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Abstract

We introduce a new powerful method for proving lower bounds on random-

ized and deterministic analytic decision trees, and give direct applications of

our results towards some concrete geometric problems. We design also ran-

domized algebraic decision trees for recognizing the positive octant in R

n

or

computing MAX in R

n+1

in depth log

0(1)

n. Both problems are known to have

linear lower lower bounds for the depth of any deterministic analytic decision

tree recognizing them. The main new (and unifying) proof idea of the paper is

in the reduction technique of the signs of testing functions in a decision tree to

the signs of their leading terms at the specially chosen points. This allows us to

reduce the complexity of a decision tree to the complexity of a certain boolean

circuit.
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1 Introduction

The problem of obtaining complexity lower bounds on algebraic decision trees has a

long history (a recent overview of the known methods can be found, e.g., in [GKV95];

see also [R72], [B83], [M85b], [MPR94], [Y92], [Y94], [GV96], [GKMS96]). However

almost all known results (with the exception of [R72], [MPR94], and [GV96]) concern

algebraic decision trees, i.e. decision trees with the gate functions being polynomials.

In this paper we introduce a new method for proving lower bounds for a stronger

computational model of (deterministic and randomized) analytical decision trees, i.e.

the trees with the gate functions being analytic (cf. also [R72]).

Let us brie
y mention the main results of the paper.

In subsection 3.1, after describing the general method we give a short proof for

Rabin's ([R72]) lower bound n (closing also a gap in his original proof for the case of

analytic functions; cf. [R72], [F93], and [MPR94]) on the depth of testing membership

to an octant R

n

+

= f(x

1

; � � � ; x

n

) 2 R

n

: x

1

� 0; � � � ; x

n

� 0g by a deterministic

analytic decision tree. In subsection 3.2 we design a randomized algebraic decision

tree (with the gates being polynomials of degrees at most n) which recognizes R

n

+

with the depth 0(log

2

n). Furthermore, we design another randomized tree of the

same type computing maxfx

1

; � � � ; x

n

g with the depth 0(log

5

n). This extends the

result of [TY94] which was for the case of x

1

; � � � ; x

n

being pairwise distinct.

In Section 4 we study the size of analytic decision trees (which is a stronger

complexity measure than the commonly considered depth, since a lower bound on the

size implies immediately a lower bound on the depth). In particular, as a corollary we

prove an exponential lower bound 2


(n)

on the size of analytic decision trees testing

membership to the set of the points (x

1

; � � � ; x

2n

) 2 R

2n

with exactly n negative

coordinates. Notice, that the only known so far exponential lower bound on the

size of decision trees was obtained in [GKY95] for testing the octant R

n

+

under the

assumption that the tree is ternary (i.e., branching according to the inequalities <;=

; >) rather than a usual binary one (which branches according to �; >) and besides,

the decision tree is algebraic, i.e. the gate functions are polynomials of a �xed degree.

Finally, in Section 5 we obtain a lower bound 
(

p

n) on the depth of randomized

analytic decision trees which recognize a set of the type f(x

1

; � � � ; x

n

) : the number of

negative elements among x

1

; � � � ; x

n

is a multiple of qg for a �xed q being not a power

of 2. Notice that this is the �rst nontrivial lower bound for randomized analytic

decision trees (for randomized algebraic decision trees the nonlinear lower bounds

were proved in [GKMS96]).

A method for obtaining nonlinear lower bounds on the depth of Pfa�an computa-

tion trees (which are the trees with the gates being Pfa�an functions and thus, lying

2



between the algebraic and analytic decision trees) for the problem of testing member-

ship to a polyhedron, was developed in [GV96]. This result is however independent

from the present paper since relying on the methods introduced below, one could get

only linear lower bounds on the depth.

2 Preliminaries

Similarly as in [GKMS96], for a given polynomial g 2 R[X

1

; � � � ;X

n

], we de�ne its

leading term lm(g) as follows. First we take the terms of g with the least degree in

X

n

, then among them with the least degree in X

n�1

and so on, till X

1

. One can

describe lm(g) by means of in�nitesimals (cf., e.g., [GKMS96]).

