
On Randomized Versus Deterministic

Computation

?

Marek Karpinski

??

Rutger Verbeek

???

Abstract. In contrast to deterministic or nondeterministic computation, it is a fun-

damental open problem in randomized computation how to separate di�erent ran-

domized time classes (at this point we do not even know how to separate linear

randomized time from O(n

log n

) randomized time) or how to compare them relative

to corresponding deterministic time classes. In other words we are far from under-

standing the power of random coin tosses in the computation, and the possible ways

of simulating them deterministically.

In this paper we study the relative power of linear and polynomial randomized time

compared with exponential deterministic time. Surprisingly, we are able to construct

an oracle A such that exponential time (with or without the oracle A) is simulated by

linear time Las Vegas algorithms using the oracle A. For Las Vegas polynomial time

(ZPP) this will mean the following equalities of the time classes:

ZPP

A

= EXPTIME

A

= EXPTIME (= DTIME(2

poly

)).

Furthermore, for all the sets M � �

�

:

M �

UR

�

A () M 2 EXPTIME

(�

UR

being unfaithful polynomial random reduction, c.f. [Jo 90]).

Thus

�

A is �

UR

complete for EXPTIME, but interestingly not NP{hard under (de-

terministic) polynomial reduction unless EXPTIME = NEXPTIME. We also

prove, for the �rst time, that randomized reductions are exponentially more pow-

erful than deterministic or nondeterministic ones (cf. [AM 77]). Moreover, a set B

is constructed such that Monte Carlo polynomial time (BPP) under the oracle B is

exponentially more powerful than deterministic time with nondeterministic oracles,

more precisely:

BPP

B

= �

2

EXPTIME

B

= �

2

EXPTIME (= DTIME(2

poly

)

NTIME(n)

) .

This strengthens considerably a result of Stockmeyer [St 85] about the polynomial

time hierarchy that for some decidable oracle B, BPP

B

6� �

2

P

B

. Under our oracle

BPP

B

is exponentially more powerful than �

2

P

B

, and B does not add any power

to �

2

EXPTIME. One of the consequences of this result is that under oracle B,

�

2

EXPTIME has polynomial size circuits.

?

A preliminary version of this paper appeared in Proc. ICALP '93, LNCS 700,

Springer{Verlag, pp. 227{240

??

Dept. of Computer Science, University of Bonn, 53117 Bonn, and International Com-

puter Science Institute, Berkeley, California. Supported in part by the Leibniz Center

for Research in Computer Science, by the DFG Grant KA 673/4-1 and by the ES-

PRIT BR Grant 7097. Email: marek@cs.uni-bonn.de

???

Dept. of Computer Science, FernUniversit�at Hagen, 58084 Hagen. Part of the re-

search was done while visiting the International Computer Science Institute, Berke-

ley, California. Email: rutger.verbeek@fernuni-hagen.de

1

1 Randomized Computation

A probabilistic Turing machine (PTM) is a standard Turing machine with the

ability to toss a random coin, and can be viewed as a nondeterministic machine

with a di�erent accepting condition: an input x 2 �

�

is accepted (in time T (n))

if more than a half of the computations (of length T (jxj)) are accepting.

The probability of accepting (rejecting) can be de�ned as the fraction of ac-

cepting (rejecting) paths in the normalized computation tree (i.e., all the paths

have the same number of binary branching points). We will restrict ourselves to

machines with a clock: all computations have the length at most T (jxj).

We shall study the following classes of probabilistic (bounded error) Turing

machines:

{ Monte Carlo machines (Bounded error PTMs, MTMs)

Any input is accepted either with probability >

3

4

or with probability <

1

4

.

{ Randomized machines (one sided error PTMs, RTMs):

Any input is accepted with probability >

3

4

or 0.

{ Las Vegas machines (zero error PTMs, ZPTMs):

Any input is either accepted with probability >

3

4

and rejected with proba-

bility 0 or it is rejected with probability >

3

4

and accepted with probability

0.

We denote the corresponding complexity classes by

PrTIME(T) = fL(M) j M is an O(T)-bounded PTMg

BPTIME(T) (same for MTMs)

RTIME(T) (same for RTMs)

ZPTIME(T) (same for ZPTMs)

Other than in the deterministic case it is not clear that the \linear speed up" is

valid for Monte Carlo, Randomized, and Las Vegas machines.

The polynomial time classes are denoted as usual by

PP (=

[

k

PrTIME(n

k

)); BPP; RP ; and ZPP:

All these machines can be relativized in a canonical way. The relativized ma-

chines, sets, complexity classes with oracle A are (as usual) denoted by M

A

,

L(M

A

), e.g. BPP

A

; if C is a set of oracle sets, the union of relativized classes

with oracle A 2 C is denoted by superscript C (e.g. BPP

NP

=

S

A2NP

BPP

A

).

2

Other than deterministic or nondeterministic machines, PTMs with bounded

error (MTMs, RTMs, or ZPTMs) cannot be described by the syntactical prop-

erties only. The MTMs (RTMs, ZPTMs) form nonenumerable subsets of the

PTMs. Thus ZPP , RP and BPP have probably no complete sets. Therefore,

we do not have any method for proving that BPTIME(n) 6= BPTIME(n

logn

)

[KV 88] and we cannot exclude the situation that (at least under some oracle)

ZPTIME(n) = BPP . In [FS 89] the existence of such an oracle is claimed but

unfortunately the construction used in the proof seems to have an irreparable

ow [F 92]. The paper [FS 89] was also a starting point of our investigation.

