
On Some Tighter Inapproximability Results

�

Piotr Berman

y

Marek Karpinski

z

Abstract

We give a number of improved inapproximability results, including the

best up to date explicit approximation thresholds for bounded occurence

satis�ability problems like MAX-2SAT and E2-LIN-2, and the bounded

degree graph problems, like MIS, Node Cover, and MAX CUT. We prove

also for the �rst time inapproximability of the problem of Sorting by

Reversals and display an explicit approximation threshold.

Key words: Approximation Algorithms, Approximation Hardness, Bounded

Dependency Satis�ability, Breakpoint Graphs, Independent Set, Node Cover,

MAX-CUT, Sorting by Reversals.

1 Introduction

The paper studies explicit approximation thresholds for bounded dependency,

and bounded degree optimization problems. There was a dramatic progress

recently in proving tight inapproximability results for a number of NP-hard op-

timization problems (cf. [H96], [H97], [TSSW96]). The goal of this paper is to

develop a new method of reductions for attacking bounded instances of the NP-

hard optimization problems and also other optimization problems. The method

uses randomized reductions and applies to the number of problems including

Maximum Independent Set in graphs of degree d (d-MIS), bounded degree

Minimum Node Cover (d-Node Cover), bounded degree MAX CUT (d-MAX

CUT) and bounded occurrence MAX-2SAT (d-OCC-MAX-2SAT), (cf. [PY91],

[A94], [BS92], [BF94], [BF95], [AFWZ95]). This yields also the �rst explicit

approximation lower bounds for the small degree graph problems, and the small

�

An extended abstract appeared in Proc. ICALP'99.

y

Dept. of Computer Science, Pennsylvania State University, University Park, PA 16802,

Supported in part by NSF grant CCR-9700053. Email: berman@cse.psu.edu

z

Dept. of Computer Science, University of Bonn, 53117 Bonn. Research supported in part

by the International Computer Science Institute, Berkeley, California, by DFG grant 673/4-1,

ESPRIT BR grants 7079, 21726, and EC-US 030, by DIMACS, and by the Max{Planck

Research Prize. Email: marek@cs.uni-bonn.de

1

dependency satis�ability. We apply also this method to prove approximation

hardness of the problem of sorting by reversals, MIN-SBR, the problem moti-

vated by molecular biology [HP95] (and with a long history of related research,

cf., e.g., [GP79], [CB95]), only recently proven to be NP-hard [C97]. Interest-

ingly, its signed version can be computed in polynomial time [HP95], [BH96],

[KST97].

The core of the new method is the use of restricted versions of the E2-LIN-2

and E3-LIN-2 problems studied in [H97]. We denote by E2-LIN-2 the problem of

maximizing the number of satis�ed equations from a given set of linear equations

mod 2 with exactly 2 variables per equation. E3-LIN-2 is a similar problem with

three variables per equation. E2-LIN-2 can be viewed as a graph problem in

the following way: each variable is a node, and an equation x � y = b is an

edge fx; yg with label b. (Note that the special case when all edges have label

1 constitutes MAX CUT problem.)

We denote by d-OCC-E2-LIN-2 and d-OCC-E3-LIN-2 the versions of these

problems where the number of occurrences of each variable is bounded by d (note

that in d-OCC-2-LIN-2 can be also viewed as restricted to graphs of degree d).

The rest of the paper proves the following main theorem:

Theorem 1. For every � > 0, it is NP-hard to approximate

(i) 3-OCC-E2-LIN-2 and 3-MAX CUT within factor 332=331� �;

(ii) 6-OCC-MAX 2SAT within factor 668=667� �;

(iii) 3-OCC-E3-LIN-2 within factor 62=61� �;

(iv) 4-MIS within factor 74=73� � and 4-Node Cover within 79=78� �;

(v) 3-MIS within factor 140=139� � and 3-Node Cover within 145=144� �;

(vi) MIN-SBR within factor 1237=1236� �.

Our proof can be easily extended to provide explicit inapproximability fac-

tors for many other optimizations problems that are related to bounded degree

graphs. E. g. we get also 1.0149 lower bound for 5-MIS, 1.0138 lower bound for

5-Node Cover, and 1.0005 lower bound for 3-OCC-MAX 2SAT.

The technical core of all these results is the reduction to show (i), which

forms structures that can be translated into many graph problems with the

very small and natural gadgets. The best to our knowledge gaps between the

upper and lower approximation bounds are summarized in Table 1. The upper

approximation bounds are from [GW94], [BF95], [C98], and [FG95].

2

Problem Approx. Upper Approx. Lower

3-OCC-E2-LIN-2 1.1383 1.0030

3-OCC-E3-LIN-2 2 1.0163

3-MAX CUT 1.1383 1.0030

3-OCC-MAX 2SAT 1.0741 1.0005

6-OCC-MAX-2SAT 1.0741 1.0014

3-MIS 1.2 1.0071

4-MIS 1.4 1.0136

5-MIS 1.6 1.0149

3-Node Cover 1.1666 1.0069

4-Node Cover 1.2857 1.0128

5-Node Cover 1.625 1.0138

MIN-SBR 1.5 1.0008

Table 1: Gaps between known approximation bounds.

1.1 Notation

We list here some notation that we use in this paper. Z

2

is the �eld with

two elements, we use � to denote the addition operation (modulo 2). In an

undirected graph < V;E >, for S � V we de�ne the characteristic function �

S

that equals 1 for elements of S and 0 for non-elements. Moreover, Cut(S) as

ffu; vg 2 E : �

S

(u)� �

S

(v) = 1g.

2 Sequence of reductions

We start from E2-LIN-2 problem that was most completely analyzed by H�astad

[H97] who proved that it is NP-hard to approximate it within a factor 12=11��.

In the sequel we will use notation of this paper. In this problem we are given a

(multi)set of linear equations over Z

2

with at most two variable per equation,

and we maximize the size of a consistent subset. In this paper, we prefer to

interpret it as the following graph problem. Given an undirected graph G =

hV;E; li where l is a 0/1 edge labeling function. We de�ne Score(S; fu; vg) =

�

S

(u)��

S

(v)� l(fu; vg): In turn, Score(S) =

P

e2E

Score(S; e). The objective

of E2-LIN-2 is to maximize Score(S).

