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Abstract

We introduce a new method of proving lower
bounds on the depth of algebraic decision trees of de-
gree d and apply it to prove a lower bound Q(log V) for
testing membership to an n-dimensional convex poly-
hedron having N faces of all dimensions, provided that
N > (nd)™"™). This weakens considerably the restric-
tion on N previously imposed by the authors in [GKV
94] and opens a possibility to apply the bound to some
naturally appearing polyhedra.

Introduction

We study the problem of deciding membership to a
convex polyhedron. The problem of testing member-
ship to a semialgebraic set ¥ was considered by many
authors (see, e.g., [B 83], [B 92], [BKL 92], [BL 92],
[BLY 92], [MH 85], [GKV 94], [Y 92], [GK 93], [GK
94], [Y 93], [YR 80] and the references there). We
consider a problem of testing membership to a convex
polyhedron P in n-dimensional space R". Let P have
N faces of all the dimensions. In [MH 85] it was shown,
in particular, that for this problem O(log N)no(l) up-
per bound is valid for the depth of linear decision trees,
in [YR 80] a lower bound Q(log N) was obtained. A
similar question was open for algebraic decision trees.
In [GKV 94] we have proved a lower bound Q(log N)
for the depth of algebraic decision trees testing mem-
bership to P, provided that N > (dn)ﬂ(”2). In the
present paper we weaken the latter assumption to
N > (dn)®™). In this new form the bound looks
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plausible to be applicable to polyhedra given by 29
linear constraints (like in “knapsack” problem), thus
having 20(n*) faces. In the present note we apply the
obtained lower bound to a concrete class of polyhedra
given by Q(n?) linear constraints and with n{™) faces.

In [GV 94] the lower bound 2(1/log N') was proved
for the Pfaffian computation tree model. This model
uses at gates Pfaffian functions, the latter include all
major elementary transcendental and algebraic func-
tions.

Several topological methods were introduced for ob-
taining lower bounds for the complexity of testing
membership to X by linear decision trees, algebraic
decision trees, algebraic computation trees (see the
definitions, e.g., [B 83]).

In [B 83] a lower bound Q(log ') was proved for
the most powerful among the considered in this area
computational models, namely algebraic computation
trees, where C'is the number of connected components
of ¥ or of the complement of X. Later, in [BLY 92],
a lower bound Q(log x) for linear decision trees was
proved, where x is Euler characteristic of X, in [Y
92] this lower bound was extended to algebraic com-
putation trees. A stronger lower bound Q(log B) was
proved later in [BL 92], [B 92] for linear decision trees,
where B is the sum of Betti numbers of ¥ (obviously,
C,x < B). In the recent paper [Y 94] the latter lower
bound was extended to the algebraic decision trees.

All the mentioned topological tools fail when X is
a convex polyhedron, because B = 1 in this situation.
The same is true for the method developed in [BLY 92]
for linear decision trees, based on the minimal number
of convex polyhedra onto which ¥ can be partitioned.

To handle the case of a convex polyhedron, we in-
troduce in Sections 1, 3 another approach which differs
drastically from [GKV 94]. Let W be a semialgebraic
set accepted by a branch of an algebraic decision tree.
In Section 3 we make an “infinitesimal perturbation”
of W which transforms this set into a smooth hyper-
surface. Then we describe the semialgebraic subset of
all the points of the hypersurface in which all its princi-
pal curvatures are “infinitely large” (the set Kg in Sec-



tion 3). We also construct a more general set X; (for
each 0 < ¢ < n— 1) of the points with infinitely large
curvatures in the shifts of a fixed (n — ¢)-dimensional
plane. Section 1 provides a short system of inequali-
ties for determining K;. It is done by developing an
explicit symbolic calculis for principal curvatures.

In Section 2 we introduce some necessary notions
concerning infinitesimals and in Section 3 apply them
to define the “standard part” K; = st(K;) C R". We
show (Corollary to Lemma 3) that to obtain the re-
quired bound for the number of i-faces P; of P such
that dim(P; N W) = i it is sufficient to estimate the
number of faces P; with dim(P; N K;) = ¢. In Sec-
tion 4 we reduce the latter bound to an estimate of
the number of local maxima of a generic linear func-
tion L on K; with the help of a Whitney stratification
of K;. To estimate these local maxima we introduce
in Section 5 another infinitesimal perturbation of K;
and obtain a new smooth hypersurface. At this point
a difficulty arises due to the fact that K; (and there-
fore, the related smooth hypersurface) are defined by
systems of inequalities involving algebraic functions,
rather than polynomials, because in the expressions
for curvatures (in Section 1) square roots of polyno-
mials appear. We represent the set of local maxima
of L on the smooth hypersurface by a formula of the
first-order theory of real closed fields with merely ex-
istential quantifiers and quantifier-free part ®. We es-
timate in Section b (invoking [Mi 64] in a usual way)
the number of the connected components of the semi-
algebraic set defined by ®.