A related notion of a probabilistic Turing machine with an oracle was introduced

recently by A. Yao in a context of program checkers [Y 90].

Under the random oracle BPP (and RP , ZPP) equals P and reasonable hier-

archy theorems are valid ([BG 81]). Most researchers believe that the power of

ZPP does not (or not by much) exceed P . BPP is included in �

P

2

([S 83]) and

thus in the polynomial hierarchy. On the other hand, under some oracle, BPP 6�

�

P

2

[St 85]. We will show that under appropriate oracles ZPP = EXPTIME

and BPP = �

2

EXPTIME. This means: under some oracle the zero-error

PTMs are exponentially more powerful that their deterministic counterparts,

and bounded error PTMs are exponentially more powerful than nondeterminis-

tic machines.

The results have also consequences for the unrelativized world: we can show that

the Las Vegas reductions are exponentially more powerful than deterministic

reductions, and the Monte Carlo reductions are exponentially more powerful

than
-reductions.

We will need a generalization of the well known polynomial hierarchy (in a

relativized version):

�

0

TIME(T)

A

= �

0

TIME(T)

A

= �

0

TIME(T)

A

= DTIME(T)

A

�

k+1

TIME(T)

A

= DTIME(T)

�

k

TIME(n)

A

�

k+1

TIME(T)

A

= NTIME(T)

�

k

TIME(n)

A

�

k+1

TIME(T)

A

= co{NTIME(T)

�

k

TIME(n)

A

= f�

�

nA j A 2 �

k

TIME(T)

A

g

r

k

TIME(T)

A

= �

k

TIME(T)

A

\�

k

TIME(T)

A

:

To avoid confusion with oracle classes we prefer �

k

P etc. for the classes of the

polynomial hierarchy �

k

P =

S

i

�

k

TIME(n

i

); e.g. NP = �

1

P , NP \ co{NP =

r

1

P . It is easy to see that for all at least linearly increasing T

�

k+1

TIME(T)

A

� NTIME(n)

�

k

TIME(T)

A

3

and this inclusion is strict for some oracle A.

Let EXTIME denote

S

k

DTIME(2

kn

), and let NEXTIME, BPEXTIME,

�

k

EXTIME, etc. denote the other exponential time classes. In the same way let

EXPTIME (NEXPTIME etc.) denote

S

k

DTIME(2

n

k

) (

S

k

NTIME(2

n

k

)

etc.). Sometimes we shall abbreviate EXPTIME by E, and NEXPTIME by

NE etc.

The containments between the various classes are shown in Figure 1. For most

of them a strict containment is not known. Possible (up to the best of our

knowledge) maximal collapses are

(1) P = PSPACE

(2) ZPP = E

(3) BPP = �

2

E

These three equalities are in fact true under special oracles: (1) holds under any

PSPACE{complete oracle C. In this paper we present oracles such that (2) or

(3), respectively, hold.

2 Oracle A with ZPP

A

= EXPTIME

A

= EXPTIME

We will construct an oracle A such that for all deterministic oracle machinesM

i

running in time 2

n

and all x 2 �

�

with jxj = n > i

x 62 L(M

A

i

) =) 8� 2 �

4n

; < i; x; � > 62 A

x 2 L(M

A

i

) =) #f� 2 �

4n

j< i; x; � >2 Ag >

3

4

� 2

4n

This set A will have the property

DTIME(2

n

)

A

� DTIME(2

6n

) :

By standard padding arguments we can then conclude

Theorem 1.

There exists an oracle A, such that

ZPTIME(n)

A

= EXTIME

A

= EXTIME;

ZPP

A

= EXPTIME

A

= EXPTIME:

The (surprisingly simple) construction uses the fact, that deterministic exponen-

tial time machines cannot query all oracle strings of linear length.

4

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

E

co{NE

NE

r

1

E

E

(EXPTIME)

PSPACE

PH

.

.

.

r

3

P

�

3

P

�

2

P

�

2

P

r

2

P

BPP

�

2

P

co{NP

NP

r

1

P

co{RP

RP

ZPP

P

Fig.1

First of all some notations:

{ hi; x; �iwill denote the string $

i

x$�. The oracles will be subsets of f0; 1; $g

�

=

(� [f$g)

�

.

5

{ The following ordering of pairs (i; x) 2 N� �

�

is used:

(i; x) < (j; y) if one of the following holds:

(1) jxj < jyj

(2) jxj = jyj and x < y (lexicographically)

(3) x = y and i < j.

(Restricted to pairs (i; x) with i < jxj this is a linear ordering of (ordinal)

type !.)

Without loss of generality we restrict ourselves to the input alphabet � = f0; 1g.

Construction of the Oracle A

A is constructed in stages following the above de�ned ordering. The (initially

empty) set A is augmented during the construction at stage (i; x) by strings

hi; x; �i, when x 2 L(M

A

i

). Queries \hi; x; �i 2 A?" on previous stages are an-

swered 'no' and recorded in a set D; these are not changed when \x 2 L(M

A

i

)"

is encoded.