Namely for a real closed �eld F (see e.g. ([L65], [GV88]) we say that an element

" transcendental over F is an in�nitesimal (with respect to F ) if 0 < " < a for any

element 0 < a 2 F . This uniquely induces the order on the �eld F (") of rational

functions and further on the real closure

]

F (") (see [L65]). Now let "

1

> � � � >

"

n

> 0 be the elements such that "

`+1

is in�nitesimal with respect to the real closed

�eld

g

R(") for " = ("

1

; � � � ; "

`

), 0 � ` < n. Then the sign sgn(g("

1

; � � � ; "

n

)) =

sgn(lm(g)("

1

; � � � ; "

n

)) and on the other hand this property uniquely determines the

term lm(g). Actually, one could stick in the arguing below with the real numbers

1 = "

(0)

0

> "

(0)

1

> � � � > "

(0)

n

> 0 instead of "

1

; � � � ; "

n

where "

(0)

`+1

is \considerably

smaller" than "

(0)

`

, 0 � l � n � 1. But then one should specify, what does it mean

\considerably smaller", and it is more convenient to use in�nitesimals.

As computational models we deal with the decision trees (DTs) (see e.g. [R72],

[MPR94], [Y94], [GKV95], [GKY95]). We consider two kinds of gates of DTs: ei-

ther polynomials of degrees at most d, then we denote the corresponding algebraic

decision trees by d-DT, or the functions, being real analytic (cf. [C48]) in a certain

vicinity of the origin, then we denote the corresponding analytic decision trees by

A-DT. We denote by d-RDT or A-RDT, respectively, their randomized counterparts,

called randomized decision trees, which are the sets fT

�

g (see e.g. [MT82], [M85b],

[GKMS96]), with T

�

being a deterministic d-DT or A-DT, respectively, chosen with

a probability p

�

� 0,

P

p

�

= 1.

Observe that for a function a in n variables X

1

; � � � ;X

n

, being real analytic at the

origin, one can literally extend the notion of the leading term lm(a) as above, treating

a as a power series in X

1

; � � � ;X

n

. Also sgn(a("

1

; � � � ; "

n

)) = sgn((lm(a))("

1

; � � � ; "

n

))

holds, herewith the power series a("

1

; � � � ; "

n

) could be naturally considered as an

element of the real closed �eld R

n

, where R

0

= R and for each 0 � i � n � 1 R

i+1

is

the �eld of Puiseux series

P

j�0

p

j

"

�

j

=@

i+1

, p

j

2 R

i

, 1 � @ 2 Z, integers �

0

< �

1

< � � �

3



increase (see e.g. [GV88]). Since R

n

is a real closed �eld, due to Tarski's transfer

principle [T51], the sign sgn((lm(a))("

1

; � � � ; "

n

)) does not depend on, whether we

regard (lm(a))("

1

; � � � ; "

n

) as an element of the real closure

^

R("

1

; � � � ; "

n

) or of its

extension R

n

.

3 Testing octant: deterministic vs. randomized

decision trees

Testing membership to the nonnegative octant R

n

+

was �rstly studied by M. Rabin in

[R72], where a (sharp) lower bound n was formulated for the depth of A-DT (a gap in

the proof was �lled in [MPR94] for algebraic or Nash gate functions, see also [F93]).

In the next subsection we give a short proof of the bound for the case of analytic

functions, closing for the �rst time a gap in Rabin's original proof [R72] for this case.

