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Abstract. We introduce a new method for proving explicit upper bounds

on the VC Dimension of general functional basis networks, and prove as

an application, for the �rst time, that the VC Dimension of analog neural

networks with the sigmoidal activation function �(y) = 1=1+e

�y

is bounded

by a quadratic polynomial O((lm)

2

) in both the number l of programmable

parameters, and the number m of nodes. The proof method of this paper

generalizes to much wider class of Pfa�an activation functions and formulas,

and gives also for the �rst time polynomial bounds on their VC Dimension.

We present also some other applications of our method.

0 Introduction

This paper studies the VC Dimension of general functional basis networks, and the

resulting Boolean combinations of certain formulas. We develop a new method for

proving explicit upper bounds for a wide class of analog neural networks with general

Pfa�an activation functions.
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The most commonly used activation function in various neural networks applications

is the sigmoid �(y) = 1=1 + e

�y

(cf. [HKP91]). We refer to [AB92], [M93a], and [MS93]

for all the necessary background on the computation by neural networks and the VC

dimension (particularly, to the connection between their computational power, and the

sample complexity).

In [MS93] the �niteness of VC Dimension of sigmoidal neural networks has been

established for the �rst time using a deep result in model theory. It is perhaps worth

nothing that slightly more general analytic increasing activation functions do not always

have �nite VC-dimension [S92].

In Maass's 1993 lecture notes [M93a] (see also [GJ93] and [MS93]), Open Problem

10 asks:

Is the VC Dimension of analog neural nets with the sigmoid activation function

�(y) = 1=1+e

�y

bounded by a polynomial in the number of programmable parameters?

In this paper we give an a�rmative answer, with a polynomial bound in the number

of programmable parameters. We believe that the bound can be improved to the one

subquadratic in the number of programmable parameters and the number of nodes using

a variant of our method. The result is a special case of much more general result about

the VC Dimension of the classes de�ned by certain formulas. In contrast to [KM94], this

paper does not use o-minimality and therefore can be applied to more general situations

like the Pfa�an functions for which o-minimality is not yet even established(!).

In the case of boolean functions computed by sigmoidal neural networks (cf. [MSS91],

[M93b]), our result entails, also for the �rst time, by a simple counting argument, the fact

that not every boolean function can be computed by a single polynomial size sigmoidal

or general Pfa�an neural network with an appropriate weight assignment.

We refer to [AB92], [GJ93], and [MS93] for all notions required for the VC Dimension

of neural networks, and to [H76] for all notions of di�erential geometry.

The paper was inspired by the work of Goldberg and Jerrum [GJ93], who could deal

with polynomial activation functions. A reference in [GJ93] to Warren's paper [W68]

was of particular importance.

The paper is organized as follows. In Section 1, we introduce the necessary formalism

for the describing formulas, as well as all preparatory algebraic and topological facts.

Section 2 contains the Main Result, and Sections 3 and 4 the applications.

1 The setting

1.1 We shall consider a standard model of a feedforward network architectureA with the

activation function � (cf., e. g., [M93a], [MS93]) with k inputs, m computational nodes,

and ` weights (the number of programmable parameters). We assume (for simplicity)

that the output gate of A has range f0; 1g. We associate with A an exponentional

formula �(�v; ~y) > 0 for �v 2 IR

k

, and ~y 2 IR

`

, � being a composition of polynomials,

and activation functions over the computation nodes of A. �(�v; ~y) > 0 represents the

function computed by A. Alternatively, and this is crucial in our paper, we describe the
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computation of A as a Boolean combination of atomic formulas of two forms � (�v; ~y) =

0 or � (�v; ~y) > 0 describing local computations of A at its computational nodes (for

appropriate �v's, and ~y's). The VC dimension of the network A is the VC dimension of

the class C

�

= f�

~

�

:

~

� 2 IR

`

g for �

~

�

= f�x 2 IR

k

: �(�x;

~

�) > 0g the partition of IR

k

by

A according to the weight assignment

~

�. (The general reader is referred to [MS93] and

[GJ93] for de�nitions and basic properties of Vapnik-Chervonenkis (VC) dimension. We

say a set S � IR

k

is shattered by C

�

if fS

T

C : C 2 C

�

g = P (S). The VC dimension

of C

�

is the maximal size of any set S that can be shattered by C

�

, or 1 if arbitrary

large subsets may be shattered.)

We turn our attention now to the analysis of general formulas resulting from the local

computation descriptions of A. The method of our analysis is by no means restricted to

the network architectures only, and can be applied to a much larger class of formulas,

which could be of independent interest.

1.2 We start now with some de�nitions and notations. Fix integers k; l and

C

1

(in�nitely di�erentiable) functions �

1

; : : : ; �

s

from IR

k+`

to IR. Write �

i

as

�

i

(v

i

; : : : ; v

k

; y

1

; : : : ; y

`

) (or �

i

(�v; ~y)).