Our �rst reduction will have instance transformation �

1

, and will map an

3

instance G of E2-LIN-2 into another instance G

0

of the same problem that has

three properties: G

0

is a graph of degree 3, its girth (the length of a shortest

cycle) is
(logn), and its set of nodes can be covered with cycles in which all

edges are labeled 0. We will use �

1

(E2-LIN-2) to denote this restricted version

of E2-LIN-2. The last two properties of �

1

(E2�LIN � 2) are important in the

subsequent reductions that lead to MIN SBR problem.

We alter the reduction �

1

in two ways. The �rst modi�cation results in

graphs that have all edges labeled with 1, i.e. it reduces E2-LIN-2 to 3-MAX

CUT and allows to complete the proof of (i). The second modi�cation reduces

E3-LIN-2 to a very special version of 3-OCC-E3-LIN-2, which we call HYBRID,

because a large majority of equations have only two variables. This reduction

instantaneously leads to (iii).

To show (ii), we use an obvious reduction from �

1

(E2-LIN-2): an instance of

E2-LIN-2 can be viewed as a set of equivalence statements, and we can replace

each equivalence with a pair of implications. On the other hand, we obtain (v)

and (iv) using reductions from HYBRID.

Although HYBRID problem appears to be very \e�cient", we cannot use it

in the chain that leads to MIN-SBR. Instead, we use another reduction, with

instance translation �

2

, that leads from �

1

(E2-LIN-2) to 4-MIS. This transla-

tion replaces each node/variable with a small gadget. The resulting instances

of 4-MIS can be transformed into the next problem that we consider, which we

call breakpoint graph decomposition, BGD. This problem is related to maximum

alternating cycle decomposition, (e.g. see Caprara, [C97]) but has a di�erent

objective function (as with another pair of related problems, Node Cover and

MIS, the choice of the objective function a�ects approximability). An instance

of BGD is a so-called breakpoint graph, i.e. an undirected graph G = hV;E; li

where l is a 0/1 edge labeling function, which satis�es the following two prop-

erties:

(i) for b 2 f0; 1g, each connected component of

V; l

�1

(b)

�

is a simple path;

(ii) for each v 2 V , the degrees of v in

V; l

�1

(0)

�

and in

V; l

�1

(1)

�

are the

same.

An alternating cycle C is a simple cycle in G such that hV;C; ljCi has the

property (ii). A decomposition of G is a partition C of E into alternating cycles.

The objective of BGD is to minimize cost(C) =

1

2

jEj � jCj.

By changing the node-replacing gadget of �

2

and enforcing property (i) by

\brute force", we obtain reduction �

3

that maps �

1

(E2-LIN-2) into BGD. The

last reduction, �, converts a breakpoint graph G into a permutation �(G), an

instance of sorting by reversals, MIN-SBR. We use a standard reduction, i.e. the

correspondence between permutations and breakpoints graphs used in the ap-

proximation algorithms for MIN-SBR (this approach was initiated by Bafna

and Pevzner, [BP96]). In general, this correspondence is not approximation

4

preserving because of so-called hurdles (see [BP96, HP95]). However, the per-

mutations in �(�

3

(�

1

(E2-LIN-2))) do not have hurdles, and consequently for

these restricted version of BGD, � is an approximation preserving reducibility

with ratio 1.

3 First Reduction

To simplify the �rst reduction, we will describe how to compute the instance

translation using a randomized poly-time algorithm. In this reduction, every

node (variable) is replaced with a wheel, a random graph that is de�ned below

(some parts of this de�nition will not be used to describe the reduction, but

will be used later, in the proof of correctness). The parameter � used here is a

small constant; in this paper we prove that � = 6 is su�ciently large.

De�nition 2. An r-wheel is a graph with 2(� + 1)r nodes W = Contacts [

Checkers , that contains 2r contacts and 2�r checkers, and two sets of edges,

C and M . C is a Hamiltonian cycle in which with consecutive contacts are

separated by chains of � checkers, while M is a random perfect matching for

the set of checkers (see Fig. 1 for an example).

For a set of nodes A �W let a

A

be the number of contacts in A, b

A

the number

of contiguous fragments of of A in the cycle C (i.e. b

A

= jCut(A) \ Cj=2) and

c

A

= jCut(A) \M j.

We say that A is bad i� r � a

A

> 2b

A

+ c

A

. A set B is wrong i� for some bad

set A we have B = A\Checkers . A set B � Checkers is isolated i� no edges in

M connect B with Checkers �B.

4-wheel

checker node
contact node

Figure 1: A very small example of a gadget used by �

1

.

Consider an instance G of E2-LIN-2 with n nodes (variables) and m edges

(equations). We will describe how to transform G into �

1

(G), an instance of

3-OCC-E2-LIN-2. Let k = dn=2e. A node v of degree d will be replaced with a

kd-wheel W

v

. All wheel edges are labeled 0 to indicate our preference for such

a solution S that either W

v

� S or W

v

\ S = ;. An edge fv; ug with label l is

replaced with 2k edges, each of them has label l and joins a contact of W

v

with

a contact of W

u

. In the entire construction each contact is used exactly once,

so the resulting graph is 3-regular.

5

We need to elaborate this construction a bit to assure that �

1

(G) has a large

girth. First, we will assure that no short cycle is contained inside a wheel.

We can use these properties of an r-wheel W : each cycle di�erent of length

lower than 2�r must contain at least one edge of the matching M and the

expected number of nodes contained in cycles of length 0:2 log

2

(�r) or less is

below (�r)

�0:8

fraction). Thus we can destroy cycles of length below 0:2 log

2

n

by deleting matching edges incident to every node on such a cycle and neglect

the resulting changes in Score.