3.1 Deterministic decision trees

Let an A-DT T test membership to R

n

+

. For any vector � = (�

1

; � � � ; �

n

) 2 f�1; 1g

n

consider a point E

�

= (�

1

"

1

; � � � ; �

n

"

n

) 2 (R

n

)

n

. Consider any gate a of T , being a real

analytic function. For any point ("

(0)

1

; � � � ; "

(0)

n

) 2 R

n

where "

(0)

1

> � � � > "

(0)

n

> 0 and

"

(0)

i+1

is su�ciently less than �

(0)

i

, 0 � i � n � 1, we have sgn(a(�

1

"

(0)

1

; � � � ; �

n

"

(0)

n

)) =

sgn((lm(a))(�

1

"

(0)

1

; � � � ; �

n

"

(0)

n

)). Also sgn(a(E

�

)) = sgn((lm(a))(E

�

)) (cf. sec-

tion 2 above), obviously sgn((lm(a))(�

1

"

(0)

1

; � � � ; �

n

"

(0)

n

)) = sgn((lm(a))(E

�

)). Thus,

sgn(a(E

�

)) = sgn(a(�

1

"

(0)

1

; � � � ; �

n

"

(0)

n

)) and thereby runs correctly for an input point

E

�

.

Notice that the above argument was necessary since we deal with A-DTs. If we

would consider d-DT rather than A-DT, we could immediately apply Tarski's transfer

principle [T51] to ensure that d-DT runs correctly for any input point from (R

n

)

n

.

For the purpose of this paper the restriction on the input points E

�

for A-DT su�ces.

Take the path in T along which T runs for the point E

(1;���;1)

= ("

1

; � � � ; "

n

) (and

therefore, outputs \yes"). Let g

1

; � � � ; g

t

be the testing (real analytical) functions

along this path.

Lemma 1. t � n

Proof. Denote lm(g

j

) = c

j

X

s

1;j

1

� � �X

s

n;j

n

; c

j

2 R, 1 � j � t. The sign sgn(lm(g

j

))

is determined by the vector S

j

= (s

1;j

; � � � ; s

n;j

) (mod 2) 2 (F

2

)

n

, 1 � j � t.

Suppose that t < n. Then there exists a nonzero vector (s

1

; � � � ; s

n

) 2 F

n

2

such

4



that the inner products ((s

1

; � � � ; s

n

); S

j

) = 0 (mod 2), 1 � j � t. Denote � =

((�1)

s

1

; � � � ; (�1)

s

n

). Then lm(g

j

(E

(1;���;1)

) = lm(g

j

(E

�

)), 1 � j � t; i.e. E

�

satis�es

all the tests along the path under consideration, and thereby the output of T for the

input E

�

is \yes", but E

�

does not belong to the nonnegative octant, the obtained

contradiction proves the lemma.

Corollary 1. ([R72])

Any A-DT testing membership to R

n

+

has the depth at least n.

3.2 Randomized decision trees

In [TY94] it was shown that testing membership to the octant R

n

+

can be performed

by a n-RDT with the depth (log n)

0(1)

under the assumption that all the coordinates

of an input vector (x

1

; � � � ; x

n

) 2 R

n

are nonzeros. In this subsection we design an

n-RDT testing membership to R

n

+

for arbitrary input vectors.

Thus, RDT (in particular n-RDT and A-RDT) could have much less depth than

any DT solving the same problem, cf. corollary 1. On the other hand, in [GKMS96]

it was proved the lower bound

n

2d

on the depth of d-RDT testing membership to R

n

+

.

This shows that there is a noncollapsing hierarchy on the computational power of

d-RDTs with respect to d.

Let (x

1

; � � � ; x

n

) 2 R

n

be an input vector. Denote by P � f1; � � � ; ng the subset

of j such that x

j

< 0. Treating f1; � � � ; ng as a subset of V = (F

2

)

dlog

2

ne

(in an

arbitrary way), we apply to P theorem 2.4 [VV86]. It states that for a random

choice of vectors w

1

; � � � ; w

dlog

2

ne

2 V the probability that one of the truncated sets

P

`

= P \fv 2 V ; (v;w

i

) = 0, 1 � i � `g, 0 � ` � dlog

2

ne consists of a single element

is at least 1=4 (provided that P 6= �). For any 1 > � > 0 making 0(log 1=�) rounds

of choosing the vectors w

1

; � � � ; w

dlog

2

ne

, we could achieve the latter probability to be

greater than 1� � (for at least one of the rounds).