Stage (0; �): A := ;; D := ;.

Stage (i; x), i < jxj:

Simulate at most 2

jxj

steps of M

A

i

(x).

If M

A

i

asks \hj; y; �i 2 A?", (j; y) > (i; x), and j�j = 4 � jyj,

then D := D [fhj; y; �ig (i.e., hj; y; �i 62 A is �xed).

If M

A

i

accepts x, then A := A [(fhi; x; �i

�

�

j�j = 4 � jxjg nD).

2

Lemma 1.

For all i; x (i < jxj) the following holds:

(1) If M

A

i

accepts x 2 �

n

within 2

n

steps, then hi; x; �i 62 A for at most 2n �2

2n

strings hi; x; �i with j�j = 4n.

(2) If M

A

i

does not accept x 2 �

n

within 2

n

steps, then hi; x; �i 62 A for all �.

Proof. Though the oracle is changed during the construction, all oracle queries

are answered consistently. A new string is added to A only if it was not queried

during previous steps.

6

(1) If M

A

i

accepts x 2 �

n

within the time bound, all strings hi; x; �i not in D

with j�j = 4n are added to A. D contains all strings hi; x; �i queried in earlier

stages. Since there are less than n � 2

n+1

earlier stages and on each stage at

most 2

n

strings are queried, #D < 2n � 2

2n

.

(2) is obvious, since hi; x; �i is added to A only ifM

A

i

accepts x within 2

n

steps.

2

Our next lemma shows that A is not only decidable in exponential time, but A

does not add much power to deterministic time bounded machines. A universal

set for all sets decidable in time 2

n

with oracle A is itself decidable in exponential

time. (From \A 2 DTIME(2

n

)" we could only conclude \DTIME(2

n

)

A

�

DTIME(2

n

)

DTIME(2

n

)

= DTIME(2

2

n

)".)

Lemma 2.

L

A

:= f$

i

x j M

A

i

accepts x in time 2

jxj

; jxj > ig 2 DTIME(2

6n

).

Proof. We construct a machineM which accepts L

A

(without oracle) in time

2

6n

.

On input $

i

x (i < jxj) M simulates all M

A

j

(y) ((j; y) � (i; x); j < jyj) for

2

jyj

steps in the order of the oracle construction, recording the set D (as list of

oracle strings) and the outcome of these machines. Oracle queries \a 2 A?" are

replaced by the following procedure:

(1) If a has not the form < k; z; � > with jzj > k and j�j = 4jzj, then a 62 A.

(2) Otherwise, if a =< k; z; � > and (k; z) � (j; y), then a 62 A. If a 62 D,

D := D [fag.

(3) Otherwise, if a 2 D, then a 62 A.

(4) Otherwise (a = hk; z; �i; (k; z) < (j; y); a 62 D), a 2 A () M

A

k

accepts z

(which was recorded at the end of the stage (k; z)).

If M

A

j

(y) enters an accepting con�guration, this fact is recorded and the next

machine is simulated. After 2

jyj

steps of simulation we know that M

A

j

(y) does

not accept within the time bound and record this fact. At the end of the stage

(i; x) we know whether or not M

A

i

accepts x within the time bound and thus

have decided \is $

i

x 2 L

A

?".

Thus M accepts L

A

.

On stage (i; x), D contains at most 2jxj � 2

2jxj

strings of length at most 2

jxj

.

Thus the simulation of a single oracle query costs O(jxj � 2

3jxj

) steps. The other

simulation steps are cheaper. Thus the simulation ofM

A

j

(y) ((j; y) � (i; x)) can

be done in O(jxj � 2

4jxj

) steps, which yields the total costs for all stages up to

(i; x) of O(jxj

2

� 2

5jxj

) � O (2

6jxj

).

2

7

Proof of Theorem 1.

{ \EXTIME

A

= EXTIME"

Suppose L 2 EXTIME

A

. Then there is an oracle machine M

A

i

and some

k such that M

A

i

decides L within 2

k�n

steps. Let L

0

= fx10

m

j x 2 L; m �

k � jxjg be the appropriately padded set. Then y = x10

m

2 L

0

can be decided

by some M

A

j

in time jyj+ 2

m

� 2

jyj

.

Hence by Lemma 2,

L = fx j $

j

x10

k�jxj+j

2 L

A

g = fx j x10

k�jxj+j

2 L

0

g

2 DTIME(2

6(2j+(k+1)�jxj)

) = DTIME(2

6(k+1)�jxj

)

� EXTIME:

{ \ZPTIME(n)

A

� EXTIME

A

"

Since EXTIME

A

is closed under complement and

ZPTIME(n)

A

= RTIME(n)

A

\ co{RTIME(n)

A

, it is su�cient to show

\RTIME(n)

A

� EXTIME

A

".

Suppose L 2 DTIME(2

k�n

)

A

.

Let L

0

= L(M

A

j

) as above, M

A

j

runs in time 2

n

. An R-machine M accepts

L = fx j x10

k�jxj+j

2 L

0

g as follows:

On input x, M computes y = x10

k�jxj+j

. Then M chooses a random string

� of length 4 � jyj. M accepts i� hj; y; �i 2 A.

