
On the Complexity of Pattern Matching for

Highly Compressed Two-Dimensional Texts

Piotr Berman

�

Marek Karpinski

y

Lawrence L. Larmore

z

Wojciech Plandowski

x

Wojciech Rytter

x

Abstract

We consider the complexity of problems related to 2-dimensional texts (2d-texts) described

succinctly. In a succinct description, larger rectangular sub-texts are de�ned in terms of smaller

parts in a way similar to that of Lempel-Ziv compression for 1-dimensional texts, or in shortly

described strings as in [9], or in hierarchical graphs described by context-free graph grammars. A

given 2d-text T with many internal repetitions can have a hierarchical description (denoted

Compress(T)) which is up to exponentially smaller and which can be the only part of the input for

a pattern-matching algorithm which gives information about T . Such a hierarchical description is

given in terms of a straight-line program, see [9] or, equivalently, a 2-dimensional grammar.

We consider compressed pattern-matching, where the input consists of a 2d-pattern P and

of a hierarchical description of a 2d-text T , and fully compressed pattern-matching, where the

input consists of hierarchical descriptions of both the pattern P and the text T . For 1-dimensional

strings there exist polynomial-time deterministic algorithms for these problems, for similar types

of succinct text descriptions [2, 6, 8, 9]. We show that the complexity dramatically increases in a

2-dimensional setting.

For example, compressed 2d-matching is NP-complete, fully compressed 2d-matching is �

P

2

-

complete, and testing a given occurrence of a two dimensional compressed pattern is co-NP-

complete.

On the other hand, we give e�cient algorithms for the related problems of randomized equality

testing and testing for a given occurrence of an uncompressed pattern.

We also show the surprising fact that the compressed size of a subrectangle of a compressed two

dimensional array can grow exponentially, unlike the one dimensional case.

�

Dept. of Computer Science & Eng., Pensylvania State University, University Park, PA16802, USA

Email:berman@cse.psu.edu

y

Dept. of Computer Science, University of Bonn, D-53117, Bonn, Germany. This research was partially

supported by the DFG Grant KA 673/4-1 Email:marek@cs.uni-bonn.de

z

Department of Computer Science, University of Nevada, Las Vegas, NV 89154-4019. Research partially

supported by National Science Foundation grant CCR-9503441. Part of this work was done while the author

was visiting Institut Informatik V, Universit�at Bonn, Germany. Email:larmore@cs.unlv.edu

x

Instytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02{097 Warszawa, Poland. Supported by

the grant KBN 8T11C01208. Email:wojtekpl@mimuw.edu.pl and rytter@mimuw.edu.pl.

1

1 Introduction

We consider algorithms for problems dealing with highly compressed 2d-texts, i.e., two

dimensional arrays with entries from some �nite alphabet. A 2d-text T is represented

hierarchically in a succinct way, denoted Compress(T). Texts are as much as exponentially

compressed. Our main problem is the Fully Compressed Matching Problem:

Instance: Compress(P) and Compress(T).

Question: does P occur in T?

where P and T are rectangular 2d-texts. The Compressed Matching Problem is es-

sentially the same, the only di�erence being that P = Compress(P), in other words, the

pattern is uncompressed. Our results show that an attempt to deal with exponentially

compressed 2d-texts should fail algorithmically. The size of the problem is n + m, where

n = jCompress(T)j and m = jCompress(P)j. Let N be the total uncompressed size of the

problem. Note that in general N can be exponential with respect to n, and any algorithm

which decompresses T takes exponential time in the worst case.

We also consider the problems of Pattern Checking, that is, testing an occurrence of

a pattern at a given position. This problem has also its compressed and fully compressed

versions. The hierarchical description of a 2d-text is in terms of straight-line programs

(SLP's for short), or equivalently, two dimensional context-free grammars generating single

objects with the following two operations:

A BC, which concatenates 2d-texts B and C (both of equal height)

A B 	 C, which puts the 2d-text B on top of C (both of equal length)

An SLP of size n consists of n statements of the above form, where the result of the last

statement is the compressed 2d-text. The only constants in our SLP's are symbols of an

alphabet, interpreted as 1 � 1 images. We view SLP's as compressed (descriptions of)

images.