Form a �rst-order language L with primitives < (for order) and function symbols

��

1

; : : : ; ��

s

, of arity k + `, corresponding to �

1

; : : : ; �

s

. (We drop � for readability.)

Let �(�v; ~y) be a quanti�er-free L-formula, so � is a Boolean combination of atomic

formulas, which can be of two forms:

� (�v; ~y) > 0

or

� (�v; ~y) = 0;

where � is an L-term. For this paper, we assume each � to be one of �

i

's.

For

~

� 2 IR

`

, one de�nes

�

~

�

= f�v 2 IR

k

: IR j= �(�v;

~

�)g � IR

k

;

and the family

C

�

= f�

~

�

:

~

� 2 IR

`

g:

In this paper we give good explicit bounds on the VC-dimension of C

�

, under certain

assumptions about the �

i

.

1.3 Assumptions on the �

i

. Let ��

1

; : : : ; ��

V

be elements of IR

k

. Form the (�

sV many) C

1

functions �

i

( ��

j

; ~y) from IR

`

to IR. Choose �

1

; : : : ;�

r

(r � `) from among

these, and let

F : IR

`

! IR

r

be de�ned by

F (~y) = h�

1

(~y); : : : ;�

r

(~y)i:
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By Sard's Theorem [M65], the set of nonregular values h�

1

; : : : ; �

r

i of F in IR

r

has

Lebesgue measure 0. Recall that h�

1

; : : : ; �

r

i is a regular value of F if either

a) F

�1

(h�

1

; : : : ; �

r

i) = ;,

or

b) F

�1

(h�

1

; : : : ; �

r

i) is an (l� r)-dimensional C

1

-submanifold of IR

`

.

This motivates the assumption we now impose on the �

i

.

Assumption: There is a bound B, independent of the ��

j

, r, and �

1

; : : : ; �

r

such that if

F

�1

(h�

1

; : : : ; �

r

i) is an (l� r)-dimensional C

1

-submanifold of IR

`

then F

�1

(h�

1

; : : : ; �

r

i)

has � B connected components.

Fix such a B henceforth.

1.4 Examples. a) The �

i

are polynomials of degree � d in ~y. Then B can be taken as

2 � (2d)

`

by a result of Milnor [M64].

b) Khovanski [K91, p. 91, Corollary 3] proved a basic result about exponential polyno-

mials, namely:

Theorem 1. Suppose l � m. Let Q

i

(i � m) be elements of IR[y

1

; : : : ; y

`

; e

�

1

; : : : ; e

�

q

]

where the �

i

are linear functions of y

1

; : : : ; y

`

. Suppose the Q

i

have degree d

i

, and let

k = l�m, and S =

P

m

i=1

d

i

+k+1. Suppose (0; : : : ; 0) is a regular value of (Q

1

; : : : ; Q

m

),

with inverse image a manifold of dimension k. Then that manifold has no more than

2

q(q�1)=2

� d

1

� � � d

m

� S

k

[(k + 1)S � k]

q

connected components.

This gives, for 1.3, if �

i

(�v; ~y) is polynomial of degree d in �v; ~y and q �xed subterms

(independent of i) exp(g(�v; ~y)), g linear, B � 2

ql(ql�1)=2

�d

l

�S

l

[lS]

ql

where S = dl+ l+1.

The q in Theorem 1 becomes ql now, because of the substitutions of � l many ��

j

for ~v.

So

logB � (ql)(ql� 1)=2 + l log d + l log S + ql log (lS)

� (ql)(ql� 1)=2 + l logd + l(q + 1) log S + ql log l:

c) If the �

i

are de�nable in an o-minimal expansion of the real �eld [KPS86], the existence

of a B is guaranteed, but good bounds are not.

d) Examples for which o-minimality is unknown but where our method applies involved

Pfa�an functions (cf. [K91, p. 91, Example 3]). We recall that a sequence of real

functions F

1

; : : : ; F

q

is a Pfa�an chain if all partial derivatives of every F

i

; 1 � i � q,

can be expressed as polynomials in the �rst i functions in the chain and the coordinate

functions. Suppose the �

i

(�v; ~y) are polynomials of degree � d in the �v; ~y and in functions

F

1

; : : : ; F

q

which from a Pfa�an chain of length q where the polynomials are of degree

� D. Let r � l and �

1

; : : : ;�

r

as in 1.3, de�ning a manifold of dimension l � r. Then

if S = r(d � 1) + lD + 1, we have

B � 2

lq(lq�1)=2

� d

r

� S

l�r

[(l� r + 1)S � (l � r)]

lq

giving, independent of r a (crude) bound

B � 2

lq(lq�1)=2

� d

l

� (l(d+D))

l

(l

2

(d+D))

lq

:
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The bound in Theorem 1 corresponds to D = 1.