In Section 6 we describe a particular class of poly-
hedra (dual to cyclic polyhedra [MS 71]) having large
numbers of facets, for which Theorem 1 provides a
nontrivial lower bound.

Now let us formulate precisely the main result. We
consider algebraic decision trees of a fixed degree d
(see, e.g., [B 83], [Y 93]). Suppose that such a tree
T, of the depth £k, tests a membership to a convex
polyhedron P C R”. Denote by N the number of
faces of P of all dimensions from zero to n— 1. In this
paper we agree that a face is “open”, i.e., does not
contain faces of smaller dimensions.

Theorem 1.

k> Q(log N),

provided that N > (dn)®” for a suitable ¢ > 0.

Let us fix a branch of 7" which returns “yes”. De-
note by f; € R[Xy,...,X,], 1 < i < k the polyno-
mials of degrees deg(f;) < d, attached to the vertices
of T along the fixed branch. Without loss of gener-
ality, we can assume that the corresponding signs of

polynomials along the branch are

==, =0, fr,41>0,...,fr >0.
Then the (accepted) semialgebraic set
W={fi==F=0, fru41>0,..., fr >0}
lies in P.

Our main technical tool is the following theorem.

Theorem 2. The number of faces P’ of P such that
dim(P") = dim(P’ N W) is bounded from above by
(knd)O™).

Let us deduce Theorem 1 from Theorem 2.

For each face P’ of P there exists at least one
branch of the tree T" with the output “yes” and having
an accepted set Wi C R” such that

dim(¥W; N P’y = dim(P").

Since there are at most 3% different branches of T,
the inequality

N < 3% (knd)°™)

follows from Theorem 2. This inequality and the as-
sumption N > (dn)** (for a suitable ¢) imply k& >
Q(log N'), which proves Theorem 1.

Note that in the case k1 = 0 for an open set W and
each face P’ of P we have P’ "W = (. Thus in what
follows we can suppose that k1 > 1.

1 Computer algebra for curvatures

Let a polynomial FF € R[Xy,...,X,] with
deg(F) < d. Assume that at a point x € {F = 0} C

R™ the gradient grad, (F) = (;—)2, ce %) (z) # 0.
Then, according to the implicit function theorem, the
real algebraic variety {F' = 0} C R” is a smooth hy-
persurface in a neighborhood of .

Fix a point € {F = 0}. Consider a linear trans-
formation X — A, X + x, where A, is an arbitrary

orthogonal matrix such that

grad, (F)

:Ax = = <
U A = rad ()]

is the normalized gradient and ey, ..., e, is the co-
ordinate basis at the origin. Then the linear hull of
vectors u; = Ae; +x, 2 < j < n is the tangent space
T, to {F = 0} at . Denote by Uy,...,U, the co-
ordinate variables in the basis uy,...,u,. By the im-
plicit function theorem, there exists a smooth function



H;(Us,...,Uy) defined in a neighborhood of # on Tj
such that {F' = 0} = {U; = Hyz(Ua,...,Uy)} in this
neighborhood.

Let grad, (F) = (&1,...,&,) with &;, # 0. Take
any permutation m;, of {1,...,n} such that m; (1) =
ig. Denote (ai1,...,an) = (&, (1), Qr, (n)) (thus
a1¢0)andﬁi:\/m, 1 <i<n. Obvi-
ously 8; > 0 and 8, = ||grad, (F)]].

As Ay one can take the following product of (n—1)
orthogonal matrices:

ﬁn— =1 (s 2%%
—ﬁnfk 0 0 = 0 0
0 1 0 0 0 0
0 0 1 5 0 0 0
(a3 n—k—1
0<k<n—2 _ﬁo * 8 8 Ba—r 2 8
0 0 --- 0 0 |
(in kth matrix of this product the element % oc-
curs at the positions (1,1) and (n — k,n — k)).
Denote Fi(Uy,...,Un) = F(AL(Uy,...,Upn) + z).