The complexity of basic string problems for one dimensional texts is polynomial, see [4, 6,

8, 10]. Surprisingly, the complexity jumps if we pass to two dimensions. The compressed size

of a subrectangle of a compressed two dimensional array A can be exponential with respect

to the compressed size of A, though such a situation cannot occur in the 1-dimensional case.

This phenomenon appears to be responsible for the increase in the time complexity.

Theorem 1.1 For each n there exists an SLP of size n describing a text image A

n

and a

subrectangle B

n

of A

n

such that the smallest SLP describing B

n

has exponential size.

Proof: The proof is omitted in this version. 2

2

Example. Hilbert's curve can be viewed as an image which exponentially compressible in

terms of SLP's. An SLP which describes the n

th

Hilbert's curve, H

n

, uses six (terminal)

symbols , , , , , , and 12 variables

r r

i

,

r

r

i

,

r

r

i

,

r

r

i

,

r

r

i

,

r

r

i

,

r

r

i

, r

r

i

,

r

r

i

,

r r

i

,

r

r

i

, r

r

i

, for each 0 � i � n.

A variable with index i represents a text square of size 2

i

� 2

i

containing part of a curve.

The dots in the boxes show the places where the curve enters and leaves the box.

The 2d-text T =

r r

3

describing the 3rd Hilbert's curve is shown in Figure 1. It is com-

posed of four smaller square 2d-texts r

r

2

;

r

r

2

;

r

r

2

;

r

r

2

according to the composition

rule in Figure 1. T consists of 64 (terminal) symbols.

2d-text T =

w

w

w

w

w

2d-pattern P =

r r

3

 (r

r

2

r

r

2

) 	 (

r

r

2

r

r

2

)

Figure 1: An example of a 2d-text T and a pattern P . The pattern occurs twice in T . The

black dots are not part of T .

The 1� 1 text squares are described as follows.

r

r

0

 ;

r

r

0

 ;

r r

0

 ;

r r

0

 ;

r

r

0

 ;

r

r

0

 ;

r

r

0

 ;

r

r

0

 ;

r

r

0

 ;

r

r

0

 ; r

r

0

 ; r

r

0

 ;

The text squares for variables indexed by i � 1 are rotations of text squares for the variables

r r

i

,

r

r

i

, r

r

i

. These variables are composed according to the rules:

r r

i

 r

r

i�1

r

r

i�1

	

r

r

i�1

r

r

i�1

;

r

r

i

 r

r

i�1

r

r

i�1

	

r

r

i�1

r

r

i�1

;

r

r

i

 r

r

i�1

r

r

i�1

	

r

r

i�1

r

r

i�1

:

2 Equality testing in randomized polynomial time

We reduce equality of two 2d-texts A and B to equality of two polynomials Poly

A

(x; y)

and Poly

B

(x; y). Assume that the symbols are integers in some small range. For an n � n

2d-text Z de�ne its corresponding polynomial

Poly

Z

(x; y) =

P

n

i;j=1

Z

i;j

x

i

y

j

.

3

Observation.

Let A and B are two 2d-texts. Then A = B , Poly

A

� Poly

B

:

Fact 2.1 Let A, B, C be 2d-texts corresponding to variables A, B, C in some SLP.

1. If A B 	 C then Poly

A

(x; y) = Poly

C

(x; y) � x

height(B)

+ Poly

B

(x; y).

2. If A BC then Poly

A

(x; y) = Poly

C

(x; y) � y

width(B)

+ Poly

B

(x; y).

3. for given values (x

0

; y

0

) of arguments the value Poly

A

(x

0

; y

0

) mod k can be computed

in time polynomial w.r.t. the compressed size of A and the number of bits of k.