Obviously,M runs in time O(n). From Lemma 1 we conclude for all x:

x 62 L =) y 62 L

0

=) 8� hj; y; �i 62 A =) Prob[hj; y; �i 2 A] = 0 ;

x 2 L =) Prob[hj; y; �i 2 A] >

3

4

:

{ \ZPTIME(n)

A

� EXTIME

A

" is obvious:

ZPTIME(n)

A

� PrTIME(n)

A

� DTIME(2

O(n)

)

A

for any oracle A.

The corresponding statements for ZPP

A

, EXPTIME

A

, and EXPTIME are

proved in the same way using polynomial instead of linear padding.

2

8

3 Oracle B with BPP

B

= �

2

EXPTIME

B

= �

2

EXPTIME

The construction of the oracle B will follow a similar idea as for the oracle A.

The main di�culty now is that we have to introduce strings hi; x; �i into the

oracle before M

B

i

(x) is encoded. This will yield a small two-sided error for the

probabilistic machine.

B will have the property that for all �

2

-oracle machinesM

i

running in time 2

n

and all x with jxj = n > i the following holds:

x 2 L(M

B

i

) =) #f� 2 �

4n

j hi; x; �i 2 Bg >

3

4

� 2

4n

x 62 L(M

B

i

) =) #f� 2 �

4n

j hi; x; �i 2 Bg <

1

4

� 2

4n

:

Furthermore

�

2

TIME(2

n

)

B

� �

2

TIME(2

21n

) :

Again we can conclude

Theorem 2.

There exists an oracle B, such that

BPTIME(n)

B

= �

2

EXTIME

B

= �

2

EXTIME;

BPP

B

= �

2

EXPTIME

B

= �

2

EXPTIME:

Construction of the Oracle B

During the construction we record all oracle queries in (initially empty) sets B

(strings with positive answer) and C (strings with negative answer), B \C = ;.

E = f0; 1; $g

�

n (B [C) contains all strings with yet undetermined outcome.

Recall that a �

2

-machine with an oracle X is a deterministic machine which

can query arbitrary nondeterministic linear time machines with the oracle X.

We will process a query to such a machine as follows. If it is possible to de�ne the

not (yet) �xed portion of the oracle (the set E) in such a way that the queried

nondeterministic machine accepts, then we �x this behavior by moving at most

2

n

oracle strings from E to either B or C.

Let us denote the j-th nondeterministic linear time machine with oracle X by

N

X

j

.

9

Stage (0; �):

B := ;;

E := fhi; x; �i

�

�

j�j = 4 � jxj; i < jxjg;

C := f0; 1; $g

�

nE;

Stage (i; x) (i < jxj):

Simulate up to 2

jxj

steps of M

i

(x) in the following way:

If M

i

(x) queries \y 2 L(N

B

j

)?", do the following:

If there is a set D � E such that y 2 L(N

B[D

j

), then N

B[D

j

has at

least one accepting path of length jyj. Suppose F is the set of all oracle

queries on such a path. Set B := B [(F \D); C := C [(F \ (E nD));

E := E n F . Otherwise, y 62 L(N

B[D

j

) for all D � E.

If M

i

accepts x, encode this fact and go to the next stage:

B := B [fhi; x; �i 2 Eg; E := E nB.

If M

i

rejects x or does not accept x within 2

jxj

steps, encode this and go

to the next stage:

C := C [fhi; x; �i 2 Eg; E := E nC.

2

Lemma 3.

Suppose B is constructed as described above. Then for all i; x (i < jxj) the

following holds:

(1) If M

B

i

accepts x 2 �

n

within 2

n

steps, then hi; x; �i 62 B for at most 2n �2

3n

strings hi; x; �i with j�j = 4n.

(2) If M

B

i

does not accept x 2 �

n

within 2

n

steps, then hi; x; �i 2 B for at most

2n � 2

3n

strings hi; x; �i with j�j = 4n.

Proof. At the end of the stage (i; x) all hi; x; �i 2 E (i.e., all hi; x; �i that are

not yet �xed) are added either to B or to C. Since there are less than 2n � 2

n

stages (j; y) � (i; x), it is su�cient to show that at most 2

2n

strings hi; x; �i are

removed from E during stage (j; y) < (i; x) and during but before the end of

stage (i; x).

M

j

(y) (j; jyj � n) performs at most 2

n

queries of the form \z 2 L(N

B

k

)?" with

jzj � 2

n

. For each of these queries the size of F (in the oracle construction) is

bounded by jzj � 2

n

. Thus for each query \z 2 L(N

B

k

)?" at most #F � 2

n

strings (possibly of the form hi; x; �i) are removed from E. At the end of stage

(j; y) < (i; x) only strings hj; y; �i are added to B or C and thus removed from

E.

2

10

Our next lemma asserts that B does not add much power to �

2

-machines. The

proof of this fact is much more di�cult than the proof of the corresponding

Lemma 2.