Differentiating this function twice and taking into the
account that Fp(Hyz(Us,...,Uy),Ua,...,U,) =01ina
neighborhood of ¢ in T, we get

9°F, OH, OF, 0°H, o°F,
ouLoU; oU; — oUy oU;0U; — 90U 0U;
for 2 <, j <n.
Since on
xr _ d
AU; | (Us,...,U)=0 0 an
OF,
it _ (F
AUy (U1, U)=0 llgrad,, (F)]| # 0,

evaluating the equality (1) at = (i.e., substituting
(Uy,...,Uy) = 0) we obtain (cf. [Mi 64]):

9% H,
(8UZ»6U]» ) ‘ (Us,...,U,)=0

i T,
Ulerads (P (5757 ) | e @)
g j 1,5Un)=

Introduce the symmetric (n — 1) x (n — 1)-matrix

- (a7 |
e 6U¢6U]' (UQ,...,U,L):O.
Its eigenvalues As, ..., A, belong to R and are called

the principal curvatures of the hypersurface {F = 0}
at # [Th 77].

Now we describe symbolically the set of all points
z with all principal curvatures greater than some pa-
rameter K.

Denote by x(Z) the characteristic polynomial of the
matrix H;. The roots of y are exactly As,... A,. Due
to Sturm theorem, every As, ..., A, is greater than &
if and only if x;(k)x14+1(k) <0, 0 <1 < n — 2, where
Xo = X, X1 = xb and x2,...,Xn—1 is the polyno-
mial remainder sequence of xo, x1 [Lo 82]. Obviously
degy(x1)=n—1-1.

Observe that every element of the matrix A, can be

represented as a fraction v1 /v2 where v2 = g7* - - gin,
v1 > 0,...,v, > 0 are integers and
Y1 = F(ﬁl""’ﬁﬂ—l’Xlﬁ""Xﬂ,)

is a polynomial in

(X1, Xn), e  Bacr(Xs

withT € R[Z1,...,Zn-1, X1, ..., Xn]. Moreover, v+
o4 v, < 2(n—1) and deg(T') < d(n —1). Hence all
elements of A, are algebraic functions in Xq,..., X,
of quadratic-irrational type. By the degree of such
quadratic-irrational function we mean

aXn)aXla"'aXn

max{deg(T), v1 + -+ vp}.

Since an inequality for fraction one could rewrite as a
system of inequalities for its numerator and denomi-
nator, in what follows we deal with more special al-
gebraic functions in Xy,..., X,,, namely of the type
Y1

Formula (2) and Habicht’s theorem [Lo 82] imply
that deg(x;) < (nd)?™).

We summarize a description of the set of all points
with large principal curvatures in the following lemma.

Lemma 1. Fix 1 < ¢g < n. The set of all points
z € {F = 0} such that grad,(F) = (&1,...,4,)
has &;, # 0 and all principal curvatures of the hy-
persurface {F = 0} at x are greater than x can be
represented as {F' = 0, g1 > 0,...,9, > 0}. Here
g1 = o??u,gz ..., gn are polynomials in k of degrees
at most 2n with coefficients being quadratic-irrational
algebraic functions (see above) of degrees less than

(nd)o(l).

Remark. Observe that a set given by a system of
inequalities involving real algebraic functions is semi-
algebraic. Hence the set introduced in Lemma 1 is
semialgebraic.



2 Calculis with infinitesimals

The definitions below concerning infinitesimals fol-
low [GV 88].

Let F be an arbitrary real closed field (see, e.g.,
[L. 65]) and an element ¢ be infinitesimal relative to
elements of F. The latter means that for any posi-
tive element @ € F inequalities 0 < ¢ < a are valid
in the ordered field F(¢). Obviously, the element ¢ is
transcendental over F. For an ordered field F/ we de-
note by F’ its (unique up to isomorphism) real closure,
preserving the order on F’ [L 65].

Let us remind some other well-known statements
concerning real closed fields. A Puiseux (formal
power-fractional) series over F is series of the kind

b= Z aiEV’/u,

i>0

where 0 # a; € F for all ¢ > 0, integers vy < v1 <

. increase and the natural number pu > 1. The
field F((¢'/°°)) consisting of all Puiseux series (ap-
pended by zero) is real closed, hence F((¢'/*)) D
F(c) D F(¢). Besides the field F[\/=1]((¢'/*)) is al-
gebraically closed.