As for the exponential example Khovanski's q becomes in our case lq after the ��

j

get

substituted.

2 The Main Result

2.1 We shall prove:

Theorem 2. (Assumption as above).

V C-Dimension (C

�

) � 2 logB + (16 + 2 log s)l:

(Note: In this paper log is logarithm to base 2.)

2.2 Let �a

1

; : : : ; �a

V

be elements of IR

k

such that f�a

1

; : : : ; �a

V

g is shattered by C

�

. For

each subset E of f�a

1

; : : : ; �a

V

g, pick ~y

E

in IR

`

such that E = f�a

j

: IR j= �(�a

j

; ~y

E

)g.

Choose � > 0 such that if any �

i

(�a

j

; ~y

E

) (1 � i � s ; 1 � j � V ; E � f�a

1

; : : : ; �a

V

g) is

6= 0, then j�

i

(�a

j

; ~y

E

)j > �.

Note that for ~
 2 IR

l

, the set f�a

j

: IR j= �(�a

j

; ~
)g depends only on the signs (+;�;

or 0) taken at ~
 by the functions �

i

(�a

j

; ~y); (1 � i � s ; 1 � j � V ): [The sign of � is +

if � > 0, � if � < 0, and 0 if � = 0].

Because of the ~y

E

one has � 2

V

such sign series as ~
 varies.

The ~y

E

now show the following:

Lemma 3. If 0 < �

ij

< � (1 � i � s ; 1 � j � V ) the complement in IR

l

of the union

of the sets f~y : �

i

(�a

j

; ~y) = �

ij

g [ f�y : �

i

(�a

j

; ~y) = ��

ij

g (1 � i � s ; 1 � j � V ) has

at least 2

V

connected components (V; �a

j

; � are �xed as above).

2.3 This can now be combined with Sard [S42], [M65], and a combinatorial idea of

Warren [W68], to give Theorem 2.

We use the following cases of Sard's Theorem. We have a C

1

map F : IR

m

�! IR

n

.

A point p of IR

n

is called a regular value of F if eitherm � n and F

�1

(p) is a submanifold

of IR

m

of dimension m� n , or empty, or m > n and F

�1

(p) is empty. Then the basic

result is that the set of q in IR

n

which are not regular values of F has Lebesgue measure

0.

(It is easily seen that the normal de�nition of regular value, in terms of F

�1

(p)

containing no critical points, is equivalent to that given above.)

Now we apply Sard [S42]. Let P = f< i; j > : 1 � i � s ; 1 � j � V g. For

< i; j >2 P , let �

i;j

(~y) = �

i

(�a

j

; ~y). For A � P , and f 2 f1;�1g

A

, let

F

A;f

(~y) =< � � � ; f(< i; j >) � �

i;j

; (~y); � � � >

<i;j>2A

. So F

A;f

is a C

1

map from IR

l

to IR

A

.

For ~� in IR

P

, let

Z(A; f)(~�) = f~y : for all < i; j >2 A ; �

i;j

(~y) = f(< i; j >)�

i;j

(~y)g.

Finally let I = [�1; 1], which has measure 2.
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Lemma 4. Let � be the set of all ~� in I

P

such that for all A � P with card(A) = j � l,

and all f 2 f�1; 1g

A

; Z(A; f)(~�) is either empty, or a manifold of dimension l � j.

Then � has measure 2

card(P )

.

Proof. Look at the ~� for which the condition fails for some A; f . Let �

A

be the

projection of I

P

onto I

A

. Then �

A

(~�) is not a regular value of F

A;f

, so belongs to a

subset of IR

A

of measure 0. So the ~� in I

P

for which the condition fails for A; f have

measure 0. Since there are only �nitely many A; f the result follows. �

Now a slight re�nement.

Lemma 5. Let �

0

be the subset of � consisting of all ~� such that if card (A) > l and

f 2 f1;�1g

A

, then Z(A; f)(~�) is empty. Then �

0

has measure 2

card(P )

.

Proof. Again, consider the ~� for which condition fails for a �xed A; f . As before, this

set has measure 0. Since there are only �nitely many A; f , the result follows. �

We now take up the notations of Lemma 3.

The ~�

ij

in I

P

with 0 < �

ij

< � form a set of measure �

card (P )

. (Of course, card (P ) =

sV ). Combining this with Lemma 5, we get that �

0

intersected with the above has

measure �

card(P )

, and so in particular is nonempty.

Note �nally, before we approach Theorem 2 via a theorem of Warren, that for ~� in

�

0

, if A

1

� A

2

and f

1

� f

2

then Z(A

2

; f

2

)(~�) is a submanifold of Z(A

1

; f

1

)(~�).