Later, we must prevent creation of short cycles when we introduce edges

between the wheels; this can be done using a construction described by Bollob�as

[B78]. While Bollob�as described how to build a graph of large girth from scratch,

his construction can assure the following: given a graph of degree 3 with girth

at least 0:5 log

2

n and two n-element disjoint sets of nodes of degree 2, each of

size n, say A and B, one can increase the set of edges by a perfect bipartite

matching of A and B without increasing the girth above 0:5 log

2

n. Note that

we are indeed replacing an edge of the original graph with a perfect matching

with at least n edges, which allows us to use the construction of Bollob�as.

The solution translation is simple. Suppose that we have a solution S for a

translated instance. First we normalize S as follows: if the majority of contacts

in a wheel W belong to S, we change S into S [W , otherwise we change

S into S �W . A normalized solution S can be converted into a solution S

0

of the original problem in an obvious manner: a node belongs to S

0

i� its

wheel is contained in S. Assuming that G has m edges/equations, we have

Score(S) = 2k((3�+2)m+ Score(S

0

)). H�astad [H97] proved that for E2-LIN-2

instances with 16n equations it is NP-hard to distinguish those that have Score

above (12� �)n and those that have Score below (11 + �)n, where the positive

constant � can be arbitrarily small. By showing that our reduction is correct

for � = 6 we will prove

Theorem 3. For any � 2 (0; 1=2), it is NP-hard to decide whether an instance

of �

1

(E2-LIN-2) 2 3-OCC-E2-LIN-2 with 336n edges (equations) has Score above

(332� �)n or below (331 + �)n.

Recall that we have already described the instance translation and the solution

translation. The latter consists of two stages. In normalization stage we trans-

form a solution S in steps. In each step we consider a consistency wheel W

that is used as a gadget that replaced a node (variable) of the original instance.

Suppose that an r-wheel W is one of these; it consists of 2r contacts and 12r

checkers, while its edges form two sets: cycle C and random matching M of

the set of checkers. If at least r of the contacts belong to S, we replace S with

S [W , and otherwise we replace S with S �W . The normalization step fails

if Score(S) decreases. If all normalization steps are successful, then together

they form an approximation-preserving solution translation. In the next stage,

we form a solution S

0

of the original instance of E2-LIN-2 in a natural manner:

6

S

0

consists of nodes whose wheel gadgets are contained in S. Because we have

already calculated approximation-preserving properties of this stage, it su�ces

to show that the �rst stage succeeds with a high probability. Because we can

pad the wheels to a desired size, it su�ces to show that the failure of a normal-

ization step involving an r-wheel is O(r

�3

). The rest of this proof is devoted to

this claim.

Suppose that the normalization step has failed and A is the subset of W

consisting of nodes that changed membership in S. Such a set A must satisfy a

property that depends solely on the random matchingM . Let a

A

be the number

of contacts in A, b

A

= jCut(A) \ Cj and c

A

= jCut(A) \M j. It is easy to see

that Score(S; e) changes i� e 2 Cut(A). Moreover, jCut(A)j = a

A

+ b

A

+ c

A

,

and Score(S; e) increases for e 2 Cut(A) \ (C [M). Therefore the decrease of

Score(S) is at most a

A

� b

A

� c

A

. Consequently, A must satisfy a

A

> b

A

+ c

A

.

We will say that such a subset of W is wrong.

If a set A is wrong, we say that B = A\Checkers is bad. Our next goal is to

characterize bad sets. For the remainder of this proof we convert W to a graph

with set of nodes equal to Checkers by replacing each contact u with an edge

(later called a contact edge) that connects the checkers that were adjacent to

u. In the new W we can de�ne b

B

and c

B

in the same way as b

A

and c

A

. One

the other hand, the de�nition of a

B

will be more complicated. Let a

1

B

(and a

2

B

)

be the number of contact edges that have exactly one (exactly two) endpoint

in B. We consider B only if a

2

B

� a

2

W�B

, and we de�ne a

B

is the minimum of

a

2

B

+ a

1

B

and r. With this notation, B is bad i� a

B

> b

B

+ c

B

. Now it su�ces

to show that the probability that a bad subset of W exists is low.

As a preliminary step, we must have some tools to estimate the probabilities

in the random space consisting of perfect matchings. We will use the following

de�nitions.

i) A set A �W is M -close i� no edges of M are in Cut(A).

ii) The function �(n) denotes the number of perfect matchings in a clique

with 2n nodes.

Lemma 4.

�(n) =

n

Y

i=1

(2i� 1) =

(2n)!

n!2

n

Proof. By induction on n. For n = 0, there exists exactly one perfect matching.

Now consider a clique with 2n� 1 nodes. A �x node can be matched using any

of the 2n� 1 incident edges. We can complete the construction of the matching

by choosing any of �(n�1) matchings of the remaining 2n�2 nodes, thus �(n)

= (2n� 1)�(n� 1).

7

Lemma 5. The probability that a set of 2d checkers is M-close is �(d)�(6r �

d)=�(6r), or

d

Y

i=1

2i� 1

12r � (2i� 1)

Proof. Straightforward consequence of Lemma 4.

Our general method of estimating the probability of a bad set existing, is to

consider separatedly cases when a bad set B has a particular vector of parame-

ters a

B

, b

B

and s

B

= jBj. For each of them we will

a) estimate the numbers of candidates for a bad set, such that if a bad set

exists, than one of the candidates must be bad as well;

b) �nd the number of subsets of a candidate B, each of size at least s

B

�

a

B

+ b

B

, such that if B is bad, than one of these subsets must be M -close;

c) multiply the product of the results of a) and b) with the probability cal-

culated from Lemma 5.

While discussing a candidate for a bad set, say B, we will refer to fragments

of B, connected components of B within cycle C (note that in the modi�ed

W , the cycle C consists of checkers only). Further, we de�ne C

B

� B as the

set of nodes of B that are incident to edges of Cut(B) \M . According to our

de�nitions, B � C

B

is M -closed; moreover, jC

B

j = c

B

, thus if B is bad, then

jB � C

B

j = s

B

� c

B

> s

B

� a

B

+ b

B

.

The following lemma limits the number of candidates for anM -closed subset.

Lemma 6. In a bad set B of minimum size nodes of C

B

are not incident to

edges of Cut(B) \ C.