If vo < 0, then the element b € F((c'/*°)) is
infinitely large. If v > 0, then b is infinitesi-
mal relative to elements of the field F. A vector
(bi,...,by) € (F((/%)))" is called F-finite if each
coordinate b;, 1 < ¢ < n is not infinitely large relative
to elements of F.

For any F-finite element b € F((!/°)) its standard
part st(b) is definable, namely st(b) = ag in the case
vy = 0 and st(b) = 0 if vy > 0. For any F-finite
vector (by,...,by) € ( (et )n its standard part
is defined by the equahty

st(by, .. ba) = (st(b1), ..., st(bn)).

Foraset W C (F((El/oo)))n consisting of only F-finite
vectors we define

st(W) = {st(w) :

The following “transfer principle” is true [T 51]. If
F’, F" are real closed fields with F/ C F" and ® is
a closed (without free variables) formula of the first
order theory of the field F/, then ® is true over F’ if
and only if P is true over F”.

In the sequel we consider infinitesimals €1,¢5, ...
such that £;41 is infinitesimal relative to the real clo-
sure R; of the field R(ey,...,&;) for each ¢ > 0. We
assume that Ry = R.

w € W and w is F—finite}.

For an R,;-finite element b € R; 41 its standard part
(relative to R;) denote by st;(b) € R;. For any b €
R;, j > i we define st;(b) = st;(stiy1(...st;_1(b) .. ).
For a semialgebraic set V' C F7 defined by a certain
formula @ of the first order theory of the field F; and
for a real closed F5 O F; we define the completion
V(F2) F7 of V as the semialgebraic set given in F%
by the same formula ® (we say that V(F2) is defined
over F1). In a similar way one can define completions
of polynomials and algebraic functions.

Note that one can apply the transfer principle also
to a formula containing quadratic irrational functions
since any such formula can be replaced by an equiv-
alent formula of first-order theory. This can be done
with replacing each occurrence of a square root /¢ by
new variable 7 adding the quantifier prefix 37 and
inequalities 7 > 0, 72 = .

Lemma 2 (cf. Lemma 4a) in [GV 88]). Let F be a
smooth algebraic function defined on an open semial-
gebraic set U C R} and determined by a polynomial
with coeflicients from R;. Then €;41 is not a critical
value of F' (i.e., grad, () does not vanish at any point

yE{F =i} NURHD),

To prove Lemma 2 note that Sard’s theorem [Hi 76]
and the transfer principle imply the finiteness of the
set of all critical values of F' in U(Ri+1) moreover this
set lies in R;.

3 Curved points

In what follows we assume w.l.o.g. that polyhedron
P is compact, a reduction of a general case to this one
is described in Section 2 of [GKV 94].

For an m-plane @ C R} and a point € R} denote
by Q(z) the m-plane collinear to @ and containing x.

Two planes @y, )2 of arbitrary dimensions are
called transversal if

dim(Q1(0) N Q2(0)) =
max{0, dim(Ql(O)) + dim(Qz(O)) —n}.

For every 0 < ¢ < n choose an (n — ¢)-plane II,,_;
(defined over R) transversal to any facet of the poly-
hedron P.

Denote f = f? —|—~~~—|—f,?1.

Fix 0 < i < n and denote by f(*) the restriction of
fonI,_;(x) (for z € R;L)

Definition. A pointy € {f = e3} is called i-curved
ifgrady(f(y) —e3) # 0, all principal curvatures of the



variety {f¥) = g5} C M,_;(y) at y are greater than
62_1 and fk1+1(y) > €9, ., fk(y) > €9.

Remark. We fix an orthogonal basis in II,_;(0)
with coordinates belonging to R. Then in Defini-
tion we consider curvatures in II,_;(y) with respect
to the basis obtained from the fixed one by the shift
Y —Y+y.

One can consider this definition as a kind of “local-
ization” of the key concept of an angle point from [GV

94].

Denote the set of all i-curved points by X; C Rj.
Observe that K; is semialgebraic due to the remark at
the end of Section 1. Denote K; = sto(K;) C R™, this
set is also semialgebraic by Lemma 5.1 from [RV 94].

Lemma 3. Let for an i-facet P; of P the dimension

dim(WnP)=1i Then WNF;, C K.

Corollary. Ifdim(WNP;) =i then dim(K;NFP;) = i.

This Corollary implies that in order to prove The-
orem 2 it 1s sufficient to bound the number of i-facets
P; for which dim(K; N P;) = i.

Lemma 4. For any smooth point z € K; with the
dimension dim,(K;) > i + 1 the tangent plane T, to
K; at z is not transversal to 1l,,_;.