Warren [W68] proved:

Theorem 6. Let M be a connected topological n-manifold, and let M

1

; : : : ;M

n

be

connected (n � 1)-manifolds which are submanifolds of M so that

(1) The M

i

are closed in M ;

(2) The intersection of any given j of the M

i

, 1 � j � n is either empty, or is an

(n� j)-submanifold of the intersection of any (j � 1) of the M

i

;

(3) Any intersection of more than n of the M

i

is nonempty.

Let b

j

(0 � j � n) be the number of connected components among all intersections of

any j

n

of the M

i

.

Then M�

S

n

i=1

M

i

has no more than

P

n

j=0

b

j

connected components.

Proof. See [W68, Theorem 1].

We want to apply this by �xing ~� in �

0

, takingM = IR

l

, and theM

i

as the zerosets

of the �

i;j

(~y)��

ij

. All that is missing is that we did not guarantee that these zerosets are

connected. But if we rather take the M

i

as the connected components of the zerosets,

the hypotheses of Theorem 6 are satis�ed. Indeed, Warren's result clearly remains true

if the condition on connectedness of the M

i

is dropped.

Going back to Lemma 3, we seek to bound 2

V

by the number of connected compo-

nents of the complement in IR

l

of the union of the sets f~y : �

ij

(~y) = �

ij

g[f~y : �

ij

(~y) =

��

ij

g, where each �

ij

is between 0 and �, and ~� is in �

0

. To apply Warren, we have to

bound the b

j

, for 0 � j � l. Of course b

0

= 1.
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Now n = 2 s V . Let 1 � j � l. There are n many zero sets, but of course any

intersection f~y : �

ij

(~y) = �

ij

g \ f~y : �

ij

(~y) = ��

ij

g = ;.

Any intersection of no more than j of the zerosets has � B connected components

(original assumption). So by these two remarks

b

j

� 2

j

�

 

sV

j

!

�B;

giving

l

X

j=0

b

j

� B �

l

X

j=0

2

j

�

 

sV

j

!

� B �

�

2sV e

l

�

l

by [W68].

So now we have

2

V

� B �

�

2sV e

l

�

l

Conclusion of Proof of Theorem 2.

Case 1. V � 4 s e l

Then

2

V

� B(8 s

2

e

2

)

l

� B(4 s e)

2l

;

so

V � logB + 2l log(4se) � logB + 10l + 2l log s

Case 2. V > 4 s e l

Then

2

V

� B

�

V

l

�

2l

;

so

2

V

l

� B

1

l

�

V

l

�

2

:

Now 2

V

2l

>

�

V

l

�

2

if V > 16l,

so either 2

V

2l

< B

1

l

, or V � 16l.

So either 2

V

< B

2

, or V � 16l.

So either V < 2 logB, or V � 16l. �
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3 Applications

3.1 If we now work with polynomials, and Milnor's bound for B, we get the results

from [GJ93].

3.2 An example involving exponentiation. Fix q and linear functions �

1

; : : :�

q

of

�v; ~y. Let �

i

(�v; ~y), 1 � i � s, be polynomials, of total degree d

i

, in �v; ~y and the e

�

i

's.

We showed after Theorem 1 (1.4) that

logB � (ql)(ql� 1)=2 + l log d+ l(q + 1) log S + ql log l;

where

S = dl + l+ 1 � (d+ 1)(l + 1)

So

V C �Dim(C

�

)

� (ql)(ql� 1) + 2l log d+ 2l(q + 1) log S

+2ql log l + (16 + 2 log s)l

� (ql)(ql� 1) + 2l log d+ 2l(q + 1) log(d+ 1)

+2l(q + 1) log(l+ 1) + 2ql log l+ (16 + 2 log s)l:

So

V C �Dim(C

�

)

� (ql)(ql� 1) + 4l(q + 1) log(l + 1) + 2l(q + 2) log(d+ 1) + (16 + 2 log s)l:

3.3 Application to sparse formulas. Since Khovanski's [K91] one has known how

to use Finiteness Theorems about exponentiation to give uniform estimates in problems

involving families of polynomials where there is an absolute bound to the number of

nonzero coe�cients occurring, but none on the degrees involved. So this is all we now

assume about the �

i

(�v; ~y).

The strategy is to break the ~y-space IR

`

into 3

`

pieces according to y

j

< 0 ; y

j

=

0 ; y

j

> 0.

Having chosen for each j one such sign, one changes to variables y

0

j

with y

0

j

= log(�y

j

)

if y

j

< 0, y

0

j

= y

j

if y

j

= 0, and y

0

j

= log(y

j

) if y

j

> 0. Then �

i

(�v; ~y) transforms to

a function linear in no more than q

i

exponentials of linear functions of the

~

y

0

, where q

i

is the number of nonzero coe�cients of �

i

. In particular any �

i

( �a

j

; ~y) will satisfy the

hypotheses of Khovanski's Theorem 1, with d

i

= 1.