Proof. Suppose that a node of C

B

is incident to an edge of Cut(B) \ C. If

we remove it from B, b

B

remains unchanged, c

B

is decreased by 1 and a

B

is

decreased by at most 1 (the later decrease occurs if the edge in question is a

contact edge). Thus we have obtain a smaller bad set, a contradiction.

We will use two ways of estimating the probability that a bad set exists.

The �rst one is appplied to su�ciently small candidates.

Lemma 7. For a < r=9, the probability that there exists a bad set B such that

a

B

= a is at most r

�3

0:7

a

.

Proof. First, we will establish the relatioship between a

B

, b

B

, c

B

and s

B

. By

the de�nition of a bad set, a

B

> b

B

+ c

B

. Now consider a fragment of B that is

incident to, say, a

o

contact edges. This fragment must contain a

o

� 1 chains of

6 nodes, and portions (possibly empty) of two other such chains on its fringes.

8

Thus it contains between 6(a

o

� 1) and 6(a

o

+1) nodes. Because each fragment

is incident to exactly two edges from Cut(B)\C, there are b

B

=2 fragments. By

adding sizes of all fragments, we obtain a result that is between 6a

B

� 3b

B

and

6a

B

+ 3b

B

.

One conclusion that we can draw is that s

B

< 9a

B

< r. Another is that

s

B

� 6a

B

� 3b

b

� 6(b

B

+ c

B

+ 1) � 3b

B

= 3b

B

+ 6c

B

+ 6. The latter implies

that B contains an M -closed set of size 2d where d � 1:5b

B

+ 2:5c

B

+ 3.

We can generate a candidate B with parameters a

B

= a (for some a � r=9)

and b

B

= b (for some b < a) as follows. First, we select b=2 of the \left ends"

of the fragments; this can be done in at most

C

(12r; b=2) ways, where

C

is

our notation for the binomial coe�cient. Next, we distribute the sizes of the

fragments; because the sum of sizes is less than r, and all of them are positive,

this can be done in less than

C

(r; b=2) ways. Finally, be removing a subset

of c = a � b � 1 elements (or one less, to obtain a set of even size), we will

obtain an M -close sets. Altogether, we generate an M -close set in less than

C

(12r; b=2)

C

(r; b=2)

C

(r; c) many ways, i.e.

b=2

Y

i=1

12r � i+ 1

i

b=2

Y

i=1

r � i

i

c

Y

i=1

r � i

i

:

By Lemma 5, each of these candidates is M -closed with probability at most

3+d(3b+5c)=2e

Y

i=1

2i� 1

12r � (2i� 1)

Note that the latter product has more terms than the �rst three combined,

and that even the largest of these terms is less than 1/11. We will multiply

each of the b=2 terms of

C

(12r; b=2) with two of the terms of the probability;

in particular, for i � 1, the term of i with the term of 3i + 1 and one extra

terms. It is easy to see that each such product is below 0.7. Next, we multiply

each term of

C

(r; b=2) with one term of the probability; this time term number

i with the term number 3i + 2. Except for the �rst two, each such product is

below 0.7. Next, we multiply each of the term of

C

(r; c) with two terms of the

probability, in particular, term number i with the term number 3i+ 3 and one

extra term. The result is below 0.49. Thus we accounted for all terms of the

estimate of the number of candidates for an M -closed set and the product is

below 0:7

b+2c

. Note that the �rst three terms of the probability that were not

accounted for yield less than r

�3

.

Summarizing, we have at least 3 + 1:5a terms of the probability expression;

the �rst three produce r

�3

, 1:5b of them produce 0:7

b

, 2c of them produce 0:7

2c

and the remaining ones contribute factors below 0.1.

The signi�cance of this lemma is the following. For larger values of a we will

�nd x < 1 and a polynomial p such that the probability that there exists a bad

9

set B with a

B

= a is at most p(r)x

a

. Because we have a separate argument

for the low values of a, such a result su�ces to prove our theorem, regardless of

the degree of the polynomial p. In practice, it allows us to introduce any �xed

number of integer parameters that describe number of nodes or edges with some

particular properties, and compute the probability that there exists a bad set

with a particular vector of parameters. Therefore we can �nish the proof with

the following lemma.

Lemma 8. There exists a polynomial p such that the probability that there exists

a bad set B with a

B

= a > r=10 is lower than p(r)0:81

a

.

Proof. We can �x some values of a > r=10, b and s and search for a bad set B

such that a

B

= a, b

B

= b and s

B

= s. We can count such candidates in three

ways. The �rst method is to count in how many ways we can select b edges of

Cut(B) \ C:

C

(12r; b).

To understand the second method, imagine that we label each edge of

Cut(B)\C; if this edge has its right endpoint in B, we label it <, and otherwise

(left endpoint in B) we label it >. Next, we move each < label to the nearest

contact edge to its right, and each > label to its left. Finally, we move the labels

back to their original positions. The positions of the labels at the time when

they are all placed on the contact edges provides a lower bound on the size of

B; a fragment that is incident to a

o

contact edges will have its size estimated

as 6(a

o

�1). (Note that fragments of B that do not have incident contact edges

will obtain the size estimate of -6; this is because its < label is at this time

positioned 6 edges to the right of its < label.) Therefore the sum of distances

that the labels will traverse from their positions on the contact edges to their

correct positions is s� 6(a� b=2) = d. This allows us to select any B with pa-

rameters b and d as follows: �rst we select the positions of b labels on 2r contact

nodes, this can be done in

C

(2r + b � 1; b) ways; subsequently we distribute d

\units of displacement" to b labels, this can be done in

C

(d + b � 1; d) ways.

Summarizing, the second method is to compute d = s� 6(a � b=2) and return

C

(2r + b� 1; b)

C

(d+ b� 1; d).

The third method is very similar, except that we move the labels in the

opposite directions. The resulting formula is identical, except that we compute

d di�erently: d = 6(a+ b=2)� s.

