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Abstract. We design an e�cient sublinear time parallel construction

of optimal binary search trees. The e�ciency of the parallel algorithm

corresponds to its total work (the product time � processors). Our al-

gorithm works in O(n

1��

log n) time with the total work O(n

2+2�

), for

an arbitrarily small constant 0 < � �

1

2

. This is optimal within a fac-

tor n

2�

with respect to the best known sequential algorithm given by

Knuth, which needs only O(n

2

) time due to a monotonicity property of

optimal binary search trees, see [6]). It is unknown how to explore this

property in an e�cient NC construction of binary search trees. Here we

show that it can be e�ectively used in sublinear time parallel computa-

tion. Our improvement also relies on the use (in independently processed

small subcomputations) of the parallelism present in Knuth's algorithm.

The best known sublinear time algorithms for the construction of binary

search trees (as an instance of a more general problem) have O(n

3

) work

for time larger than n

3=4

, see [3] and [7]. For time

p

n these algorithms

need n

4

work, while our algorithm needs for this time only n

3

work,

thus improving the known algorithms by a linear factor. Also if time

is O(n

1��

) and � is very small our improvement is close to O(n). Such

improvement is similar to the one implied by the monotonicity property

in sequential computations (from n

3

sequential time for a more general

dynamic programming problem to n

2

time for the special case of optimal

binary search trees).

1 Introduction

One of the main advantages of parallelism is the time reduction, however this is

usually done at the expense of the total work (the product time � processors).

For many algorithmic problems the following fact can be observed when we solve
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them in parallel: the slower is the computation the better is the total work of

the algorithm. Usually from the point of view of the total work only the best

ones are algorithms using only one processor (no parallelism). Also sublinear

time algorithms have usually much better total work than NC algorithms. High

speed involves a computation in advance of a lot of redundant objects. The size

of the set of objects is an important factor. The dynamic programming gives a

typical class of problems for which all three classes of computations (sequential,

sublinear, NC) di�er substantially in the algorithmic e�ciency (in the sense of

total work).

The basic problem in this class is the construction of optimal binary search

trees. We design an algorithm especially suited for this problem. Our sublinear

time parallel algorithm is a combination of parallel and sequential processing.

The whole computation is partitioned into a sublinear number of phases, pro-

cessed successively in a sequential manner. Each of these phases is performed in a

parallel way. The number of processors is substantially reduced since each phase

is processing much smaller sets of objects. Two main features of our algorithm

which improve its total work are:

1. splitting a crucial part (here preprocessing) into a number of independent

sequential subcomputations, and apply to each of them the best known se-

quential algorithm (in our case the Knuth's algorithm);

2. using (in a parallel way) the basic property of a given problem explored in

the best sequential algorithms, in our case a monotonicity property.

The construction of optimal binary search trees (the OBST problem) is an

important algorithmic problem which has so far resisted any really e�cient NC

implementation, though Knuth gives a quadratic time sequential algorithm [6].

Only a special case (alphabetic trees) can be solved by a really e�cient (in the

sense of total work) NC algorithm, see [8]. The Knuth's algorithm uses a mono-

tonicity property of optimal binary search trees (de�ned later). It is unknown

how to use a similar property to reduce number of processors in polylogarithmic

time computations. The best upper bound in polylogarithmic time computa-

tions is close to n

6

, see [9], and is certainly too large. It applies to much larger

class of problems which are instances of the dynamic recurrences problem. This

generality is probably a cause of the ine�ciency. Optimal binary search trees

have special properties. The way to an improvement is a suitable use of these

properties.

The binary search tree problem is a special case of the more general dynamic

programming problem. In [3] and [7] (independently) it was shown that the

dynamic programming recurrences can be solved in n

1��

time with cubic total

work for � � 1=4. (A slightly worse algorithm was presented in [4]).

So these algorithms worked in n

3=4

time with O(n

3

) work. However for

smaller time the work increases, for example if time is O(

p

n) then the total

work in these algorithms was of order n

4

.

In our algorithm the work is reduced. For example if time is O(n

3=4

) then

the work done by our algorithms is n

2:5

and if time is O(

p

n) then this work is



n

3

. In the latter case we have linear factor improvement. A similar improvement

by a linear factor occurs in sequential computation of the considered problem

(compared to the general dynamic programming problem).