For the next step we need to be able to pick out randomly a homogeneous multi-

linear polynomial h

k

from R[Y

1

; � � � ; Y

m

] of degree k (for 0 � k � m) and with all the

coe�cients in the interval [0; 1]. In fact, one could pick out randomly from a suitable

�nite set of such polynomials, or one could use the general statement from [M85a]

which enables us for a randomized decision tree with a continuous random parameter

to replace it by a discrete one. For the reason of simplicity we will use a continuous

random parameter.

Thus, �x for the time being a chosen randomly truncated set fv 2 V ; (v;w

i

) =

0; 1 � i � `g = fj

1

; � � � ; j

m

g. Denote fY

1

; � � � ; Y

m

g = fX

j

1

; � � � ;X

j

m

g. Observe that

a random homogeneous multilinear polynomial h

k

2 R[Y

1

; � � � ; Y

m

] vanishes (with the

5



probability 1) at the point (y

1

; � � � ; y

m

) = (x

j

1

; � � � ; x

j

m

) if and only if the number of

zeros among y

1

; � � � ; y

m

is greater than m� k (if the latter is not ful�lled it vanishes

with the probability zero). This is because the inner product of a given nonzero vector

of the values of all degree k monomials at the point (y

1

; � � � ; y

m

), with at most m� k

zeros, times a random vector of the coe�cients of h

k

does not vanish with probability

1.

We construct an n-RDT T , which using binary search is testing h

dm=2e

(y

1

; � � � ; y

m

),

then testing h

dm=4e

(y

1

; � � � ; y

m

) if the �rst test returns zero, or else testing

h

3dm=4e

(y

1

; � � � ; y

m

) and so on, �nds the minimal k

0

for which h

k

0

(y

1

; � � � ; y

m

) van-

ishes. Then m � k

0

+ 1 equals (with the probability 1) to the number of ze-

roes among y

1

; � � � ; y

m

. Test also h

k

0

�1

(y

1

; � � � ; y

m

), unless k

0

= 1 and in this case

(y

1

; � � � ; y

m

) = (0; � � � ; 0) and we agree 1 � h

0

� 0. If all y

1

; � � � ; y

m

were nonnegative

(in particular, if (x

1

; � � � ; x

n

) 2 R

n

+

) then the latter test would be positive. If among

y

1

; � � � ; y

m

was exactly one negative element then the latter test would be negative

(with the probability 1).

Summarizing, T makes 0(log 1=�) rounds, choosing at every round some vectors

w

1

; � � � ; w

dlog

2

ne

, then for each truncated set (y

1

; � � � ; y

m

) �nds k

0

as described above

and tests h

k

0

�1

(y

1

; � � � ; y

m

). If all these tests are positive, then T returns (x

1

; � � � ; x

n

) 2

R

n

+

, else if at least one of the tests is negative, T returns (x

1

; � � � ; x

n

) =2 R

n

+

.

It is not di�cult to see the correctness of T in testing membership to R

n

+

. Indeed,

if (x

1

; � � � ; x

n

) 2 R

n

+

then all the described tests h

k

0

�1

(y

1

; � � � ; y

m

) are positive. Else,

if (x

1

; � � � ; x

n

) =2 R

n

+

then with the probability greater than 1� � one of the truncated

sets (y

1

; � � � ; y

m

) contains a single negative element. Then for this truncated set the

test h

k

0

�1

(y

1

; � � � ; y

m

) would be negative.

Now complete the depth analysis of T . There are 0(log 1=�) rounds choosing

vectors w

1

; � � � ; w

dlog

2

ne

, each of these vectors yields a truncated set fy

1

; � � � ; y

m

g �

fx

1

; � � � ; x

n

g. For every of these truncated sets T �nds k

0

by binary search, which in

its turn also requires 0(log n) steps. Thus, the depth of n-RDT T can be bounded by

0(log

2

n log 1=�).