4. degree(Poly

A

) = height(A) � width(A).

The following result is a version of theorems given by Schwartz and by Zippel [13].

Lemma 2.2

Let P be a nonzero polynomial of degree at most d. Assume that we assign to each variable

in P a random value from a set
 of integers of cardinality R. Then

ProbfP(�x) 6= 0 g � 1�

d

R

.

Theorem 2.3 There exists a polynomial time randomized algorithm for testing equality

of two 2d-texts, given their hierarchical compressed representation.

Proof: Let n be the total size of compressed description of A; B. Denote

deg = maxfdegree(A); degree(B)g.

The value of deg corresponds to maximum size of 2d-texts and we have deg � c

n

, for a

constant c.

We can test equality of A and B in a randomized way, due to Lemma 2.2, by selecting

random values x

0

; y

0

of variables in the range [1 : : :2�deg] and testing y

1

= y

2

, where

y

1

= Poly

A

(x

0

; y

0

) and y

2

= Poly

B

(x

0

; y

0

):

However there is one technical di�culty, the numbers y

1

, y

2

are exponential w.r.t. deg

and can need exponential number of bits, then, obviously, we are not able to compute

them in polynomial time. Hence instead of computing the exact values of y

1

; y

2

we choose

a random prime number p from a suitable interval and compute values y

1

, y

2

modulo p.

We refer the reader to Theorem 7.5 and the discussion in Example 7.1 in [13], for details

about randomized testing of the equality of two number using prime numbers and modular

arithmetic with exponentially smaller number of bits than the numbers to be tested.

If the computed values y

1

mod p and y

2

mod p are di�erent, then the polynomials are

di�erent. Otherwise, by Lemma 2.2, the polynomials are identical with high probability.

The computation of y

1

mod p and y

2

mod p, where p is a prime number with polynomially

many bits, can be done in polynomial time w.r.t. n. This completes the proof. 2

4

Open Problem: We designed a fast randomized algorithm for the equality of two com-

pressed 2d-texts, and we conjecture that there is a polynomial time deterministic algorithm.

3 Compressed two dimensional pattern-matching

Recall that the compressed matching problem is to �nd, given an uncompressed pattern

and compressed text, whether the pattern occurs within the text.

In our constructions we will use, as a building block, rectangles �lled with one kind of

letter only, say a. We will use [a]

i

j

to denote such an i� j 2d-text. It is easy to see that [a]

i

j

can be compressed to an SLP of size O(log(i) + log(j)). We will use I; J; : : : ; P; Q; : : : for

uncompressed 2d-texts, and I;J ; : : : ;P ;Q; : : : for compressed ones. Given a compressed

2d-text R (uncompressed 2d-text R), we use R

i;j

(R

i;j

) to denote the symbol at position

(i; j); if the position (i; j) is out of range, we will have R

i;j

= ?. We will number the rows

and columns starting from 0. We also use the convention that given a number m,

e

m is a

0-1 vector (a

0

; :::; a

k�1

) such that m =

P

k�1

i=0

2

i

a

i

. The length of

e

m should be clear from

context. Let Positions(P) = f(i; j) : P

i;j

6= ?g and Positions(P) = f(i; j) : P

i;j

6= ?g.

First we consider the Point test problem: compute the symbol I

i;j

for given I, i and j.

Lemma 3.1 There exists an O(njP j) time algorithm for the point test problem, where n

is the size of T .

Theorem 3.2 Compressed matching for two dimensional 2d-texts is NP-complete.

Proof: To see that compressed matching is in NP , we express this problem as the following

property of pattern P and 2d-text R:

9(i; j)f8(k; l) 2 Positions(P) P

k;l

= R

i+k;j+l

g:

The equality inside the braces can be tested in polynomial time (Lemma 3.1), hence we

have expressed the problem in the normal form for NP .