So we can apply 3.2 3

l

times. After taking log s we get for V C�Dim (C

�

) the bound

(ql)(ql� 1) + 2l(q + 1) + 2l(q + 1) log(l + 1)

+2ql log l+ (16 + 2 log s)l + l log 3:

8



4 Application to Sigmoidal Neural Networks

4.1 Let us recall again [MS92] the de�nition of a sigmoidal network architecture A.

The data involves:

a) A directed acyclic graph G, labelled by variables and polynomials as explained below;

b) an integer `, the dimension of the space of weights (the number of programmable

parameters), and the weight variables y

1

; � � � ; y

`

;

c) if there are k input nodes (i.e. nodes of in-degree 0) these are labelled by variables

v

1

; � � � ; v

k

;

d) there is exactly one output node (i.e. a node of out-degree zero);

e) those nodes which are not input nodes are called computation nodes, and the m

th

such N

m

is labelled by a variable z

m

, and a polynomial

P

N

m

(v

t

1

; � � � ; v

t

�

; z

u

1

; � � � ; z

u




; y

�

1

; � � � y

�

�

)

where the y's are a subset of the weight variables, the v's correspond to the input nodes

immediately belowN

m

(i.e. connected toN

m

) and the z's correspond to the computation

nodes immediately below N

m

.

One now �xes an activation function � : IR! IR, in our case the function

�(x) =

1

1 + e

�x

:

Then A computes a function �

A

: IR

k+`

! IR, as described recursively below:

a) If N is an input node, with associated variable v

i

, f

N

(�v; ~y) = v

i

,

b) If N is a computation node with variable z

m

f

N

(�v; ~y) = P

N

(v

t

1

; � � � v

t

�

; �(f

N

1

(�v; ~y)); � � ��(f

N




(�v; ~y)); y

�

1

; � � � y

�

�

) (#)

where N

i

corresponds to z

u

i

; 1 � i � 
.

Then �

A

is f

N

w

, where N

w

is the output node.

Now, if we work in a language with +;�; �; 0; 1; < and a symbol � for the activation

function, then f

N

w

(�v; ~y) is given by a term � (�v; ~y), by transcribing naively the above

recursion. Let �(�v; ~y) be

� (�v; ~y) > 0 :

Then (by de�nition) the V C-dimension of A is the V C-dimension of C

�

. By [L92] (which

appeals to [W94]) this dimension is �nite, since � is de�nable in +;�; �; 0; 1; <; e

x

.

We now apply our method to get a good polynomial bound for V C � dim(A). So

we need to know a bound on the number of connected components of a manifold of

dimension ` � j de�ned by the conditions

� (��

i

; ~y) = "

i

1 � i � j (� `) :

9



We are aware of several approaches to this computation, and may in future look

more closely at the relative merits of various methods. For now we appeal directly to

the Khovanski estimates previously used, but now applied in a high-dimensional space.

For each i with 1 � i � j, and each computation node N we add variables Z

N;i

and

^

Z

N;i

. Among these are the output variables Z

w;i

each i. Finally, we add input variables

v

c;i

for c � k; i � j:

Now consider the system of equations

Z

N;i

= P

N

(v

t

1

;i

; � � � v

t

�

;i

;

^

Z

N

1

;i

; � � �

^

Z

N




;i

; y

�

1

; � � � y

�

�

)

1 =

^

Z

N;i

(1 + e

�Z

N;i

)

as N ranges over computation nodes, and 1 � i � j. To see the meaning, refer to (#).

Write the system as

S(�v

1

; � � � �v

j

; z

w;1

; � � � z

w;j

; ~y;

e

e

w)

where �v

c

= (v

c;1

; : : : ; v

c;j

) and

e

e

w denotes all the remaining variables.

The essential points are:

(1) S(��

1

; � � � ��

j

; "

1

; � � � "

j

; ~y;

e

e

w) ) � (��

i

; ~y) = "

i

1 � i � j;

(2) If � (��

i

; ~y) = "

i

for all 1 � i � j, then there are unique

e

e

w such that

S(��

1

; � � � ��

j

; "

1

; � � � "

j

; ~y;

e

e

w);

(3) The set in IR

`

de�ned by the conditions � (��

i

; ~y) = "

i

; 1 � i � j is homeomorphic

to that in (~y;

e

e

w) space de�ned by S(��

1

; � � � ��

j

; "

1

; � � � "

j

; ~y;

e

e

w), so either both or neither

are manifolds.

So now we can use the Khovanski estimates on S, assuming S(��

1

; � � � ��

j

; "

1

; � � � "

j

; ~y;

e

e

w)

de�nes a manifold of dimension l � j. Note that there are l + (2m + 1) � j vari-

ables among (~y;

e

e

w), if m is the number of nonoutput computation nodes of A.

S(��

1

; � � � ��

j

; "

1

; � � � "

j

; ~y;

e

e

w) is de�ned by 2mj equations, and of course l + (2m + 1)j �

2mj = l� j.