Statement of the OBST problem. We use terminology from [5], pages 434-435.

Let � = (K

1

; : : :K

n

) be a sequence of n weighted items (keys), which are to

be placed in a binary search tree. We are given 2n + 1 weights (probabilities):

p

1

; p

2

; : : : ; p

n

, q

0

; q

1

; : : : ; q

n

where

{ p

i

is the probability that K

i

is the search argument;

{ q

i

is the probability that the search argument lies between K

i

and K

i+1

.

We assume thatK

i

's are stored in internal nodes of the binary search tree and

in external nodes special items are stored. The i-th special item K

0

i

corresponds

to all keys which are strictly between K

i

and K

i+1

.

If T is a binary search tree with n internal nodes, where the i-th internal

node (in in-order) is labeled K

i

, and the external nodes correspond to sequence

of special keys K

0

i

's, then de�ne the cost of T as follows:

cost(T ) =

n

X

i=1

p

i

� `(K

i

) +

n

X

i=0

q

i

� `(K

0

i

): (1)

where `(K) is the level of K in T , de�ned to be the distance (number of internal

nodes on the path) from the root. The OBST problem is then the problem of

�nding that tree T of minimum cost for a given sequence of items.

Our main result is:

Theorem1. An optimal binary search tree can be constructed in O(n

1��

= log(n))

time with O(n

2+2�

) total work, where � > 0 is an aritrarily small constant

0 < � �

1

2

.

Denote by obst(i; j) an optimal binary tree whose keys correspond to the

interval int(i; j) = [K

i+1

: : :K

j

] and denote by cost(i; j) the cost of such tree.

Let

w(i; j) = p

i+1

+ : : :+ p

j

+ q

i

+ : : :+ q

j

.

The costs obey the following dynamic programming recurrences for 0 � i <

j � n:

cost(i; j) = w(i; j) + minfcost(i; k � 1) + cost(k; j) : i < k � j g: (2)

Denote the smallest value of k which minimizes the above equation by CUT (i;

j) with boundary values cost(i; i) + 0. This is the �rst point giving an optimal

decomposition of obst(i; j) into two smaller (son) subtrees. Optimal binary search

trees have the following crucial property (proved in [6]):

monotonicity property:

i � i

0

� j � j

0

=) CUT (i; j) � CUT (i

0

; j

0

).



Sequentially the values of cost(i; j) are computed by tabulating them in an

array. Such tabulation of costs of smaller subproblems is the basis of the dy-

namic programming technique. We use the same name cost for this array and

call it the dynamic programming table. It can be computed in O(n

3

) time, by

procesing diagonal after diagonal, starting with the central diagonal, see [1]. In

case of optimal binary search trees this can be reduced to O(n

2

) using additional

tabulated values of the cuts in table CUT (see [10]).

Once the table cost(i; j) is computed then the construction of an optimal

tree can be done very e�ciently in parallel. The following (easy to see) result

was also observed in [2]:

Lemma2. If the table of costs is computed then an optimal tree can be con-

structed in O(logn) time with n

2

= log(n) processors.

The structure of our algorithm is to mimic the sequential computation, how-

ever instead of computing one diagonal after the other we advance in larger steps.

Let � = n

�

. Divide the upper (the only relevant) part of the dynamic program-

ming table into n=� strips S

1

; : : : ; S

n=�

, each one consisting of � consecutive

diagonals, see Figure 1.
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Fig. 1. The dynamic programming table and its partition into the

strips.

In one phase we compute in logarithmic time the part of the table corre-

sponding to the k-th strip S

k

. In order to do it we need some preprocessing.



This involves so called special subtrees, de�ned later. The whole structure of the

algorithms is:

Algorithm

1. Preprocessing:

construct all optimal special subtrees;

2. for k = 1 to n=� do fin a sequential wayg

k-th phase: compute in parallel the strip S

k

;

2 Preprocessing: Computing Costs of the Special

Subtrees.