To show NP hardness, we will use a reduction from 3SAT. Consider a set of clauses

C

0

; : : : ; C

k�1

, where each clause is a Boolean function of some three variables from the set

fx

0

; : : : ; x

n�1

g. The 3SAT question is whether there exists m such that 0 � m � 2

n

� 1

and C

i

(

e

m) = 1 for i = 0; : : : ; k� 1.

De�ne a k � 2

n

2d-text A by: A

i;m

= C

i

(

e

m). Then the 3SAT question is equivalent

to the following: does A contain a column consisting of k 1's (i.e. the pattern [1]

1

m

)? We

will reduce 3SAT to the compressed matching problem by showing how to compress A to

an SLP with O(kn) statements. It su�ces to show that we can compress any row of A

to an SLP with O(n) statements, because we combine the compressed rows using k \	"

operations.

Consider a row R of A corresponding to a clause C(x

h

; x

i

; x

j

) where h < i < j. De�ne

5

{(v

0

; : : : ; v

n�1

) = v

h

+ 2v

i

+ 4v

j

, then R

m

= C(

g

{(

e

m)). We will show how to compress the

string I over � = f0; 1; 2; 3; 4; 5; 6; 7g de�ned by I

m

= {(

e

m), for 0 � m < 2

n

. Then obtain

an SLP for R from the SLP I for I by replacing each constant a 2 � with C(

e

a).

We omit an easy proof of the following fact.

Fact 3.3

I = (((0

2

h

1

2

h

)

2

i�h�1

(2

2

h

3

2

h

)

2

i�h�1

)

2

j�i�1

((4

2

h

5

2

h

)

2

i�h�1

(6

2

h

7

2

h

)

2

i�h�1

)

2

j�i�1

)

2

n�j�1

To compress I , write a constant length SLP that computes all subexpressions of I , then

replace each statement of the form K L

2

i

with i statements L LL followed by K L.

This results in an SLP with O(n) statements. 2

4 Fully compressed two dimensional pattern-matching

Recall that the fully compressed matching problem is to determine, given a pattern and a

text that are both compressed, whether the pattern occurs within the text. We prove that

this problem is �

P

2

-complete, see [14] for the de�nition of the class �

P

2

.

Theorem 4.1 (main result) Fully compressed matching for 2d-texts is �

P

2

-complete.

Given compressed pattern P and compressed 2d-text I, the positive answer to the fully

compressed two dimensional pattern matching question is equivalent to the following:

9(i; j)8(k; l) 2 Positions(P) fP

k;l

= I

i+k;j+l

g

By Lemma 3.1, the equality in this formula can be checked in polynomial time, hence the

problem can be formulated in the normal form of �

P

2

problems.

This proof of �

P

2

-hardness requires two lemmas.

Lemma 4.2 There exists a log-SPACE function f such that for any 3CNF formula F ,

f(F) = (u; v; t), where u and v are vectors of non-negative integers, t is an integer and

8x F (x) � 9y ux+ vy = t:

where the quanti�ers range over 0-1 vectors of appropriate length.

Proof: Assume that F has n variables, a clauses with three literals, b clauses with two

literals and c clauses with one literal. Vector u will consists of n numbers and vector v

of 7a + 3b numbers. We will describe each of these numbers, (and t as well) using the

identity

~

d = d

0

: : :d

(a+b+c�1)

, where d

(k)

is the fragment of d corresponding to clause C

k

.

The fragments corresponding to a clause with l literals will have length 2l. We describe in

detail the case of a clause with three literals, the other cases being similar, only simpler.

6

Assume that clause C

k

contains three variables, x

h

, x

i

, x

j

. The fragments of u

h

, u

i

, and

u

j

corresponding to C

k

are 000100, 000010 and 000001 respectively, while for l 62 fh; i; jg

we have u

(k)

l

= 000000.