Let d be a bound for the degree of all P

N

.

Then, by Khovanski, S(��

1

; � � � ��

j

; "

1

; � � � "

j

; ~y;

e

e

w) de�nes a set with no more than

2

((m+1)j)((m+1)j�1)=2

d

2mj

(2mjd+(l� j)+1)

l�j

((l� j+1)2mjd� (l� j))

(m+1)j

connected

components.

So this gives us a bound B for the � -problem, namely:

B � 2

nl(nl�1)=2

� d

2nl

� (l � (2nd + 1))

l

� (2nl

2

d)

nl

where n = m+ 1 = number of computation nodes of A. So

logB � nl(nl� 1)=2+ 2nl log d+ l log l+ l log(2nd+1)+2nl log l+nl log(2nd) = �(A);

say.

10



Now, applying Theorem 2, we get:

Theorem 7. The VC-Dimension of A is bounded above by

2�(A) + 16l:

The term (nl)(nl� 1)=2 is obviously the dominant term, if d is small. Since in the gen-

eral case l could majorize n, one can argue that our bound is of degree 4 as a function

of l only.

4.2 Generalizations: The estimation above with a dominant term (m`)

2

does not

depend essentially on the type of the activation function used. An alternative approach

to the above result works directly with the function f

N

w

(�v; ~y), and uses the fact that

f

N

w

is a Pfa�an function. For the fundamental work on Pfa�an functions one should

consult [K91].

�(x) is Pfa�an, since �

0

(x) = �(x)� (�(x))

2

.

Clearly f

N

(�v; ~y) is Pfa�an, for N an input node, for f

N

(�v; ~y) = v

i

, where v

i

is the input

variable corresponding to N . Using (#) we have, for a computation node N ,

@

@y

j

f

N

(�v; ~y) =

@P

N

@Z

u

1

�

@f

N

1

@y

j

� (�(f

N

1

)� �(f

N

1

)

2

)

+

@P

N

@Z

u

2

�

@f

N

2

@y

j

� (�(f

N

2

)� �(f

N

2

)

2

)

+

.

.

.

+

+

@P

N

@Z

u

r

�

@f

N

r

@y

j

� (�(f

N

r

)� �(f

N

r

)

2

)

+

X

@P

N

@y

�

r

�

@y

�

r

@y

j

and

@

@y

j

�(f

N

(�v; ~y)) =

@

@y

j

f

N

(�v; ~y) � (�(f

N

)� �(f

N

)

2

):

>From this one sees that if �

1

; : : : ; �

r

(r � l) are arbitrary values of �v then the collection

of all f

N

( ��

i

; ~y) and �(f

N

( ��

i

; ~y)), for r � l and N an input or computation node, from

a Pfa�an chain of length 2ml, in which all polynomials have degree � d + 2.

Finally, let �

i

(~y) be f

N

w

( ��

i

; ~y), a polynomial of degree � d in the variables and the

11



elements of the chain. Our task was to bound the number of connected components of

f~y : �(~y) = "

1

; : : :�

r

(~y) = "

r

g

under the assumption this is an (l � r)-submanifold of IR

`

. We can apply [K91][p.91,

Example 3], described in 1.3.

So we get, in the present case,

B � 2

2ml(2ml�1)=2

� (d+ 2)

l

� S

l�1

(lS)

2ml

;

where

S � (d + 3)(l + 1):

This is slightly inferior to the bound given in Theorem 7. However, the method used

here clearly generalizes to give a huge variety of examples in which, as in 3.2 or Theorem

7, we get a dominant term quadratic in ql. (In the above q = 2ml).

In particular, the analogue of Theorem 3.2 is:

Let �

i

(�v; ~y); 1 � i � s, be polynomials of degree � d in the �v; ~y and functions f

1

; : : : ; f

q

in a Pfa�an chain of length q and degree � D.

Then V C �Dim(C

�

)

� 2(ql)(ql� 1) + 2l log d+ 2l log(ld+ lD + 1)

2ql log l + 2ql log(ld+ lD + 1) + l(16 + 2 log S):

As for Theorem 7, it generalizes to architectures with Pfa�an activation functions.

The only di�erence is that a q and D appear. suppose that the activation functins of

A are all members of a Pfa�an chain of length q and degree D. Then the argument

outlined earlier for the sigmoid case gives

B � 2

lmq(lmq�1)=2

� d

l

� l

l

(d +D)

l

� (l

2

(d+D))

l

mq

� 2

lmq(lmq�1)=2

� d

l

� l

l+2lmq

� (d +D)

l+2lmq

so

logB � lmq(lmq� 1)=2 + l log d + (l + 2lmq) log l + (l + 2lmq) log(d+D);

given the VC bound

� lmq(lmq� 1) + (2 log d + 16 + 2 log s)l

+2(l + 2lmq) log l + 2(l + 2lmq) log(d+D):

Thus there is a quadratic e�ect from q, but only a logarithmic one from D.