Note that if we obtain negative d while using the second method, we can

conclude that s is too low to be compatible with a and b, similarly, negative

d in the third method implies that s is too large. If s is neither too large nor

too small, we estimate the number of the candidates for a bad set using the

minimum of the results of the three methods desribed here.

If we remove all endpoints of edges from Cut(B) \ M that are in B, we

obtain an M -closed set. By de�nition, there are c

B

such nodes, and if B is

bad, then c

B

< a � b. Moreover, by Lemma 6, we may assume that none

10

of these points is adjacent in C to the complement of B, hence only a � b

nodes may be considered for removal. For a possible value of c = c

B

, the

probability that the removal of c nodes may turn B into an M -closed set is

C

(s � b; c)�((s � c)=2)�(6r � (s � c)=2)=�(6r). One can see that the latter is

the increasing function of c, so it su�ces to consider only its maximal value,

a� b� 1 if a+ b+ s is odd, and a� b� 2 if a+ b+ s is even.

Our goal is to show that the probability computed according to the above

principles, and raised to power 1=a, is bounded by 0.81. We achieved this goal

as follows. We de�ne the real parameters of B as follows:

� � such that a = �r;

� � such that b = ��r; because we are looking at the parameters of bad

sets, we know that 0 < � � 1 and 0 < � � 1;

� � such that d = ���r, if a respective counting method (second or third)

is applicable, 0 � � � 3.

Using Stirling's formula, and the above estimation formula, we can compute

the 1=a power of our probability from the parameters �; � and �. To consider all

possible cases, we can use parameter values that are multiples of some fraction,

say �; then, in a subexpression that is an decreasing functions of a parameter, we

use the current multiple, say i�, and in an subexpression that is an increasing

function, we use (i + 1)�. This covers the case of all values between i� and

(i + 1)�. In our program, we used the following values for �: 1/20 for �, 1/100

for � and 1/2000 for �. The worst case was obtained for � = 1, � = 0:77 and

� = 1:15 (d = 4:5755r) and it equals e

�0:2181

= 0:8041.

It remains open whether the same approach may prove a similar result for

wheels with 5 checkers between each pair of contacts. In our attempts we intro-

duced several parameters, like the number of fragments that are not incident to

any contacts. Even though we were not succesful, the logarithm of the target

number was estimated to be 0.03. We believe that with an improved counting

method this estimate can be decreased below 0.

Remark 1. One can modify reduction �

1

as follows. We replicate the set of

equations even number of times, as before, so the number of occurrences of each

variable is su�ciently high. On each r-wheel the nodes are labeled with a and

b, labels alternating. When we select the random matching between checkers,

we choose only from perfect matchings in a full bipartite graphs formed by a-

checkers and b-checkers (rather than a random perfect matching from the full

graph). One can easily show that this restriction makes almost no di�erence

in the probability calculations. Moreover, when we connect the contacts of two

wheels, we do it in two ways. If the edge between the respective original variables

is labeled with 0, we connect a-contacts with b-contacts, and vice versa. If this

edge is labeled with 1, we connect a-contacts with a-contacts and b-contacts

with b-contacts. This allows us to convert all labels in the new graph to 1, and

11

as a result, we obtain a graph which is simultaneously an instance of E2-LIN-2

and MAX CUT (and is 3-regular). Let �

0

1

be the new reduction. We obtain the

following:

Theorem 9. For any � 2 (0; 1=2), it is NP-hard to decide whether an instance

of �

0

1

(E2-LIN-2)23-MAX CUT with 336n edges has Score above (332 � �)n or

below (331 + �)n.

Remark 2. We can translate MAX CUT into MAX 2SAT by replacing each

edge with two clauses, i.e. and edge fx; yg is replaced with x _ y; �x _ �y. This

reduction allows to prove Theorem 1(ii).

Remark 3. We will also use another modi�cation. We can start from an in-

stance of E3-LIN-2 with 2n equations. (Recall that H�astad has shown that it

is NP-hard to distinguish instances where (2 � �)n equations can be satis�ed

from those where we can satisfy at most (1+ �)n.) We modify it to an instance

with in which each variable occurs in at least n equations, again, by replicat-

ing the equations. Next, each variable is replaced by a r-wheel, where r is the

(increased) number of occurrences. The original equations are left same as be-

fore, but occurrences of a variable are replaced with occurrences of its contacts.

Now we have a new system where each variable occurs exactly three times, and

consisting of 2kn equations with 3 variables (replicated original equations) and

(1:5� + 1)6kn equations with 2 variables (inside the wheels). We take � = 6,

so we have 60kn equations inside the wheels. It will be convenient to view

the resulting structure as a hypergraph that has 60kn normal edges and 2kn

hyperedges (of size 3), 6kn contact nodes and 36kn checker nodes.

We can modify the last reduction in a similar manner as in Remark 1. In

each chain of 6 checkers (separating two contacts) we label 3 of them with a

and 3 with b; then we choose a random bipartite matching between a-checkers

and b-checkers. The set of resulting instances of E3-LIN-2 will be later called

HYBRID (this name refers to the fact that we have a mixture of equations

with 2 and 3 variables). Observe that the reduction from E3-LIN-2 to HYBRID

allows to prove Theorem 1(iii).

4 Reduction of 3-MAX CUT to 3-OCC-MAX

2SAT

In order to translate an instance G =< V;E > of 3-MAX CUT into a set of

disjunctive two clauses, we create a separate set of 4 propositional variables for

each edge fu; vg and 4 clauses, � u

e

0

_ u

e

1

, � v

e

0

_ v

e

1

, u

e

0

_ v

e

0

and � u

e

1

_ � v

e

1

.

Moreover, for each node incident to edges e; f and g we add clauses � u

e

1

_ u

f

0

,

� u

f

1

_ u

g

0

and � u

g

1

_ u

e

0

. Thus, if jV j = 2n and jEj = 3n we have 12n

propositional variables and 18n clauses.

12

To describe a solution translation, consider a valuation of propositional vari-

ables, say I . Before we translate I into a partition of V , we will normalize I

without decreasing the number of satis�ed clauses. We do it in three stages.