There are 7 truth assignments for (x

h

; x

i

; x

j

) that satisfy C(k), for each one we have an

entry in vector v; if v

l

is the entry corresponding to a truth assignment (b

0

; b

1

; b

2

) for C

k

,

then v

(k)

l

= 100(1� b

0

)(1� b

1

)(1� b

2

). Moreover, for k

0

6= k we have v

(k

0

)

l

= 0 : : :0. Finally,

t

(k)

= 100111.

Consider now x such that F (x) is true. Then the fragment of

c

ux corresponding to a

clause C

k

is 000b

0

b

1

b

2

, where (b

0

; b

1

; b

2

) is a truth assignment satisfying C

k

(note that x

satis�es all the clauses of F). Let v

l

be the entry of v corresponding to this truth assignment,

and v

l

1

; : : : ; v

l

6

be the entries corresponding to other truth assignments that may satisfy

C

k

. We set y

l

to 1 and y

l

1

; : : : ; y

l

6

to 0; it is easy to see that the fragment of

d

ux+ vy

corresponding to C

k

is 100111, the same as the corresponding fragment of t. Since this is

true for every fragment of t, we have ux + vy = t.

Now suppose that there exists y such that ux+vy = t. If for every clause C

k

exactly one

of the entries corresponding to the truth assignments that satisfy C

k

has coe�cient 1 in the

vector y, and if the addition is performed without carries, then each C

k

is satis�ed. It can

be proved by induction that this is indeed the case (note that in our string representations

of numbers we write the least signi�cant bit �rst). We leave the details are left to the

reader.

Finally, the method of creating (u; v; t) is so regular that it can be carried out by a

deterministic log-SPACE Turing machine. 2

De�ne the �

2

(Subset Sum) problem as follows: given (u; v; t) where u and v are vectors

of positive integers and t is an integer; the question is whether 9x8y ux+ vy 6= t, where the

quanti�ers range over 0-1 vectors of appropriate length.

Lemma 4.3 The �

2

(Subset Sum) problem is �

P

2

-complete.

Proof: Consider now an arbitrary property L of binary strings that belongs to �

P

2

. In its

normal form, L is represented as

L(x) � 9y

1

8y

2

P (x; y

1

; y

2

)

where P is a polynomial time predicate. Because P � NP \ co-NP , the predicate P can

be represented as

P (x; y

1

; y

2

) � :(9y

3

F (x; y

1

; y

2

; y

3

))

where F is a 3CNF formula (computed using space which is logarithmic in the size of x in

unary). Let \�" denote concatenation of vectors. By the previous lemma,

F (x; y

1

; y

2

; y

3

) � 9y

4

u(x � y

1

� y

2

� y

3

) + vy

4

= t

7

where (u; v; t) can be computed in logarithmic space from F . De�ne �u; �v; �w and

�

t so that

u(x � y

1

� y

2

� y

3

) + vy

3

= �wx + �uy

1

�v(y

2

� y

3

� y

4

) and

�

t = t � �wx. By substitution and the

De Morgan laws, we have

L(x) � 9y

1

8y

2

:(9y

3

9y

4

u(x � y

1

� y

2

� y

3

) + vy

4

= t)

� 9y

1

8y

2

8y

3

8y

4

u(x � y

1

� y

2

� y

3

) + vy

4

6= t

� 9y

1

8y

2

8y

3

8y

4

�wx+ �uy

1

�v(y

2

� y

3

� y

4

) 6= t

� 9y

1

8(y

2

� y

3

� y

4

) �uy

1

�v(y

2

� y

3

� y

4

) 6=

�

t

Because the last of the above statements is an instance of �

2

(Subset Sum), we have shown

that L can be reduced to �

2

(Subset Sum). 2

To prove that fully compressed two dimensional pattern matching is �

P

2

complete, it

su�ces to show how to translate an instance of �

2

(Subset Sum). Consider an instance given

by (u; v; t). Recall the de�nition of T

w

from our proof of co-NP completeness.