4.3 Arctangent. A special case is worth recording. Take arctangent as the activation

function of a network architecture. The Pfa�an chain is

1

1+x

2

; arctan x, so q = 2, and

one readily veri�es D = 2. so one has for arctangent activation the dominant term 4lm,

rather than lm for the sigmoid.

12



4.4 Sparse Networks. We maintain the notations of 4.1., but now we consider families

of A's, based on same graph and �, but where the P

N

can vary, subject to the restriction

that none of them have more than � many nonzero coe�cients. Combining the ideas

of 3.3. and 4.1. we easily get for logB a bound with dominant term quadratic in ln�,

and this is of course dominant in the VC-dimension bound for the A's in the family.

4.5 Haussler's Pseudodimension. We refer to [MS93] for the de�nition of the

pseudo-dimension of an architecture. Since the pseudo-dimension of an architecture

A is bounded by the VC-Dimension of a new architecture A

0

(see [MS93]) got directly

from A, we get polynomial bounds for the pseudo-dimension. This answers a�rmatively

the second part of Problem 10 in [M93a].

4.6 Boolean Functions. We are interested now in computation of boolean functions

f : f0; 1g

k

! f0; 1g by neural networks (cf. [MSS91], [M93b]). It is known that applying

some single non-boolean activation functions enhances, sometimes dramatically, the

computational power of a neural network (cf. [MSS91]) even if restricted to the boolean

functions. However it has been open for sometime now how much this increase in

computational power of a neural network could be. The fundamental inability to answer

to this problem was caused by the lack of a method bounding the amount of information

that can be encoded in the weights of a neural network. Particularly, no known methods

were su�cient even to show that there always exists a boolean function f : f0; 1g

k

!

f0; 1g which cannot be computed by single constant depth, polynomial size (number of

nodes and programmable parameters) neural network with sigmoidal activation function

with an appropriate weight assignment. Main results of this paper entail a solution to

this problem. In fact the polynomial bounds on the VC Dimension entail that no

subexponential size 2

o(k)

sigmoidal or general Pfa�an neural network can compute all

boolean function f : f0; 1g

k

! f0; 1g under appropriate weight assignments. Let A

be a sigmoidal or general Pfa�an neural network with m nodes and ` programmable

parameters. Denote by B

A

the set of all boolean functions computed by A under an

appropriate weight assignment, and by d the VC Dimension of A.

Observe that also the VC Dimension of A restricted to the boolean functions is

bounded by d. We have ln(jB

A

j) � O(kd) (cf., e.g., [AB92]). Our O((`m)

2

) upper

bounds on the VC Dimension d of A entail now the following formula for the number

jB

A

j of di�erent boolean functions computed by A: jB

A

j � 2

O(k`

2

m

2

)

.

4.7 Multivariate activation. There is also more remarkable further generalization.

There is an obvious way to consider network architectures with multivariate activation

functions. If these are Pfa�an, we still get a quadratic dominant term. We will elaborate

this in a future publication.
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5 Optimality of Khovanski's 2

q(q�1)=2

bound ?

We strongly suspect that this bound can be lowered to the order q

q

(� 2

q log q

).

Obviously this would improve our upper bounds on the VC Dimension. The best lower

bound on the VC Dimension of neural networks is 
(l log l) (cf. [M93a], [M94]) for

the threshold, and 
(l

2

) (cf. [KS95]) for piecewise polynomial and sigmoidal activation

functions. There is still a large gap between 
(l

2

) lower bound and our O(l

4

) upper

bound for sigmoidal and Pfa�an activation functions. The current bound on B in our

paper comes because of Khovanski's technique of removing one variable at a time (cf.

[K91, p.13]). We are looking closely at a method for getting to a kind of Bezout's

estimate in one step, removing all variables simultaneously. �

Acknowledgement.

We thank Gregory Cherlin, Mark Jerrum and Eduardo Sontag for stimulating remarks

and discussions. In particular, the current organization of the paper was suggested by

Eduardo Sontag.

References

[AB92] M. Anthony, N. Biggs, Computational Learning Theory: An Introduction,

Cambridge University Press, 1992.

[AS93] M. Anthony, J. Shawe-Taylor, A Result of Vapnik with Applications, Discrete

Applied Math. 47 (1993), pp. 207{217.

[BT90] A. Borodin, P. Tiwari, On the Decidability of Sparse Univariate Polynomial

Interpolation, Proc. 22nd ACM STOC (1990), pp. 535{545.

[D92] L. van den Dries, Tame Topology and 0-minimal Structures, preprint, Univer-

sity of Illinois, Urbana, 1992; to appear as a book.

[DMM94] L. van den Dries, A.Macintyre and D.Marker, The Elementary Theory of

Restricted Analytic Fields with Exponentation, Annals of Mathematics 140

(1994), pp 183-205.