(i) We eliminate cases when for some e = fu; vg we have I(u

e

0

) = 0 and

I(u

e

1

) = 1. In every such situation we change I(u

e

1

) to 0. Afterwards all

3 clauses where u

e

1

occurs are true: two of them contain � u

e

1

, and the

other one contains � u

e

0

. Clearly, the number of true clauses could not

decrease.

(ii) We eliminate cases when for some e = fu; vg we have I(u

e

0

) 6= I(u

e

1

) = 1.

Because we performed (i)), this means I(u

e

0

) = 1 and I(u

e

1

) = 0. Consider

I(v

e

0

), if it is 1, then we change I(u

e

0

) to 0. It results in � u

e

0

_u

e

1

becoming

true, u

e

0

_ v

e

0

and remaining true, so the number of true clauses cannot

decrease. On the other hand, if I(v

e

0

) = 0, then because of (i)) we have

I(v

e

1

) = 0. In this case we change I(u

e

1

) to 1.

(iii) We eliminate cases when for some u; e; f; i; j we have I(u

e

i

) 6= I(u

f

j

). In

such a situation, pairs of the form u

e

0

; u

e

1

have equal values of I , thus

among 3 such pairs there must be exactly one minority pair, say the one

that corresponds to edge e. We convert this pair to the majority value;

as a result we gain one clause in the ring of implications of u and loose at

most one clause in the gadget of e.

After the normalization, every 6-tuple of propositional variables that corre-

sponds to a node u of G has the same valuation, which we may denote I(u).

We de�ne C as the set of those nodes that have I(u) = 0. It is easy to see that

CUT (C) = k i� for our set of 18n clauses, I satis�es 15n�k (6 clauses for every

of 2n nodes, 1 clause for each of 3n edges and one extra clause for every edge

in CUT (C)).

By applying this reduction together with Theorem 9 we can show that for

any � 2 (0; 1=2) it is NP hard to decide whether an instance of 3-OCC-MAX

2SAT with 2016n clauses has a truth assignment that satis�es at least (2012��)n

clauses, or it can be at most (2011 + �)n.

5 From HYBRID to 4-MIS and 3-MIS

Given an instance S of HYBRID, we will form graph G of degree 4, an instance

of 4-MIS. Each variable/node x of S will be replace with a gadget A

x

which

is an induced subgraph of G. Every gadget contains a hexagon, i.e. a cycle of

length 6 in which nodes with labels 0 and 1 alternate. Hexagons will have two

types: a-hexagons, with 2 chords, and b-hexagons, with 1 chord.

If x and y are connected by an edge (equation with two variables), the

hexagons of A

x

and A

y

will share a pair of adjacent edges; this edge of G

corresponds to the equation/edge x = y. A checker gadget is simply a hexagon:

13

3 edges edges of equations connected by three other edges, and one or two

diagonals. A contact gadget consists of a hexagon fused with a square; 3 such

gadgets are connected by an equation gadget that contains 4 nodes that do not

belong to gadgets of nodes/variables. Fig. 2 and 3 show these gadgets in detail.

1-node

0-node

 checker

e a

f b

a

b
c d

e

fg
h

c

d

Figure 2: Consistency wheel for 4-MIS problem. The gadget used to replace a

contact node is shown in the upper right corner. The lower right corner shows

a way to avoid a dirty hexagon.

x z

y

x ⊕ y ⊕ z = 0

011 101

110 000

x z

y

x ⊕ y ⊕ z = 1

010 001

111 100

Figure 3: Equation gadgets for 4-MIS.

Given an independent set (a solution) I in graph G we form a solution of S

as follows. If A

x

\ I consists of one type of nodes only (i.e. only 0-nodes or only

1-nodes), we assign to x the value equal to this type. In this case, we say that

A

x

is pure. If A

x

is dirty, can purify it without decreasing the size of I . Below

we describe this puri�cation in detail.

Suppose �rst that a hexagon H is dirty (a checker gadget or a part of a

contact gadget). It is easy to see that H can be dirty in one way only: H \ I is

a pair of nodes that forms a \missing diagonal" of H . In the lower right part of

Fig. 2, we assume that fa; bg is this pair. The construction of G assures that in

this case there exists a quadrilateral (c; d; e; f) as in this �gure, either because

fe; fg is a diagonal of an adjacent hexagon, or because hexagon H is a part of a

contact gadget and this quadrilateral is the square included in this gadget. One

must observe that in the cases we consider nodes adjacent to c and d are either

14

adjacent to a or b (and consequently they cannot be in I) or belong to fe; fg.

If e 62 I , we can purify H removing a from I and inserting c, if f 62 I , we do it

by removing b and inserting d. One can see that one of these two cases must

hold. Moreover, if the edge fc; dg is shared with another gadget, we can always

choose the replacement in such a way that we do not make the other gadget

dirty when we purify H .

Once we made all hexagons pure, we can make every contact gadget pure

as well. Suppose that the gadget from the upper right corner of Fig. 2 is dirty.

There are two cases: if a 2 I , then the hexagon (c; d; e; f; g; h) is 0-pure and we

can replace a with h; the case when b 2 I is symmetric.

Now we can modify I so that each edge corresponding to an equation with

two variables contains a node of I i� the respective equation is true. If such an

edge contains a b-node (bf0; 1g), than both gadgets containing this edge must

be b-pure; if both of them are b-pure, we can insert the b-node of this edge to I .

If we partition G into gadgets corresponding to equations, that a gadget A

of an equation with three variables consists of 16 nodes: a square contained in

a gadget of each participating (contact) variable and four special nodes corre-

sponding to four legal combinations of variable values. Our goal is to assure

that if the this equation is true, A \ I contains 7 nodes and 6 if the equation is

false. Clearly, we can place two nodes of I in each square, so A \ I always has

at least 6 nodes. We consider three cases, according to the number of special

nodes in A \ I . If this number is 0 and the equation is false, we are done. If it

is 0 and the equation is true, then we can insert the special node corresponding

to the combination of the values of the three variables. If this number is 1 and

the equation is true, again, we are done. If the equation is false, than one of

the special node p contained in I wrongly describes one of the variable values,

and so it is connected to a node q in the respective contact gadget that has the

type equal to the value of this variable; clearly we can replace p with q. Now

suppose that this number is 2. Because the equation gadget is very symmetric,

it su�ces to consider one case, e.g. that the two special nodes in I are 000 and

011. In this case the squares of y and z contain only one node of I each, thus

we can replace 000 and 011 with nodes from these two squares.

