 0. We shall address

the general question where the q

i

can be positive in the

full paper.

In this section, we prove the following, addressing a

conjecture of [11].

Theorem 5.1. Let probabilities p

1

; p

2

; p

3

; : : : ; p

n

be

given, where the fp

i

g are randomly permuted. Then

there is an o(n

2

) time algorithm that computes a binary

search tree, where p

i

are the weights of the internal

nodes and external nodes have weight zero, which is

optimal with probability 1� o(1). Furthermore, there is

an algorithm which computes an optimal binary search

tree in expected time o(n

2

).

We use the following notation: let x = x

1

; : : :x

n

be

any sequence of positive real numbers. Write

jxj = n; the length of x

�x =

n

X

i=1

x

i

; the weight of x

For any 0 < � < 1, denote by prefhx; �i the largest

pre�x y of x such that �y < ��x. Similarly, denote by

suffhx; �i the largest su�x z of x such that �z < ��x.

De�nition of �-trees.For any 0 < � < 1, de�ne

the �-tree on x to be the tree whose root is x and

whose nodes are sublists of x, where the left son of y

is prefhy; �i and the right son of y is suffhy; �i. This

generalizes the notion of min-max tree introduced by

Bayer [5], which is essentially a

1

2

-tree.

Lemma 5.1. Let x = x

1

; : : :x

n

be a sequence of

positive real numbers, where n = jxj, and let ~x be a

random permutation of x. Let �

i

(x) be the probability

that

�

�

pref

x;

1

2

�

�

�

< i. Then �

i

(x) �

i

n

for 1 � i �

n

2

.

By symmetry, note that the �

i

(x) is also the prob-

ability that

�

�

suff

x;

1

2

�

�

�

� i.

Proof. If i =

n

2

, then �

i

(x) �

1

2

by symmetry. The

rest of the proof is by induction on n. For n = 1,

the result is trivial. Assume that the statement of the

lemma holds for all lists of length (n � 1). Let ~x

j

be

the smallest item of ~x. Let y be the list of length n

obtained from ~x by subtracting ~x

j

from every item. In

the resulting sequence can be many zeros, let us �x one

of them. Let x

0

be the list of length (n�1) obtained by

deleting this zero from y. By the inductive hypothesis,

the statement of the lemmaholds for x

0

. pref

y;

1

2

�

will

be identical to pref

x

0

;

1

2

�

, except possibly for insertion

of the zero.

The zero of y is in one of the �rst i places with

probability

i

n�1

. Recall that i <

n

2

. Then

�

i

(y) =

i

n

�

i�1

(x

0

) +

n� i

n

�

i

(x

0

)

�

i(i � 1)

n(n� 1)

+

(n� i)i

n(n � 1)

=

i

n

If

�

�

pref

~x;

1

2

�

�

�

� i, then

�

�

pref

y;

1

2

�

�

�

� i, since ~x

is obtained from y by adding a constant to each item.

Thus p

i

(x) = p

i

(~x) � p

i

(y).

De�ne � = 1 �

1

2

5

and = 1 �

1

2

10

. Note that

(1� �)

2

= 1� , and 1� �

2

< 2

�4

.

Lemma 5.2. If y is any randomly permuted list of

weights, then

�

�

pref

y;

3

4

�
�

�

� jyj with probability at

least �

2

.

We shall present the proof, which makes use of

Lemma 5.1 twice, in the full paper.

Lemma 5.3. If x is any sequence of positive real

numbers, and if ~x is a randomly chosen permutation of

x, then the probability that all nodes of the

3

4

-tree of ~x at

depth 2m have length at most n

m

is at least 1� 2�

2m

.

Proof. By Lemma 5.2, a depth 2m node in the

3

4

-

tree has length at most n

m

with probability at least

1�

m�1

X

i=0

�

2m� 1

i

�

�

�

2

�

i

�

1� �

2

�

2m�1�i

� 1�

m�1

X

i=0

�

2m� 1

i

�

�

�

2

�

m

�

1� �

2

�

2m

� 1�

m�1

X

i=0

�

2m� 1

i

�

�

�

2

�

m

�

2

�4

�

m�1

= 1� 2

�2m+2

�

�

2

�

m

There are at most 2

2m�1

nodes at level 2m. The result

follows.

By Theorem 2 of [7], we have:

Lemma 5.4. Assume we have an optimal binary

search tree whose list of items is z, and y is the list

of items of a subtree rooted at a node of depth 2. Then

�y �

2

5

��z.

Note that

2

5

+

1

4

<

3

4

, a fact which is used in the

next lemma.

Lemma 5.5. Let y be the list of nodes of a subtree

S of the optimal binary search tree over x whose root is

at depth 2d� 1. Then y is a sublist of a node at depth

d in the

3

4

-tree of x.

6 KARPINSKI LARMORE RYTTER

Proof. The proof is by induction. If d = 1, the

statement is trivial. If d > 1, let z be the list of nodes

for the subtree T rooted at the grandfather of the root

of S.