The crucial point in the preprocessing is to explore parallelism which is present

in the Knuth's algorithm: elements on the same diagonal of the table cost can be

computed independently (in parallel). The total work of the Knuth's algorithm

is proportional to the number of computed objects.

We explain shortly how the time can be reduced to n�log(n) without changing

the total work. The diagonals of the dynamic programming table are computed

one after the other exactly as they are computed in the Knuth's algorithm.

In the computation of a given value by the formula (2) the minimization is

restricted to the range of k's bounded from left and right by the cut values of

the neighbouring entries (due to monotonicity). This guarantees that the total

work for a �xed diagonal is linear (by the same argument as in [6]). All values on

a �xed diagonal are computed simultaneously. Additionally the table of cuts is

computed. We refer the reader to [6] for details. This implies the following fact.

Lemma3. The dynamic programming table for the OBST problem can be com-

puted in n � logn time with n= log(n) processors.

Let � = (K

1

; : : :K

n

) be an initial sequence of n keys. For each l < r denote by

�

l;r

the sequence of keysK

l��

; : : : ;K

l

;K

r

; : : : ;K

r+�

with the weights forK

i

's as

before, however the weights of intervals (of special keys corresponding to intervals

between consecutive regular keys) are q

l���1

; : : : ; q

l�1

; w(l; r); q

r+1

; : : :q

r+�

. A

special binary subtree with respect to (l; r) is any optimal binary subtree for any

subinterval of �

l;r

of size at most 2 ��+2. An example of such tree is illustrated

in Figure 2.

In other words special subtrees result from the subtrees for the original prob-

lem by cutting a large gap. The remaining part is bounded by 2�, the distance

at most � to the left and to the right of the gap. Each gap is a large subtree

removed from an original tree and replaced by the weight of removed items. An

example of such subtree is also given in Figure 3 (the tree T3).

Denote by cost

l;r

(i; j) the cost of optimal special subtree with respect to

(l; r), whose �rst key is K

i+1

and the last is K

j

.

There are n(n� 1)=2 pairs l; r (potential gaps) and � 2�

2

potential subin-

tervals of each sequence �

l;r

. We compute the cost of a single optimal subtree
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Fig. 2. An example of a special subtree with respect to (l; r) =

(2,6). The keys are in the circles and the intervals between the

keys correspond to square nodes. The tree covers interval (1; 7)

with the gap between keys numbered l = 2, r = 6.

for each small subinterval of each sequence �

l;r

. Altogether there are n

2+2��

such

special subtrees. The preprocessing consists in computing costs of all optimal

special subtrees. The best work (proportional to the total number of such trees)

is achieved due to the Knuth's algorithm.

Lemma4. The values cost

l;r

(i; j) of the costs of all optimal special subtrees can

be computed in n

�

� log(n) time using n

2+�

= log(n) processors.

Proof. We can compute costs of all optimal special subtrees for a �xed sequence

�

l;r

in n

�

log(n) time with n

�

= log(n) proceessors by the algorithm from Lemma

2.1. We apply the algorithm from Lemma 2.1 to all special sequences �

l;r

. For

�xed (l; r) the size of the problem is n

0

= O(�) and the corresponding pro-

gramming table contains O(�

2

) entries. Lemma 2.1 gives a computation in time

n

0

� log(n

0

) with O(n

0

= log(n

0

)) processors for �xed (l; r). Summing over all pos-

sible pairs (l; r) (there is a quadrtaic number of such pairs) we have the required

complexity. This completes the proof.

3 Implementation of a Single Phase of the Algorithm.

Let �

k

be the set of all trees obst(i; j) for (i; j) 2 S

k

. Assume we have computed

the part of the dynamic programming table corresponding to strips S

1

; : : : ; S

k

.

This means that we know the costs of all optimal trees in �

k

0

for k

0

� k and the

CUT{values.

We describe how to compute the costs in the strip S

k+1

. This is the (k+1)-st

phase of the algorithm.



Each tree in �

k+1

can be decomposed here in a way illustrated in Figure 3.