To �nish our reasoning, it remains to perform the accounting. We start with

an HYBRID instance with 60kn equations with two variables and 2kn equations

with three variables, and the di�cult question whether we can satisfy at least

(62� �)kn equations, or at most (61+ �)kn. Each of 2kn gadgets corresponding

to equations with three variables contributes 6 nodes to an independent set,

even if they are false. Moreover, each gadget contributes a node if the respective

equation is true. As a result, the new di�cult question is whether the maximum

independent set contains at least (12+62��)kn nodes, or at most (12+61+�)kn.

Theorem 10. For any � 2 (0; 1=2), it is NP-hard to decide whether an instance

of 4-MIS with 152n nodes has the maximum size of an independent set above

(74� �)n or below (73 + �)n.

15

Figure 4: Contact gadget for 5-MIS.

Figure 5: Consistency wheel for 3-MIS.

Suppose now that we can reduce the size of the gadget corresponding to

an equation with three variables so it consists of 10 nodes rather than 16, and

it contributes 4 nodes to an independent set if the equation is false, and 5 if

it is true. In this case the above accounting would show that for graphs with

140n nodes it is di�cult to distinguish between those that have a maximum

independent set with at least (68 � �)n nodes and those that have at most

(67 + �)n nodes. We can achieve this by constructing the gadget for replacing

contact nodes that has two nodes less than the one in Fig. 2. However, some

nodes in this gadget have degree 5 (see Fig. 4 and hence the improved result,

mentioned in Table 1, applies to 5-MIS (and, by extension, 5-Node Cover).

Because in these instances only 12n nodes out of 140n have degree 5, we believe

that this result should be easy to improve.

We can describe a similar reduction from HYBRID to 3-MIS. Given a HY-

BRID system of equations S, we form a graph G of degree 3. Again, each

variable x of HYBRID is replaced with a gadget A

x

; the gadget of a checker

variable is a hexagon, and a gadget of a contact variable is a hexagon augmented

with a trapezoid, a cycle of 6 nodes that shares one edge with the hexagon. The

hexagons used here have no chords. If two variables/nodes x; y are connected

by an equation/edge, x = y, we connect their hexagons with a pair of edges to

form a rectangle in which the edges of the hexagons and the new edges alternate.

The rectangle thus formed is a gadget of this equation. If three variables are

connected by an equation/hyperedge, say, x� y � z = 0, the trapezoids of A

x

,

A

y

and A

z

are connected to four special nodes of the gadget of this equation.

As a result, the gadget of this equation consists of 3 trapezoid and 4 special

nodes, for the total of 22 nodes. The details are shown in Fig 5 and Fig. 6.

16

x

y

z

110

011 101

000

x ⊕ y ⊕ z = 0

x

y

z

111

010 001

100

x ⊕ y ⊕ z = 1

Figure 6: Equation gadgets for 3-MIS.

Given a solution of the new problem, and independent set I ofG, we translate

it into a solution of S in the same manner as before. Again, if some variable

gadget are dirty, we need to purity them, so that this translation will be well-

de�ned. The beginning of the puri�cation is same as before: we purify dirty

hexagon using the method illustrated in the lower right corner of Fig. 2. As a

result, all checker gadgets become pure. We can also insists that if a checker

variable x is connected to a contact y, I contains a node in the intersection of

the gadget of this equation (a rectangle) with A

x

.

Now we consider a contact gadget A

x

. Of H

x

is the hexagon of A

x

, we will

say that A

x

�H

x

is the front piece of A

x

and we use F

x

to denote it. Before we

proceed, we make the following observation:

Observation. Assume that jF

x

\ I j = i and that A

u

and A

v

are the adjacent

checker gadgets. We can modify I so that A

x

becomes pure, A

u

\ I and A

v

\ I

do not change, and the size of A

x

increases by 2� i.

Now we can return to the gadget of x � y � z = 0. Our goal is that after

all stages of the puri�cations, each variable gadgets is pure, each trapezoid

contains 3 nodes of I and if the equation is satis�ed (we can decide that once

the the gadget variables are pure and the value translation is de�ned) its gadget

contains the special node described by the triple of values of x; y and z; otherwise

no special nodes belong to I. As a result, a satis�ed equation corresponds to

10 nodes in I and an unsatis�ed equation corresponds to 10. Moreover, a

satis�ed equation with two variables corresponds to 2 nodes in I . This will

lead to the following accounting: the question whether we can satisfy at least

(62 � �)kn equations or at most (61 + �)kn, where 60kn equations have two

variable translates into the question whether the maximum independent set has

at least (2� 60 + 20� �)kn elements or at most (2� 60 + 19 + �)kn. This will

lead to the following theorem:

The �rst case that we consider during the puri�cation of an equation gadget

is when I contains all 4 of its special nodes. In this case, jF

v

\ I j = 0 for

v = x; y; z; according to the Observation, we can remove 4 special nodes form

I , make all the participating contact gadgets pure and increase the size of I by

17

at least 6-4. The second case is when I contains 3 of the special nodes; then

jF

v

\ I � 1 for v = x; y; z; now throwing away the special nodes and purifying

the contact gadgets increases the size of I be at least 3 � 3. Lastly, when I

contains two special nodes, we can remove one of them and, by Observation 1,

purify one of the variable gadgets and restore the size of I (one can inspect all

6 cases to prove it). Thus at the end we need to consider only cases when I

contains at most one special node (from a given equation gadget).

Theorem 11. For any � 2 (0; 1=2), it is NP-hard to decide whether an instance

of 3-MIS with 284n nodes has the maximum size of an independent set above

(140� �)n or below (139 + �)n.