Let U be the 2d-text T

u

and let V be the 2d-text T

v

with all rows reversed. Recall that

dimensions of U and V are 2

n

� (1 + r) and 2

m

� (1 + s) respectively, where m and n are

the lengths of u and v, while r and s are their sums. We de�ne the pattern and the test as

follows:

P 1	 [0]

1

2

n

+2

m

S

0

 [0]

2

n

s�t

U S

1

 V [1]

2

m

r�t

S

2

 [0]

2

n

1+r+s�t

T R

1

	R

2

	 R

2

The subrectangles S

i

's are stripes of the text T . Observe �rst that T contains P if and

only if there exists a column of T , say c, that contains P . Because the length of P equals

the sum of heights of S

1

and S

2

plus 1, P can start anywhere in the upper stripe S

0

but

only there. Because P starts with 1, it must start within U , so c = s � t + a for some

a � 0. Therefore column c consists of column a of U , column s � t + a of V and zeros at

the bottom|we can easily exclude the case when this column crosses the middle stripe S

1

through the subrectangle consisting of 1's only.

Now, column a of U is column a of T

u

, so a 1 exists in this column if and only if for some

x < 2

n

we have u

e

x = a. Moreover, column s � t + a of V is column s� (s� t � a) = t� a

of T

v

, and we have all 0's in this column if and only if vy 6= t � a for every y < 2

m

.

Summarizing, P occurs in T if and only if there exists x with the following property: for

a = ux the equality vy = t � a � a + vy = t � ux + vy = t holds for no y. Therefore the

positive answer to our pattern matching problem is equivalent to the positive answer to the

original �

2

(Subset Sum) problem. This concludes the proof of Theorem 4.1.

8

5 Fully compressed pattern checking

The problem of fully compressed pattern checking at a given location is to check, given

pattern P and text R that are both compressed and a position within the text, whether P

occurs within R at this particular place.

Theorem 5.1 Fully compressed pattern checking for d-texts is co-NP-complete.

Proof: We can use Lemma 3.1 to express this problem in the normal form of co-NP :

8(k; l) 2 Positions(P) P

k;l

= R

k+i;l+j

:

To prove co-NP hardness, we will reduce co-(Subset Sum) to our problem. An instance

of co-(Subset Sum) is a vector of integer weights w = (w

0

; : : : ; w

n�1

) and a target integer

value t; the question is whether 8m < 2

n

w

e

m 6= t. (Here w

e

m stands for the inner product;

because

e

m is a 0-1 vector, w

e

m is a sum of a subset of the terms of w.) We can transform

this question to a pattern checking question in a natural manner. Let s = 1+

P

n�1

i=0

w

i

, and

let the 2d-text T

w

consists of 0's and 1's, with T

w

m;i

= 1 if and only if w

e

m = i. Then our

co-(Subset Sum) question is whether column t of T

w

consists of 0's only. In terms of the

pattern checking problem, we specify the text T

w

, the pattern [0]

1

2

n

and the position (t; 0).

To �nish the proof, we need to compress T

w

. Observe that rowm of T

w

contains exactly

one 1, at position w

e

m. Moreover, for m < 2

n�1

we have w(

g

m+ 2

n�1

) = w(

e

m) + w

n�1

.

Therefore when we split T

w

into upper and lower halves (each with 2

n�1

rows), the pattern

of 1's is very similar, the only di�erence being that in the lower half (with higher row

numbers) the 1's are shifted by w

n�1

to the right. Moreover, if we remove the last w

n�1

zeros from each row in the upper half, we obtain T

w(n�1)

, a 2d-text de�ned just as T

w

, but

where w(n� 1) = (w

0

; : : : ; w

n�2

). Proceeding inductively, we compute T

w

:

T

w(0)

 1

for i 0 to n� 1 do

U T

w(i)

[0]

2

i

w

i

; L [0]

2

i

w

i

T

w(i)

; T

w(i+1)