Recall that the construction of B does not completely determine the oracle

B: when \y 2 L(N

B

k

)" is �xed, we can choose di�erent sets D � E such that

y 2 L(N

B[D

j

) corresponding to di�erent accepting computations of N

j

(y). Thus

by appropriate choice arbitrary complex (even undecidable) oracle sets B may

turn out. The proof of Lemma 4 yields the construction of one oracle set B

consistent with the above described construction and thus with the properties

of Lemma 3. In the rest of the paper B denotes this set.

Lemma 4.

There is an oracle B (which is one of the possible sets that turn out from the

\construction of oracle B") such that

L

B

= f$

i

x j M

B

i

is a �

2

-machine accepting x in time 2

jxj

, i < jxjg

2 �

2

TIME(2

21n

):

Proof. Similarly as in the proof of Lemma 2 the �

2

-machine M with input

$

i

x will simulate all stages of the oracle construction up to stage (i; x).

Again we record the outcome b of M

B

j

(y) on stage (j; y) in a list Z of triples

hj; y; bi. The positive or negative answers to the oracle queries are recorderd in

the additional lists X and Y . X and Y are (initially empty) lists of oracle strings

of the form hk; z; �i (j�j = 4 � jzj; k < jzj) which are known to be in B (or not in

B, respectively). Let E be de�ned as in the \construction of oracle B", i.e., on

stage (j; y)

E = fhk; z; �i j (k; z) � (j; y); k < jzj; j�j = 4 � jzjg n (X [Y) :

In order to simulate queries \z 2 L(N

B

k

)?" we will use the following universal

set L, which determines on stage (j; y) whether or not there is an augmentation

of the current B consistent with the previous oracle queries (recorded inX;Y; Z)

such that the nondeterministic machine N

B[D

k

starting in some con�guration c

can reach an accepting con�guration within t steps:

$

k

cXY Z

j

y

t

2 L() N

k

starting in con�guration c accepts within

t steps, where the oracle queries \a 2 B?" are

replaced as follows:

11

(1) \a 62 B" if a has not the form hl; u; �i with l < juj; j�j = 4 � juj.

For the other cases assume a = hl; u; �i; l < juj; j�j = 4 � juj.

(2) \a 2 B" if a is contained in the list X or if (l; u) < (j; y), a 62 Y and

(l; u) 2 Z.

(3) \a 62 B" if a 2 Y or if (l; u) < (j; y), a 62 X and (l; u) 62 Z.

(4) Otherwise (a 2 E) replace the query by a nondeterministic choice. (If the

same string a is queried more than once, the choices must be consistent. Thus

a nondeterministic machine which accepts L has to record these choices.)

It is easy to see that L 2 NTIME(k � t � (jXj + jY j+ jZj)) � NTIME(n

3

).

Suppose we are simulating stage (j; y) � (i; x).

Using L a query of M

j

(y) of the form \z 2 L(N

B

k

)?" can be replaced by a se-

quence of queries \p 2 L?", which yields a stepwise construction of an accepting

path of N

B

k

, and appropriate augmentation of X or Y :

c := initial con�guration of N

k

(z);

t := jzj;

if $

k

cXY Z

j

y

t

2 L then

while t > 0 and c is not accepting do

begin

if the next step of N

k

is an oracle query \a 2 B?"

and a is not yet recorded in X or Y then

begin

add a to X;

c

0

:= next con�guration if a 2 B;

if $

k

c

0

XY $Z$$

j

y$

t�1

62 L then

begin

remove a from X;

add a to Y ;

c

0

:= next con�guration if a 62 B

end

end

else f the next step is a nondeterministic choiceg

determine a next con�guration c

0

with $

k

c

0

XY $Z$$

j

y$

t�1

2 L

f at least one c

0

has this property g;

t := t� 1;

c := c

0

12

end;

if c is an accepting con�guration of N

k

then \z 2 L(N

B

k

)" else \z 62 L(N

B

k

)".

At the end of the stage (j; y) (i.e., when M

j

reaches an accepting con�guration

or else after 2

jyj

simulation steps) record the outcome of M

j

(y): if M

j

accepts

y within 2

jyj

steps, add (j; y) to Z.

The oracle B constructed by this procedure is determined by

a 2 B ()a =< i; x; � >, i < jxj, j�j = 4 � jxj and after stage (i; x) of the

simulation either a 2 X or a 62 Y and (i; x) 2 Z.

On stage (j; y) � (i; x) M simulates at most 2

n

(n = jxj) steps. The simulation

of a query \z 2 L(N

B

k

)" costs jzj � 2

n

steps and 2

n

queries to the oracle B times

the cost for looking at and updating the lists X, Y and Z. These can contain

up to 2n � 2

3n

elements of length 2

2n

. Thus the total costs for all 2n � 2

n

stages

up to (i; x) are bounded by 4n

2

� 2

6n

and

L

B

2 DTIME(2

7n

)

NTIME(n

3

)

� DTIME(2

21n

)

NTIME(n)

= �

2

TIME(2

21n

):

2

Proof of Theorem 2. Follows from Lemma 3 and Lemma 4 in the same way

as Theorem 1 from Lemma 1 and Lemma 2.

2

4 Consequences

The sets A and B have many interesting properties. Perhaps the most inter-

esting is that randomized reduction can be exponentially more powerful than

deterministic or nondeterministic reduction (cf. [AM 77]).