By Lemma 5.4 we have �y �

2

5

�z. By the inductive

hypothesis, z is contained in a sublist w which is a node

at depth d� 1 of the

3

4

-tree of x. Write w = uyv. Since

�y �

2

5

�w, either �u �

1

4

�w or �v �

1

4

�w. Thus, y

contained in either the right son or the left son of w in

the

3

4

-tree.

Directly from Lemmas 5.5 and 5.3, we obtain:

Lemma 5.6. If x is any sequence of positive real

numbers, and if ~x is a randomly chosen permutation

of x, then the probability that all subtrees rooted at

depth 4m�1 of the optimal tree over ~x have fewer than

n

m

+m nodes is at least 1� 2�

2m

.

Lemma 5.6 directly implies existence of sub-

quadratic expected work algorithms, since each subtree

of an optimal binary search tree at su�ciently large

depth contains a su�ciently small number of items.

Then we can apply the algorithms presented before.

Theorem 5.2. For some constants �; � > 0 there

is an O(n

2��

)-time algorithm which �nds an optimal

binary search tree over a randomly permuted list of

length n in with probability 1� O

�

n

��

�

.

Proof. Pick m such that 2

4m

= �(n

m

). Let �; �

be such that 2

4m

= n

1��

and n

�

=

�

1

�

�

2m

. It is simple

to show that � = �(1) and � = �(1). By Lemma 3.2

we are done.

Theorem 5.3. For some constant
 > 0 there is

an algorithm that constructs an optimal binary search

tree over a randomly permuted list x of length n in

expected time O(n

2�

)

Proof. Construct the

3

4

-tree for x level by level,

halting at that level d where every node at level d has

length at most 2

2d

. By Lemma 5.5, all subtrees of the

optimal binary tree at level 2d have length at most 2

2d

.

By Lemma 3.2, there is an O

�

n2

2d

�

-time sequential

algorithm which constructs an optimal binary search

tree.

By Lemma 5.3, 1� log

n

(2

2d

) = �(1) with probabil-

ity n

��(1)

. Thus, the expected time of the algorithm is

O(n

2��(1)

).

Finally, we remark that the algorithms given by

Theorems 5.2 and 5.3 can be e�ciently parallelized,

running in sublinear (or average sublinear) time with

n processors.

References

[1] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and

R. Wilber, Geometric applications of a matrix-

searching algorithm, Algorithmica 2 (1987), pp. 195{

208.

[2] B. Allen, Optimal and near-optimal binary search

trees, Acta Inform. 18 (1982), pp. 255{263.

[3] M. J. Atallah, S. R. Kosaraju, Parallel computation

of row minima for monotone matrices, Journal of

Algorithms 13 (1992), pp. 394{413.

[4] M. J. Atallah, S. R. Kosaraju, L. L. Larmore,

G. L. Miller, and S-H. Teng, Constructing trees in

parallel, Proc. 1

st

ACM Symposium on Parallel Algo-

rithms and Architectures (1989), pp. 499{533.

[5] P. J. Bayer, Improved bounds on the costs of optimal

and balanced binary search trees, Project MAC Tech-

nical Memorandum 69, MIT (1975).

[6] R. G�uttler, K. Mehlhorn, and W. Schneider, Binary

search trees: average and worst case behavior, Elektr.

Informationsverarb Kybernetik 16 (1980), pp. 579{591.

[7] D. S. Hirschberg, L. L. Larmore, and M. Molodowitch,

Subtree weight ratios for optimal binary search trees,

TR 86-02, ICS Department, University of California,

Irvine (1986).

[8] M. Karpinski and W. Rytter, On a sublinear time par-

allel construction of optimal binary search trees, Pro-

ceedings of the 19

th

International Symposium on Math-

ematical Foundations of Computer Science, LNCS 841

(ed. I. Privara, B. Rovan, P. Ruzicka) (1994), pp. 453{

461.

[9] D. E. Knuth, The Art of Computer Programming,

Addison{Wesley (1973).

[10] D. E. Knuth, Optimum binary search trees, Acta

Informatica 1 (1971), pp. 14{25.

[11] L. L. Larmore, A subquadratic algorithm for construct-

ing approximately optimal binary search trees, Journal

of Algorithms 8 (1987), pp. 579{591.

[12] L. L. Larmore, T. M. Przytycka, and W. Rytter, Par-

allel construction of optimal alphabetic trees, Proceed-

ings of the 5

th

ACM Symposium on Parallel Algo-

rithms and Architectures (1993), pp. 214{223.

[13] K. Mehlhorn, Nearly optimal binary search trees, Acta

Informatica 5 (1975), pp. 287{295.

[14] K. Unterauer, Dynamic weighted binary search trees,

Acta Informatica 11 (1979), pp. 341{362.

[15] W. Rytter, E�cient parallel computations for some

dynamic programming problems, Theoretical Comp.

Sci. 59 (1988), pp. 297{307.

[16] F. F. Yao, E�cient dynamic programming using quad-

rangle inequalities, Proceedings of the 12

th

ACM Sym-

posium on Theory of Computing (1980), pp. 429{435.