Remark. In the particular case ¢ = 0 Lemma 4
states that Ky consists of a finite number of points.

4 Faces of P and Whitney stratifica-
tion of K;

Denote by B (r) the open ball in R} centered at »
and of the radius r.

For a subset . C R} denote by ¢l(F) its closure in
the topology with the base of all open balls. Denote
by OF the boundary

{ye R} : forany0<reR; 0 # By (r)NE # By(r)}.

Recall that K, as any semialgebraic set, admits a
Whitney stratification (see, e.g., [GM 88]). Namely,
K; can be represented as a disjoint union K; = Uj S;
of a finite number of semialgebraic sets, called strata,
which are smooth manifolds and such that:

(1) (frontier condition) S
if and only if S;, C (S}, );

s £ 0

(2) (Whitney condition A) Let S;, C ¢l(S;,) and a
sequence of points x; € S, tends to a point y € S},
when [ — oco. Assume that the sequence of tangent
planes T3, to S;, at points z; tends to a certain plane
T. Then T, C T where T, is a tangent plane to Sj,
at y.

Let for an i-face P; of P the dimen-
sion dim(K; N P;) = i. Assume that S, is a con-
nected component of a stratum S; of K; such that
dim(cl(S}) N K; N P;) = i. Then S} C P;.

Lemma 5.

Denote ¢ = fr,41 - fe. Choose 0 < p € R satis-
fying the following properties:

(a) g is less than the absolute values of all critical
values of the restrictions of g on i-faces P; (note that
Sard’s theorem implies the finiteness of the number of
all critical values, moreover they all belong to R);

(b) for any P; such that dim(K; N P;) = ¢ the dimen-
sion

dim({g = p}Nel(S;)NK;NP;) <i—2

for every connected component S]’» of a stratum .S;
such that S]’» is not contained in P; (observe that due
to Lemma 5 there exists at most finite number of p
violating this condition).

For any i-face P; denote by P; the i-plane contain-
ing P;. Denote K/ = K; N {g = p}.

From the properties (a), (b) using Lemma 3 we de-
duce the following lemma.

Lemma 6. Let for an i-face P; of P the dimension

dim(W N P;) = i. The following equality of the vari-

eties holds:
KinP={g=p} 0 {ft,41>0,..., fi >0} N R,

and, moreover, this variety is a nonempty smooth
compact hypersurface in P;. Besides,

dim((cl(K]\ P)) N (K] N P)) <i—2.

The next important step is the proof of the follow-
ing lemma.

Lemma 7. The number of i-faces P; such that KN

P; is a nonempty smooth hypersurface in P; and

dim((cl(K/\ )N (K/NP)) <i—2,



does not exceed (nkd)o(”).

Theorem 2 immediately follows from Lemmas 6 and
7. A sketch of a proof of Lemma 7 is given in the next
section.

Lemma 8.

Ki =sto(Ki N {lg —pl <e1}).

5 Extremal points of a linear function
on K]

Take a generic linear function L = 11 X7 + -+ +
YnXpn with coefficients 1, ...,v, € R. Fix F; satisfy-
ing the conditions of Lemma 8 and denote by L(F%) the
restriction of I, on P;. Then L(Fi) attains its maximal
value, say, Hép’) on the compact set K/ N FP; at a cer-
tain point v. Denote by V a connected component of
K!N P; which contains v. There exists 0 < r € R such
that By (r) N K! = By(r) NV due to the property (b)
(see Section 4). Moreover, there exists 0 < ((F) € R
such that the values of L on the set K/ N0B,(r/2) are
less than 8y — ¢P). This implies, using Lemma 8, the
following lemma.

Lemma 9. The linear form L attains its maximal
value 0(F) on the set

cl(Kin{lg — ul < e1}) N By(r/2)

(at a point, say, w) and the values of L on the set
AK: 1 {lg — 1l < £13) OBy (/2)

are less than sto(0F) — ((F)). Moreover, sto(0(F)) =

Hép’) and sto(w) = v € P;.