De�nition (Reducibilities)

X �

Y :, there is a polynomial time bounded NTM M with:

(1) For every input x there is at least one computation which

produces an output.

(2) 8(x; y)M(x) = y) [x 2 X , y 2 Y]

X �

UR

Y :, there is a polynomial time bounded PTM M with:

(1') every computation produces an output

(2a) x 2 X)M(x) 2 Y

(2b) x 62 X) Prob[M(x) 62 Y] >

3

4

(unfaithful R-reduction)

13

X �

BPP

Y :, as �

UR

with (1'), (2b), and (2a')

(2a') x 2 X) Prob[M(x) 2 Y] >

3

4

.

Obviously X �

Y) X 2 NP

Y

; X �

DTIME(T)

Y) X 2 DTIME(T)

Y

.

Theorem 3.

UR-Reductions are exponentially more powerful than DTIME-reductions.

(1) 8X 2 EXPTIME; X �

UR

�

A and

�

X �

UR

�

A

(2) 8k 8T 2 O(2

n

k

); 9X 2 EXPTIME; X 6�

DTIME(T)

�

A.

Proof.

(1) follows (by polynomial padding) from Lemma 1.

(2) Suppose T 2 O(2

n

k

).

X �

DTIME(T)

�

A) X 2 DTIME(T)

�

A

) X 2 DTIME(2

6�n

k

) (by

Lemma 2), which is not true for all X 2 EXPTIME.

2

Theorem 4.

BPP-reductions are exponentially more powerful than nondeterministic (and than

-) reductions (cf. [AM 77]):

(1) 8X 2 �

2

EXPTIME; X �

BPP

B

(2) 8k; 8T 2 O(2

n

k

); �

2

TIME(T)

B

6� �

2

EXPTIME.

Proof.

(1) follows from Lemma 3.

(2) as in a proof of Theorem 3 using Lemma 4.

2

This result can be strenthened to randomized NC

1

{reducibility (see next Sec-

tion).

We list some other consequences for our oracles with hints how to prove them

(to shorten the formulas we denote EXPTIME by E):

(1) P

A

 ZPP

A

= NP

A

= PH

A

= E = E

A

 ZPE

A

= E

E

= DTIME(2

2

n

).

14

(2) P

B

 NP

B

 �

2

P

B

 BPP

B

= �

2

P

B

= PH

B

= �

2

E =

E

B

= NE

B

= �

2

E

B

 BPE

B

= �

2

E

B

= EH

B

= E

�

2

E

=

DTIME(2

2

n

)

B

= �

2

TIME(2

2

n

)

B

.

(The inclusions 1 to 3 are strict because otherwise the polynomial hierar-

chy collapses at the level �

2

P

B

and �

2

P

B

= �

2

P

B

= �

2

E

B

, which is

impossible.)

(3) A is not hard for ZPP under polynomial Turing reducibility unless E =

ZPE.

(P

A

� ZPP , E = E

A

= E

P

A

� E

ZPP

= ZPE)

(4) B is complete for�

2

EXPTIME under �

BPP

but not NP{hard even under

polynomial Turing reducibility , unless �

2

EXPTIME = �

3

EXPTIME.

(P

B

� NP) �

2

E = �

2

E

P

B

� �

2

E

NP

= �

3

E)

(5) If �

2

E 6= �

3

E, then NP

B

6� coNP .

(NP

B

� coNP) NP

NP

� NP

B

) �

3

E � �

2

E

B

= �

2

E)

(6) If �

2

E 6= �

2

E, then �

2

P

B

6� �

2

P .

(�

2

P

B

� �

2

P) �

2

E = �

2

E

B

= E

�

2

P

B

� E

�

2

P

= �

2

E)

5 Small Circuits

Since BPP has small circuits ([A 78], [BG 81]), it follows from Theorem 2 that

�

2

EXPTIME has small (polynomial size) circuits relative to oracle B. In this

context, however, we are able to prove some stronger statements.

De�nition (cf. e.g. [C 85], [KR 90])

A Monte Carlo circuit with n input variables x

1

; : : : ; x

n

is a boolean circuit C

with n + m inputs x

1

; : : : ; x

n

; y

1

; : : : ; y

m

= x; y such that for all input values

a

1

; : : : ; a

n

(corresponding to variables x

1

; : : : ; x

n

)

#f(b

1

; : : : ; b

m

) j f

C

(a

1

; : : : ; a

n

; b

1

; : : : ; b

m

) = 1g =2 f2

m�2

; : : : ; 3 � 2

m�2

g:

A Las Vegas Circuit is a boolean circuit C with n+m+1 inputs x

1

; : : : ; x

n

; y

1

; : : : ;

y

m

; z = x; y; z such that for all a

1

; : : : ; a

n

and for either c = 0 or c = 1

#fb

1

; : : : ; b

m

j f

C

(a

1

; : : : ; a

n

; b

1

; : : : ; b

m

; c) = cg > 2

m�1

and for all b

1

; : : : ; b

m

f

C

(a

1

; : : : ; a

n

; b

1

; : : : ; b

m

; c) = c:

If the output is equal to the last input bit c, then the output value is always

correct. If the output is di�erent from the last input bit (which can happen with

the probability smaller than 1=2) the output may be false. It is easy to convert

15

such a Las Vegas circuit into another one with almost the same size and two

output bits; the second bit is 1 with high probability and asserts that the �rst

bit is the correct output. (These circuits correspond in a direct way to the usual

de�nition of Las Vegas machines with the output `0', `1', and `?'.)