 U 	 L

To obtain an SLP for T

w

, we combine 3n+ 1 statements of the above program with SLP's

that compute auxiliary 2d-texts [0]

2

i

w

i

. The resulting SLP has O(n

2

+ b) statements, where

b is the total number of bits in the binary representations of the numbers in vector w. 2

6 Compressed pattern checking

Recall that the compressed pattern checking problem is to check whether an uncompressed

pattern P occurs at a position (x; y) of a 2d-text T given by an SLP T . Let n be the size of

T and N be the size of T . The compressed pattern checking problem can be solved easily

in polynomial time by using an algorithm for point test problem m �k times. By Lemma 3.1

9

there is an algorithm which solves the compressed pattern checking problem in O(njP j)

time. We improve this by replacing n by logN logm. This is similar to the approach of [6].

If the 2d-text is not very highly compressed then log(N) is close to log(n). The idea behind

the algorithm is to consider point tests in groups, called a queries. Denote by V a text

which is generated by a variable V . A query is a triple (V; p;R) where V is a variable in the

SLP T , p is a position inside V and R is a subrectangle of the pattern P . Denote by R

0

the

subrectangle of V which is placed at position p in V and is of the same shape as the rectangle

R. We require that R

0

abut one of the sides of the rectangle V . An answer to the query

tells whether R

0

= R. Queries are answered by replacing them by equivalent \simpler"

queries. We say that a query (V; p;R) is simpler than a query (V

0

; p

0

;R

0

) if jVj < jV

0

j. A

query which contains a variable V is called a V -query. An atomic query is a query (V; p;R)

such that V is a 1� 1 square, which can be answered in O(1) time.

The queries are divided into three classes: strip queries, edge queries, and corner queries.

Let (V; p;R) be a query. Let R

0

be the rectangle of the same shape as R which is positioned

at p in V . (V; p;R) is a corner query if R contains at least one side of the pattern or R is

a corner subrectangle of the pattern and R

0

is a corner subrectangle of V . (V; p;R) is an

edge query if R

0

contains one side of V . There are four types of edge queries depending on

which side of V is contained in R

0

. We call these down, left, right and up queries. (V; p;R)

is a strip query if R is a strip of the pattern and R

0

is a strip of V .

The algorithm CHECKING for the checking problem uses two procedures, Split(V;Q)

and Remove Edge Queries(V;Q), where V is a variable in T and Q is a set of queries.

Algorithm CHECKING

f input: an SLP T , a pattern P and a position p g

f output: true i� P occurs at p in a text described by T g

begin

V

1

; V

2

; : : : ; V

n

:= sort variables in T on the sizes of their texts, in descending order

Q:=f(V

1

; p; P)g

for i:=1 to n do

Q:=Remove Edge Queries(V

i

; Q) Q:=Split(V

i

; Q)

fthere are now only atomic queries in Qg answer all atomic queries in Q

end

The procedure Compress Edge Queries(V;Q) deals only with edge V -queries in Q. Its aim

is to eliminate, for each type of edge query separately, all edge V -queries except the query

which contains the largest subrectangle of the pattern. We describe how this procedure

works for left-edge queries. Let (V; (0; 0);R) be a left-edge query and R be of maximal size

among all left-edge V -queries in Q. Let (V; (0; 0);R

0

) be any other left-edge V -query. Then

the rectangle of shape R

0

positioned at (0; 0) in V is a subrectangle of the rectangle of shape

10

R positioned at (0; 0) in V . Hence, to answer both queries it is enough to answer the query

(V; (0; 0);R) and to check whether the text R

0

occurs in R at (0; 0). Before removing each

edge query equality of appropriate rectangles is checked and if the rectangles do not match

then the procedure stops and the algorithm returns false.