T1, T2 are in �

1

[ : : : [ �

k

and T3 is a special subtree resulting by replacing

the interval (l,r) by a single external node of weight w(l; r). It is easy to see that

T3 is an optimal special subtree, its cost is already precomputed e�ciently due

to lemma 2.2. The costs of subtrees T1 and T2 are also already computed (the

costs are in preceeding strips).
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Fig. 3. A decomposition of the subtree in �

k+1

. The subtrees T1,

T2 rooted at v1, v2 are in �

1

[�

2

[ :::�

k

. A special tree T3 results

by replacing the interval I by a single leaf whose weight equals

the total weight w(l; r) of I.

Let us �x k. For (i; j) 2 S

k+1

de�ne cost

0

(i; j) as follows. If there is an optimal

tree over the interval (i; j) such that both subtrees of its root v cover intervals

in S

k

then cost

0

(i; j) = cost(i; j), the tree rooted at v in Figure 3 is of the above

type. Otherwise let cost

0

(i; j) be equal a cost of any binary search tree covering

the interval (i,j).

Lemma5. (Applying monotonicity property)

Assume the costs in all strips S

1

[ : : :[ S

k

has been computed. Then the values

cost

0

(i; j) for all (i; j) 2 S

k+1

can be computed in the (k + 1)-st phase in logn

time with O(n

1+2��

) total.

Proof. Fix a p-th diagonal D of the strip S

k+1

, see Figure 4. Divide D into

� subsequences D

q

, each one consists of points on D such that the distance

of each consecutive points is �. We refer to Figure 4, where such subsequence

consisting of points x

1

; x

2

; : : : is shown. Consider the subsequence y

1

; y

2

; : : : of

the last diagonal of the preceeding strip. Assume we have computed the costs



for this points as well as their values CUT (y

q

)'s. Then due to the monotonicity

property we know that:

CUT (y

1

) � CUT (x

1

) � CUT (y

2

) � CUT (x

2

) � CUT (y

3

) � CUT (x

3

) : : : :

Hence to compute the values cost

0

(x

1

) we apply formula (2) and we have only to

search in an interval of size CUT (y

2

)�CUT (y

1

). Similarly the value of cost

0

(x

2

)

is computed by minimizing over an interval of size CUT (y

3

)�CUT (y

2

) etc. Al-

together we need O(n) processors for a single subsequence D

q

. The minimization

is done in logarithmic time. We have � subsequences D

q

in a �xed p-th diagonal

of next strip. There are � values of p. Altogether n �� �� processors are enough,

which is O(n

1+2��

). This complete the proof.
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Fig. 4. Using information about cuts in Lemma

3.1.

The costs of points (i; j) 2 S

k+1

can be computed by the formula:

(*) cost(i; j) = minfcost

l;r

(i; j) + cost

0

(l; r) : (i; j) � (l; r) 2 S

k+1

g.

Then the successive phase is implemented as follows:

The (k+1)-th phase:

1. compute the values cost

0

(i; j) for all (i; j) 2 S

k+1

;

2. compute in parallel the values cost(i; j) for all

(i; j) 2 S

k+1

using the formula (�).

Step 1 can be done in logarithmic time with n

1+2��

processors due to Lemma

3.1.

The total work done in Step 2 can be estimated as follows. There are n

1+�

points (i; j) 2 S

k+1

, for each of them we have to perform minimization (accord-

ing to the formula (*)) over all (l; r) satisfying:



(i; j) � (l; r) 2 S

k+1

.

There are n

2��

such pairs (l; r) for a �xed (i; j). Altogether we need the same num-

ber of operations as the number of considered 4-tuples (i; j; l; r). Hence O(n

1+3��

)

total work in a single phase is enough.

There are n

1��

phases. Each of them needs O(n

1+3��

) work. It gives together

the total work of order n

2+2��

as claimed in Theorem 1.1. This completes the

proof of our main result.

Conclusion.

We have presented a sublinear time algorithm which is quite close to an optimal

one (with respect to the best sequential algorithm). A natural open problem is

to �nd a (sublinear time) algorithm working in n

1��

time, for some � > 0, whose

total work is quadratic. Another important problem is the design of an e�cient

NC algorithm for the general OBST problem. Even an improvement O(n

6��

) in

the number of processors would be of considerable interest (cf., also, [2]).
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