As usual we measure the size and depth of circuits in terms of n, the number of

normal input variables. By [U{]SIZE(f) ([U{]DEPTH(f)) we denote the class

of functions computed by [log{space uniform] circuit families with size (depth)

bounded by O(f(n)). We denote the corresponding Monte Carlo and Las Vegas

classes by BPSIZE(f), BPDEPTH(f), ZPSIZE(f), ZPDEPTH(f). The

class U{BPDEPTH(logn) is usually called RNC

1

, and U{BPSIZE(poly) =

BPP , U{ZPSIZE(poly) = ZPP .

Theorem 5

(1) (ZNC

1

)

A

:= U{ZPDEPTH(log)

A

= EXPTIME

A

= EXPTIME

(2) (RNC

1

)

B

:= U{BPDEPTH(log)

B

= �

2

EXPTIME

B

= �

2

EXPTIME

Proof. (1) Suppose L and �

�

nL are accepted by some Turing machine in time

2

n

k

. Then there is a machine M

i

which accepts L

1

:= fx 1 0

n

k

jx 2 Lg and a

machineM

j

which accepts L

2

:= fx 1 0

n

k

jx =2 Lg in time 2

n

. The following Las

Vegas circuit C

n

with oracle A decides L \�

n

:

Obviously (C

n

)

n2N

is log{space uniform and the depth is O(logn

k

) = O(logn).

By the construction of the oracle A the answer 'yes' (i.e., a = 1) is always true.

Thus the output v = c is always true and it is easy to check that the (C

n

) are

Las Vegas circuits.

The proof of (2) is similar.

2

For a weaker version of Theorem 5 cf. [W 83]. This Theorem indicates that

depth{bounded Las Vegas circuits may be much more powerful than even un-

bounded{error space{bounded machines:

PrSPACE(log)

X

� DSPACE((logn)

2

)

X

for every oracle X [BCP 83],

(ZNC

1

)

A

= U{ZPDEPTH(log)

A

= PSPACE

A

= EXPTIME

A

:

Thus the well{known relations between circuit depth and space may not be true

in the probabilistic (even Las Vegas) case.

Using methods of [BG 81] it is easy to show, that BPDEPTH(log)

X

�

DEPTH(log)

X

for every oracle X.

16

z

x

1

� � �

x

n

1 0

� � �

0

n

k

Zeros

z }| {

y

1

� � �

y

4�(n

k

+n+1)

i, if c = 1

j, if c = 0

�

i

j

o

; x 1 0

n

k

; y

�

2 A ?

&%

=

q

v

� � �

� � � � � � � � �

q

Fig.2

Corollary

�

2

EXPTIME

B

� DEPTH(log)

B

� SIZE(poly)

B

2

On the other hand it is known ([K 82]) that

r

2

EXPTIME

X

6� SIZE(poly)

X

for every oracle X.

Figure 3 summarizes the known containments and our results.

Our next corollary reformulates Theorem 5 in terms of the power of reducibilities.

For every complexity class C one can de�ne a reducibility �

C

by X �

C

Y ,

X 2 C

Y

(not all such reducibilities make sense; most are not transitive). Well

known examples are the polynomial Turing (\Cook") reducibility �

P

and the

NC

1

{reducibility �

NC

1
.

17

PSIZE

LOGDEPTH

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

RNC

1

ZPNC

1

NC

1

BPEXPTIME

ZPEXPTIME

BPP

ZPP

LOGSPACE

�

�

H

H

(

(

(

(

(

(

(
(

(

(

(

(

(

(

(

(

h

h

h

h

h

h

h

h

h

h

(

(

(

(

(

(

(

(

r

2

EXPTIME

�

2

EXPTIME = EXPTIME

NP

NEXPTIME

r

1

EXPTIME = NE \ co{NE

EXPTIME = DTIME (2

poly

)

PSPACE

PH =

S

k

�

k

P

r

2

P = �

2

P \�

2

P

�

2

P = P

NP

NP

r

1

P = NP \ co{NP

P

Collapses under A Collapses under B

Fig.3

Corollary

(1) ZP{DEPTH bounded reductions are double exponentially more powerful than

deterministic time bounded Turing reductions

(2) RNC

1

reductions are double exponentially more powerful than �

2

{time boun-

ded Turing reductions.

18

Proof

(1) X �

U{ZPDEPTH(log)

A for any X 2 EXPTIME,

whereas for X 2 EXPTIMEnDTIME(2

n

k

) X 6�

DTIME(2

n

k

)

A.

(2) X �

RNC

1
B for any X 2 �

2

EXPTIME,

whereas for X =2 �

2

TIME(2

n

k

) X 6�

�

2

TIME(2

n

k

)

B.