As an application of the described n-RDT one could design an n-RDT with a

similar depth 0(log

2

n log 1=�) and the probability greater than 1� � for the problem

MAX = (cf. [TY94], [GKY95]), namely, whether x

1

= maxfx

1

; � � � ; x

n

g for an input

vector (x

1

; � � � ; x

n

). It su�ces to apply T to the vector (x

1

�x

2

; � � � ; x

1

�x

n

) 2 R

n�1

.

If one would like to solve the MAX problem (i.e. computing maxfx

1

; � � � ; x

n

g),

then similarly as in [TY94] it is necessary to have a subroutine which increases a

candidate for maxfx

1

; � � � ; x

n

g, in other words, which �nds an element x

j

greater

than x

1

(provided that such x

j

does exist). It corresponds to detecting negative

6



coordinate among x

1

� x

2

; � � � ; x

1

� x

n

(provided, it does exist).

Namely, when a truncated set (y

1

; � � � ; y

m

) with the negative test h

k

0

�1

(y

1

; � � � ; y

m

)

is found, we use the binary search to test as above, whether for the set (y

1

; � � � ; y

dm=2e

)

for the maximal k

1

for which h

k

1

�1

(y

1

; � � � ; y

dm=2e

) does not vanish, the inequal-

ity h

k

1

�1

(y

1

; � � � ; y

dm=2e

) < 0 holds. If this is the case, then proceed to the

half (y

1

; � � � ; y

dm=2e

), else if h

k

1

�1

(y

1

; � � � ; y

dm=2e

) > 0, then proceed to the half

(y

dm=2e

; � � � ; y

m

), and so on. If (y

1

; � � � ; y

m

) contained a single negative element af-

ter dlog

2

me steps, the described subroutine would �nd it. Thus, the depth of n-RDT

for the described subroutine which �nds a negative element among x

1

; � � � ; x

n

(or re-

turns that (x

1

; � � � ; x

n

) 2 R

n

+

) is bounded by 0(log

3

n � log 1=�). The probability of the

correct output is greater than 1 � �.

Finally, in [TY94] it is shown that the result of applying the procedure of �nding

a greater element among x

1

; � � � ; x

n

, successively 0(log n) times, taking � = 0(1=n)

equals to maxfx

1

; � � � ; x

n

g with the probability close to 1. Thus, one can compute

max(fx

1

; � � � ; x

n

g by n-RDT with the depth 0(log

5

n).

Let us summarize what we have proved in this subsection in the following theorem.

Theorem 1. For each of the following problems there is an n-RDT which for any

input vector (x

1

; � � � ; x

n

) 2 R

n

a) tests membership to R

n

+

or tests whether x

1

= maxfx

1

; � � � ; x

n

g in the depth

0(log

2

n);

b) �nds a negative x

i

(or returns that (x

1

; � � � ; x

n

) 2 R

n

+

) in the depth 0(log

3

n)

c) computes i such that x

i

= maxfx

1

; � � � ; x

n

g in the depth 0(log

5

n).

4 Exponential lower bound on the size of deter-

ministic analytic decision trees

In this section we study the size of a decision tree as its complexity measure rather

than its depth. Evidently, a lower bound on the size immediately implies a (loga-

rithmic) lower bound on the depth, so it is a more di�cult problem, and the known

methods for obtaining lower bounds on the depth (see e.g. [GKV95] and the references

there) do not give any lower bound on the size. Besides, as a counterpart to Rabin's

linear lower bound on the depth for testing membership to R

n

+

(see subsection 3.1)

an upper linear bound on the size is obvious. The point is that we deal usually with

the binary decision trees (i.e. branching at � or >). In [GKY95] ternary decision

7



trees were studied (i.e. branching goes according to <, =, >) and an exponential

lower bound on the size for testing membership to R

n

+

was obtained for algebraic

d-DT where d = const. However, the result of [GKY95] cannot be deduced from the

methods of this section since these methods work for binary decision trees, and on

the other hand for binary trees there is already mentioned above obvious linear upper

bound on the size for testing R

n

+

. Thus, the lower bounds on the size for binary and

ternary trees are independent.

In this section we design a method for obtaining the �rst exponential lower bounds

on the size of analytic decision trees, and we provide some concrete examples of the

problems for which the sizes of A-DTs are exponential.