Assume that A:=BC or A:=B 	 C is an assignment for A. The Split(A;Q) procedure

replaces A-queries in Q by equivalent B-queries and C-queries. Let (A; p;R) be an A-query

in Q. Consider a rectangle R of shape R positioned at p in A. Then division of A into B

and C according to the assignment for A causes that either R to be wholly contained in B

or C, or to be divided into two smaller rectangles one of which is in B and the other in C.

In the latter case the split of a query is called a division of the query.

Fact 6.1 The total number of all divisions of queries during the work of the algorithm is

exactly jP j � 1.

For each variable, edge and corner queries are stored in a list. The data structure for

storing strip queries is more sophisticated. For each variable it is a 2-3-tree [1] in which keys

are positions of strip rectangles in the variable. Recall that 2-3 trees provide operations

split and join in O(log s) time where s is the number of elements in the tree.

Fact 6.2 In each step of algorithm CHECKING the set Q contains at most four corner

queries and m strip queries.

Implementation of the Split operation, if it is not a division, requires merging 2-3 trees

and this may result in a large number of splits of 2-3 trees. Fortunately, it is possible to

prove the following lemma, using arguments similar to those of [6].

Lemma 6.3 The number of splits of 2-3 trees in algorithm CHECKING is O(m logN).

Theorem 6.4 The algorithm CHECKING works in O(jP j+ n + (m logN)(logm)) time.

Proof: By Fact 6.1, the total cost of all divisions is O(jP j). The total cost of all Splits

which are not divisions is determined by the number of all corner queries and all edge

queries which survive after the Remove Edge Queries operation during the execution of

the algorithm and the number of splits of 2-3 trees. This gives, by Lemma 6.3, O(n +

(m logN)(logm)). 2

11

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The design and analysis of computer algo-

rithms, Addison-Wesley, Reading, Mass., 1974.

[2] A. Amir, G. Benson and M. Farach, Let sleeping �les lie: pattern-matching in Z-

compressed �les, in SODA'94.

[3] A. Amir, G. Benson, E�cient two dimensional compressed matching, Proc. of the 2nd

IEEE Data Compression Conference 279-288 (1992).

[4] A. Amir, G. Benson and M. Farach, Optimal two-dimensional compressed matching,

in ICALP'94 pp.215-225.

[5] M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, New York

(1994).

[6] M. Farach and M. Thorup, String matching in Lempel-Ziv compressed strings, in

STOC'95, pp. 703-712.

[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman (1979).

[8] L. G�asieniec, M. Karpi�nski, W. Plandowski and W. Rytter, E�cient Algorithms for

Compressed Strings. in proceedings of the SWAT'96 (1996).

[9] M. Karpinski, W. Rytter and A. Shinohara, Pattern-matching for strings with short

description, in Combinatorial Pattern Matching, 1995.

[10] D. Knuth, The Art of Computing, Vol. II: Seminumerical Algorithms. Second edition.

Addison-Wesley, 1981.

[11] A. Lempel and J. Ziv, On the complexity of �nite sequences, IEEE Trans. on Inf.

Theory 22, 75-81 (1976).

[12] A. Lempel and J. Ziv, Compression of two-dimensional images sequences, Combinato-

rial algorithms on words (ed. A. Apostolico, Z.Galil) Springer Verlag (1985) 141-156.

[13] R. Motwani, P. Raghavan, Randomized algorithms, Cambridge University Press 1995.

[14] Papadimitriou, Ch. H., Computational complexity, Addison Wesley, Reading, Mas-

sachusetts, 1994.

[15] W. Plandowski, Testing equivalence of morphisms on context-free languages, ESA'94,

Lecture Notes in Computer Science 855, Springer-Verlag, 460{470 (1994).

[16] J. Storer, Data compression: methods and theory, Computer Science Press, Rockville,

Maryland, 1988.

[17] R.E. Zippel, Probabilistic algorithms for sparse polynomials, in EUROSAM 79, Lecture

Notes in Comp. Science 72, 216-226 (1979).

[18] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE

Trans. on Inf. Theory vo. IT{23(3), 337{343, 1977.

12