[GJ93] P. Goldberg and M. Jerrum, Bounding the Vapnik Chervonenkis Dimension

of Concept Classes Parametrized by Real Numbers. Machine Learning, 1994

(to appear). A preliminary version appeared in Proc. 6th ACM Workshop on

Computational Learning Theory, pp. 361{369, 1993.

[H12] G. H. Hardy, Properties of Logarithmic-Exponential Functions, Proc. London

Math. Soc. 10 (1912), pp. 54{90.

14



[H92] D. Haussler, Decision Theoretic Generalizations of the PAC Model for Neu-

ral Net and other Learning Applications, Information an Computation 100,

(1992), pp. 78{150.

[HKP91] J. Hertz, A. Krogh and R. G. Palmer, Introduction to the Theory of Neural

Computation, Addison-Wesley, 1991.

[H76] M. W. Hirsch, Di�erential Topology, Springer-Verlag, 1976.

[KM94] M. Karpinski and A. Macintyre, Polynomial Bounds for VC Dimension of

Sigmoidal Neural Networks, Proc. 27th ACM STOC (1995), pp.200-208.

[KM95] M. Karpinski and A. Macintyre, Bounding VC Dimension for Neural Met-

works: Progress and Prospects (Invited Lecture), Proc. EuroCOLT'95, Lec-

ture Notes in Arti�cial Intelligence Vol.904, Springer-Verlag, 1995, pp. 337-

341.

[KW93] M. Karpinski and T. Werther, VC Dimension and Uniform Learnability of

Sparse Polynomials and Rational Functions, SIAM J. Computing 22 (1993),

pp 1276{1285.

[K91] A. G. Khovanski, Fewnomials, American Mathematical Society, Providence,

R.I., 1991.

[KPS86] J. Knight, A. Pillay and C. Steinhorn, De�nable Sets and Ordered Structures

II, Trans. American Mathematical Society 295 (1986), pp.593-605.

[KS95] P. Koiran and E.D. Sontag, Neural Networks with Quadratic VC Dimension

to appear in Advances in Neural Information Processing Systems (NIPS '95),

1995.

[L92] M. C. Laskowski, Vapnik-Chervonenkis Classes od De�nable Sets, J.London

Math. Society 45 (1992), pp 377{384.

[M93a] W. Maass, Perspectives of Current Research about the Complexity of Learning

on Neural Nets, in: Theoretical Advances in Neural Computation and Learn-

ing, V. P. Roychowdhury, K. Y. Siu, A. Orlitsky (Editors), Kluwer Academic

Publishers, 1994, pp. 295{336.

[M93b] W. Maass, Bounds for the Computational Power and Learning Complexity of

Analog Neural Nets, Proc. 25th ACM STOC (1993), pp. 335{344.

[M94] W. Maass, Neural Nets with Superlinear VC-Dimension, Proc. of the Interna-

tional Conference on Arti�cial Neural Networks 1994 (ICANN '94), Springer

(Berlin 1994), pp. 581{584; journal version appeared in Neural Computation

6 (1994), pp. 875{882.

15



[MSS91] W. Maass, G. Schnitger and E. D. Sontag, On the Computational Power of

Sigmoidal versus Boolean Threshold Circuits, Proc. 32nd IEEE FOCS (1991),

pp. 767{776.

[MS93] A. J. Macintyre and E. D. Sontag, Finiteness results for Sigmoidal Neural

Networks, Proc. 25th ACM STOC (1993), pp.325{334.

[M64] J. Milnor, On the Betti Numbers of Real Varieties, Proc. of the American

Mathematical Society 15 (1964), pp 275{280.

[M65] J. Milnor, Topology from the Di�erentiable Viewpoint, Univ.Press, Virginia,

1965.

[S42] A. Sard, The Measure of the Critical Points of Di�erentiable Maps, Bull.

Amer. Math. Soc. 48 (1942), pp. 883{890.

[S-T94] J. Shawe-Taylor, Sample Sizes for Sigmoidal Neural Networks, Preprint, Uni-

versity of London, 1994, to appear in Proc. ACM COLT, 1995.

[S92] E. D. Sontag, Feedforward Nets for Interpolation and Classi�cation, J. Comp.

Syst. Sci. 45 (1992), pp. 20-48.

[TV94] G. Turan and F. Vatan, On the Computation of Boolean Functions by Analog

Circuits of Bounded Fan-in, Proc. 35th IEEE FOCS (1994), pp. 553{564.

[W68] H. E. Warren, Lower Bounds for Approximation by Non-linear Manifolds,

Trans. of the AMS 133 (1968), pp. 167{178.

[W94] A. J. Wilkie, Model Completeness Results of Restricted Pfa�an Functions

and the Exponential Function; to appear in Journal of the AMS, 1994.

16