Consider an A-DT T . As in the subsection 3.1 we restrict T to the inputs E

�

. In

this setting we attach to T a function b : f�1; 1g

n

! f�1; 1g which maps � to 1 if and

only if E

�

is accepted by T (to each accepting (resp. rejecting) leaf of T 1 (resp. �1)

is attached). One could treat b as a boolean function (cf. [BS90], [KM91]) and also as

an element of a bigger set B

n

of functions f�1; 1g

n

! R which is isomorphic to R

2

n

.

Then B

n

is R-space with the basis of all multilinear monomials fX

I

= X

i

1

1

� � �X

i

n

n

g;

i

1

; � � � ; i

n

2 f0; 1g.

Thus, for a boolean function b we have an expansion b =

P

I

�

I

X

I

, herewith

the norm L

2

((�

I

)

I

) =

P

I

�

2

I

= 1 (since the vector (�

i

)

I

is an image of the vector

1

(

p

2)

n

(b(x))

x

with L

2

-norm equal to 1 under the unitary Fourier transform being n-th

tensor power of the matrix

1

p

2

 

1 1

1 �1

!

. The important feature of b studied in

[BS90], [KM91] is its L

1

-norm L

1

(b) =

P

I

j�

I

j. We use the following lemma from

[KM91] for which we give here also a short proof.

Lemma 2. ([KM91])If the tree T has m leaves then L

1

(b) � m.

Proof. As we restrict T to the inputs E

�

we could replace each gate g of T

by lm(g) (see subsection 3.1). Thereby, to any subtree T

0

of T we could assign a

(boolean) function b

T

0

: f�1; 1g

n

! f�1; 1g, then b is assigned to the whole tree T.

We prove lemma by induction on the size of the tree. In case of the base of

induction the tree consists of a single leaf with constant 1 or �1 boolean function

attached. For the inductive step consider a term lm(g) = cX

I

, c 2 R in the root v

of T and let the boolean functions b

(1)

; b

(2)

are attached to two subtrees T

(1)

; T

(2)

of

T with the roots being the sons of v. Then b =

1

2

(1 � X

I

)b

(1)

+

1

2

(1 + X

I

)b

(2)

and

hence L

1

(b) � L

1

(b

(1)

)+L

1

(b

(2)

). Then applying inductive hypothesis to the subtrees

T

(1)

; T

(2)

completes the proof of the lemma.

To exhibit an example of a set, for which the membership requires an exponential
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size for any A-DT T , denote by C

�

= f�

1

X

1

> 0; � � � ; �

n

X

n

> 0g, �

1

; � � � ; �

n

2 f�1; 1g

an octant. Assume that T recognizes membership to a set M such that [

�2M

C

�

�

M � [

�2M

C

�

[ fX

1

� � �X

n

= 0g for a certain set M � f�1; 1g

n

, i.e. the inner part of

M coincides with [

�2M

C

�

. Denote by b

M

: f�1; 1g

n

! f�1; 1g the boolean function

such that b

M

(�) = �1 if and only if � 2 M .

Lemma 2 provides the lower bound L

1

(b

M

) on the size of a decision tree T testing

the setM. Now we give two examples of setsM with a big norm L

1

(b

M

) taken from

[BS90].

Let n = 2k and de�ne M

EXACT

�R

n

to be the set of points (x

1

; � � � ; x

n

) with

exactly k negative coordinates among x

1

; � � � ; x

n

.

Now let n = 4k and de�ne M

4

�R

n

to be the set of all the points (x

1

; � � � ; x

n

)

such that for each 0 � i � k � 1 either x

4i+1

, x

4i+2

are both negative or x

4i+3

, x

4i+4

are both negative.

Using the bounds L

1

(b

M

EXACT

) � 2

k

=k (observe that this bound is close to the

possible largest bound due to the Cauchy inequality L

1

(b) � 2

n=2

for any boolean

function b 2 B

n

), L

1

(b

M

4

) � (1:25)

k

[BS90] and Lemma 2 we get the following

corollary.