2

Finally let us consider linear size circuits, a very important special case. It is

easy to see that

�

2

EXTIME

B

� SIZE(n)

B

;

in fact even

�

2

EXTIME = �

2

EXTIME

B

� (nonuniform) DEPTH{SIZE(log; lin)

B

:

On the other hand there is some k such that

r

2

TIME(n

k

)

X

6� SIZE(n)

X

for every oracle X ([K 82]).

We cannot rule out that BPP or even BPEXTIME has linear size circuits. In

[FS 89] the existence of an oracle C with BPP

C

� SIZE(n)

C

is claimed, but

unfortunately the proof contains a gap. If BPP

C

� SIZE(n)

C

, then NP

C

6�

SIZE(n)

C

and BPP

C

(r

2

P

C

.

6 Conclusion

Our results show that the randomized computation can be extremely powerful

when compared with deterministic computation in a relativized context, even

though randomization has almost no additional power in the presence of random

oracles.

We have constructed oracles A and B with maximal collapse between polynomial

and exponential classes without known strict inclusion:

ZPP

A

= r

1

P

A

= �

1

E

A

= �

1

E (= EXPTIME);

BPP

B

= r

2

P

A

= �

2

E

B

= �

2

E:

19

It is an open question, if such oracles with maximal collapse exist also on other

levels of the polynomial and exponential hierarchies, i.e., whether there exists C

such that for some k > 2,

r

k

P

C

= �

k

E

C

= �

k

E:

It seems that the methods presented in this paper cannot be applied directly

to higher levels, since no probabilistic class is known below �

k

P and not below

�

k

P (k > 2).

Acknowledgments

We thank Eric Allender, Klaus Ambos-Spies, Richard Beigel, Yuri Gurevich, and

Johan H�astad for the number of interesting discussions connected to the topic

of this paper.

References

[A 78] Adleman, L., Two Theorems on Random Polynomial Time, Proc. 19

th

IEEE FOCS, 1978, pp. 75{83.

[AM 77] Adleman, L., Manders, K., Reducibility, Randomness, and Intractibility,

Proc. 9

th

ACM STOC, 1977, pp. 151{163.

[ABHH 92] Allender, E., Beigel, R., Hertrampf, U., Homer, S., Almost-Everywhere

Complexity Hierarchies for Nondeterministic Time, Manuscript, 1992;

A preliminary version has appeared in Proc. STACS '90, LNCS 415,

Springer-Verlag, 1990, pp. 1{11.

[BCP 83] Borodin, A., Cook, S., Pippenger, N., Parallel Computation for well en-

dowed rings and space bounded probabilistic machines, Inform. and Con-

trol 58 (1983), pp. 113{136.

[BG 81] Bennett, Ch. H., Gill, J., Relative to a Random Oracle A, P

A

6= NP

A

6=

co�NP

A

with Probability 1, SIAM J. on Computing 10, 1981, pp. 96{

113.

[C 85] Cook, S., A taxonomy of problems with fast parallel algorithms, In-

form. and Control 64 (1985), pp. 2{22.

[F 92] Fortnow, L., Personal Communication, 1992.

[FS 89] Fortnow, L., Sipser, M., Probabilistic Computation and Linear Time,

Proc. 21

st

ACM STOC, 1989, pp. 148{166.

[F 79] Freivalds, R., Fast Probabilistic Algorithms, Proc. MFCS'79, LNCS 75,

1979, Springer-Verlag, pp. 57{69.

[Jo 90] Johnson, P.S., A Catalog of Complexity Classes, in Handbook of Theo-

retical Computer Science, (J. van Leeuwen, Ed.) Vol. A., Algorithms and

Complexity, Elsevier-MIT Press, 1990, pp. 69{161.

20

[K 82] Kannan, R., Circuit-Size Lower Bounds and Non-reducibility to Sparse

Sets, Information and Control 55, 1982, pp. 40{46.

[KR 90] Karp, R. M., Ramachandran, V., Parallel Algorithms for Shared{Me-

mory Machines, in Handbook of Theoretical Computer Science, Vol. A,

Algorithms and Complexity, Elsevier{MIT Press, 1990, pp. 869{941.

[KV 87] Karpinski, M., Verbeek, R., On the Monte Carlo Space Constructible

Functions and Separation Results for Probabilistic Complexity Classes,

Information and Computation 75, 1987, pp. 178{189.

[KV 88] Karpinski, M., Verbeek, R., Randomness, Provability, and the Separa-

tion of Monte Carlo Time and Space, in Computation Theory and Logic,

LNCS 270, Springer-Verlag, 1988, pp. 189{207.

[R 82] Racko�, C., Relational Questions Involving Probabilistic Algorithms, J.

ACM 29, 1982, pp. 261{268.

[S 83] Sipser, M., A Complexity Theoretic Approach to Randomness, Proc. 15

th

ACM STOC, 1983, pp. 330{335.

[St 85] Stockmeyer, L., On Approximation Algorithms for #P , SIAM J. Com-

put. 14, 1985, pp. 849{861.

[W 83] Wilson, C., Relativized Circuit Complexity, 24

th

IEEE FOCS, 1983,

pp. 329{334.

[Y 90] Yao, A. C., Coherent Functions and Program Checkers, Proc. 22

nd

ACM

STOC, 1990, pp. 84{94.

This article was processed using the L

A

T

E

X macro package with LLNCS style

21