For a point y let

grady(f(y) —e3) = (U1, ..., Upn—;)

(cf. Definition). The set X; N {|g — p| < €1} of the
points y = (y1,...,yn) can be represented as a union
of n — i semialgebraic sets of the form

Ul = {f —e5 = 0,uf, >0,

p1>0a"'ap8>0}CRg’ 1§10§TL—Z

for some algebraic functions pi1,...,ps of the
quadratic-irrational type introduced in Section 1, i.e.,

polynomials (with coefficients from Ra) in y1,...,yn
and in
2 2 2
Uiy Ui, + umD(Z) )
2 2 2
N ACHA —|—umu(2) + "'+um0(n—i) (3)

(see Lemma 1). Here m;, is a permutation of
{1,2,...,n— i} such that m;; (1) = iy (cf. Section 1).
Denote

q=(e8 — (f —e3)*)(uf, —ca)(p1 —€a) -+ (ps — €a).

Introduce the semialgebraic set
Us? = {3 > (f ), i, > e,

p1L>€a,...,Ps > 1) CRY

and

Ut = {g = es} N (U™ ") C R

The next lemma follows from Lemmas 1, 4 in [GV

92].
Lemma 10.

sta(U0)) = cl(U)).

Lemma 11. For a certain 1 < ig < n — ¢ the lin-
ear form L attains its maximal value HEP’) on the set
Uto) N By(r/2) at a certain point wy, and the val-
ues of L on the set U N OB, (r/2) are less than
sto(ﬁgp’)) — ¢®)_ Moreover, stg(ﬁgp’)) = 0F) and
sto(wy) = v € B,

Lemma 11 follows from Lemmas 9, 10. For a proof,
take 1 < iy < n — 7 such that the corresponding point
w (see Lemma 9) lies in cl(U0)).

Corollary The number of i-faces P; satisfying the
conditions of Lemma 7 does not exceed the number of
local maxima of L on the set

U a@t).

1<io<n—i

Observe that in the open semialgebraic set {uf >
0} all the square roots (3) are positive. Therefore
all algebraic functions pi,...,ps occurring in Ué“))
are smooth, hence ¢ is smooth as well. Because of
Lemma 2 g 1s not a critical value of ¢ in the set



{ui, > 0}. Then the implicit function theorem im-
plies the following lemma.

Lemma 12. %) is a smooth hypersurface, namely
for each point x € U0 there is a neighborhood of x
in which U"°) is defined by the equation q = e¢ and
the gradient grad,(q — ) does not vanish.

Finally, let us prove the following lemma.

Lemma 13. The number v of local maxima of L on

U') does not exceed (nkd)o(”).

Together with Corollary to Lemma 11 this implies
Lemma 7 (and hence Theorem 2).

Because of Lemma 12, v does not exceed the num-
ber of connected components of the semialgebraic set

dq dq
i g

1<i<j<n}CRE.

Replace each occurrence of the square root

2 2 2
Ui F Uy () T U ()

1 < m < n — 14 in ¢ by a new variable

Zm-  Denote the resulting polynomial by @ €

Rs[X1,..., X0, Z1, ..., Zm] (cf. Section 1).
Introduce the semialgebraic set
Q Q o
={0=Q—cs =7 — 1< <n,
M={0=0Q ¢ gy, ligy, LSi<isn

Ty >0, an:ufu—l—uil (2)+~~~—|—u2

ﬂ—lu(m)’
1<m<n—i}CRI
Consider the linear projection
P Rgn_l - Rga
p(Xl,...,Xn,Zl,...,Zm)I(Xl,...,Xn).

Then p(M) = M. Hence the number of connected
components of M is less than or equal to the number
of connected components of M.

Observe that the degrees of rational functions oc-
curring in M can be bounded from above by (knd)°(")
due to Lemma 1. Therefore, the number of connected
components of M does not exceed (knd)°™) by [Mi
64].

This completes the proof of Lemma 13 and thereby
Theorems 2 and 1.

6 Lower bounds for concrete polyhe-
dra

In this section we give an application of the lower
bound from Theorem 1 to a concrete class of poly-
hedra. We follow the construction of cyclic polyhe-
dra (see [MS T71]), used in the analysis of the simplex
method.

Take any m > (n?) points in R"™ of the form
(t]',t]z,...,t?) for pairwise distinct ¢;, 1 < j < m.
Consider the convex hull of these points and denote
by P, m» C R” its dual polyhedron [MS 71]. Then
Py m has m faces of the highest dimension n — 1 and
the number of faces of all dimensions

L)

(see [MS 71]).

Therefore, Theorem 1 implies that the complex-
ity of testing membership to P, ,, is bounded by
Q(log N) > Q(nlogm).

We would like to mention that Section 4 of [GKV
94] provides a weaker bound Q(logm) even for alge-
braic computation trees.
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