Corollary 2. Any analytic decision tree testing membership to a)M

EXACT

or to

b) M

4

has the size greater than 2


(n)

.

5 Lower bound on the depth of randomized ana-

lytic decision trees

We have shown in Section 3 that randomization can enhance dramatically the e�-

ciency of analytic decision trees. In this section we a prove lower bound 
(

p

n) for

randomized analytic decision trees recognizing sets like L

i;q

= [

�

(mod q) � iC

�

,

where the union is taken over � 2 f�1; 1g

n

such that the number of �1 in � has a

residue i (mod q), and q is not a power of 2.

Thus, assume A-RDT T

(i;q)

= fT

�

g with the depth t recognizes L

i;q

. Assuming

that q is small (say, a constant), one can suppose q to be an odd prime, taking into

account that the complexities of recognizing L

i;q

for diverse i (and �xed q) coincide.

Indeed, in order to reduce recognizing L

i;q

to recognizing L

j;q

one replaces the input

(x

1

; � � � ; x

n

) by (�x

1

; � � � ;�x

j�i

; x

j�i+1

; � � � ; x

n

).

Again as in the previous section we restrict T

(i;q)

to the set of 2

n

points E

�

and take

A-DT T

�

which makes at most

1

3

2

n

errors on the points E � fE

�

g

�

, i.e. jEj �

1

3

2

n

.

Again as in Section 4 we associate with T

�

a boolean function b

�

, but unlike Section

9



4 in a more standard setting, namely b

�

: f0; 1g

n

! f0; 1g = F

2

. For each gate g

(being an analytic function) of T

�

consider lm(g) = cX

i

1

1

� � �X

i

n

n

and replace g by a

linear form L

g

(y

1

; � � � ; y

n

) = i

1

y

1

+ � � � + i

n

y

n

(mod 2) : F

n

2

! F

2

. To every path

of T

�

with the gate functions g

1

; � � � ; g

k

, we attach the product of linear functions

(L

g

1

+ �

1

) � � � (L

g

k

+ �

k

) where �

i

2 f0; 1g, 1 � i � k is the corresponding sign of the

branch at the path with the gate function g

i

. Then b

�

coincides with the sum of the

products (L

g

1

+�

1

) � � � (L

g

k

+�

k

) attached to all the paths with the outputs 1. Similar

to Section 4 we can give an inductive description of b

�

. For the base of induction

consider a tree consisting of a single leaf and b

�

equals to the output of this leaf.

For the inductive step let the gate g be assigned at the root v of T

�

and the boolean

functions b

(1)

; b

(2)

are attached to the left and right subtrees, respectively, with the

roots being the sons of v. Then b

�

= L

g

� b

(1)

+ (L

g

+ 1)b

(2)

.

Therefore, deg b

�

� t. Thus, b

�

coincides with the boolean function MOD

i;q

at more than

2

3

2

n

points, and hence the Corollary and Lemma 4 [S87] imply that

deg b

�

� 
(

p

n) for a certain 0 � i � q � 1, see above (to apply directly Corollary

[S87] one has to imbed the functions b

�

, MOD

i;q

in the set of functions f0; 1g

n

! F

2

`

for a suitable extension F

2

` of F

2

, cf. lemma 5 [S87]). Thus, we get the following

theorem.

Theorem 2. Any A-RDT which recognizes the union of octants [

� (mod q))�i

C

�

has the depth greater than 
(

p

n) (for a �xed q being not a power of 2).

2

6 Open Problems and Further Research

There remain important open problems on randomized decision complexity of many

concrete problems which are expressible by simultaneous positivity of small degree

polynomials, like quadratic or cubic ones. The interesting examples include Element

Distinctness in algebraic computation tree model or for n-RDTs (cf. a randomized

lower bound 
(n log n) [GKMS96] for n

�

-RDTs with su�ciently small � > 0), Finite

Union of Balls in R

n

, or algebraic version of 3SAT being the existentional problem

of simultaneous positivity of cubic polynomials.
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