6 From E2-LIN-2 to 4-MIS

An instance of 4-MIS can be modi�ed to became an instance of BGD in a sim-

ple manner: each node can be replace with an alternating cycle of length 4;

adjacent nodes will be replaced with a pair such cycles that have an edge (or

two) in common. If we are \lucky", after the replacement we indeed obtain a

breakpoint graph. Unfortunately, it is not possible to apply such transforma-

tion consistently to a graph from Fig. 3. We did not �nd other gadgets that

can replace an equation with three variables and can later be replaced with a

fragment of a breakpoint graph. Therefore we will be using a translation from

�

1

(E2-LIN-2), shown in Fig 7.

fragment of a wheel of gadgets
one of the gadgets is shaded
its contacts are darker

0-node 1-node

Figure 7: A part of 4-MIS instance obtained from �

1

(E2-LIN-2).

It is easy to see that the size of the resulting 4-MIS graph is 9n, and that

the correspondence between the size of the pure solution and the score in the

original �

1

(E2-LIN-2) instance is i = 3n+ s. The \purifying" normalization has

to proceed somewhat di�erent, however. We do it in two stages. The result of

the �rst stage is that gadgets are either pure, or contain no nodes of I in their

contacts.

If an impure gadget contains only 4 nodes of I (or less), we replace these

nodes with the (unique) independent set of size 4 with no contact nodes (i.e. con-

tained in the light gray area of Fig. 2b). A gadget that contains 6 nodes of the

18

independent set is already pure. If an impure gadget contains 5 nodes of I , then

it must contain one of the two \central" points (note that the non-central nodes

form a cycle of length 10). Suppose that this central node has label 0. Then

I cannot contain neither of the 4 adjacent 1-nodes, and the remaining 7 nodes

form two isolated 0-nodes and a chain of the form 0-1-0-1-0, where the �nal 0-1

is a contact. If the chain contains 3 nodes of I , the gadget is pure. Otherwise

we can set the intersection of I with this chain to contain two 0-nodes that do

not belong to the contact; afterward the gadget becomes pure.

At this point, we have \pure" gadgets, with 0 or 1 values, and at least 5 nodes

of I , and \undecided" gadgets that contain only 4 nodes of I . If an undecided

gadget is adjacent to two gadgets that are either 0-pure or undecided, then we

can increase I by increasing the number of nodes of I to 5, all of them 0. There

is also symmetric case for 1, and one of the two cases must hold.

7 Reduction to BGD

The idea of reducing MIS problem to BGD is very simple and natural. Observe

that the set E of all edges forms an alternating cycle (AC for short), a disjoint

union of ACs is an AC, and a di�erence of two ACs, one contained in another

is also an AC. Thus any disjoint collection of ACs can be extended to a decom-

position of AC. Consequently, the goal of BGD is to �nd a collection of disjoint

ACs as close in size to the maximum as possible.

Second observation is that the consequences of not �nding an AC diminish

with the size of AC. Suppose that the input has n breakpoints (edges of one

color), and that we neglect to �nd any AC's with more than k breakpoints. The

increase in the cost of the solution is smaller than n=k, while the cost is at least

n=2. Thus if k =
(logn), such oversight does not a�ect the approximation

ratio.

The strategy suggested by these observation is to create instances of BGD

in which alternating cycles that either have 2 breakpoints, or
(logn). Then

the task of approximating is equivalent to the one of maximizing the size of

independent set in the graph G of all ACs of 4; we draw an edge between two

ACs if they share an edge.

More to the point, we need to �nd a di�cult family of graphs of degree 4

which can be converted into breakpoint graphs by replacing each node with an

alternating cycle of size 4. To this end, we can use the results of the second

reduction described in the previous section. Fig. 3 shows the result of this

replacement applied to the long cycles of gadgets. The union of ACs used in the

replacements is also a disjoint union of 5 ACs (in Fig. 3 these ACs are horizontal

zigzags). To apply the reasoning of the previous sections, we need to establish

that no cycles of length larger than 4 have to be considered. In the short version

we only sketch this argument.

The cycles in question fall into three categories. The �rst kind of cycles are

19

included in an adjacent pair of gadgets, identi�ed on their diagonally placed

corners. By an easy case analysis one can show that we can replace such cycles

with a larger collection of cycles of size 4. The second kind traverses a collection

of gadgets that is cycle-free (if each gadget is considered to be a node). Such a

cycle has a de�ned interior; the union of the cycle with its interior can be easily

decomposed into 4-cycles. The third and last kind traverses a cycle of gadgets.

Then it must be at least as long as such a cycle, i.e.
(log n).

At this point the translation is still not correct, as the resulting graphsMUST

violated property (i) of BGD: edges of one kind form a collection of cycles: in

Fig. 3 such edges form diagonal lines consisting of 5 edges each; such a line

crosses to another strip of gadgets and then proceeds without end. However,

these cycles induce cycles of gadgets, hence have length
(log n), moreover, they

are disjoint. Therefore we can remove all these cycles by breaking O(n=logn)

contacts between the strips.

Given and instance G of �

1

(E2-LIN-2) with 2n nodes and 3n edges, this

construction creates BGD instance G

0

with 20n breakpoints (edges of one color),

and the correspondence between the cost c of a cycle decomposition in G

0

and

s, Score of the corresponding solution of G is c = 20n� 3n� s. Together with

Theorem 3 this implies

Theorem 12. For any � 2 (0; 1=2), it is NP-hard to decide whether an instance

of BGD with 2240n breakpoints has the minimum cost of an alternating cycle

decomposition below (1236 + �)n or above (1237� �)n.

8 Reduction to MIN-SBR

Our reduction from BGD to MIN-SBR is straightforward, in particular we can

use the procedure GET-PERMUTATION of Caprara [C97, p.77] to obtain per-

mutation �(G) from a given breakpoint graph G. The number of reversals

needed to sort the resulting permutation is equal to the number of black edges

in G, minus the number of cycles in in the optimum cycle cover, plus the number

of hurdles, plus the number of fortresses. Therefore the di�erence between the

cost of solution for G di�ers from that for �(G) by the number of hurdles and,

possibly, 1. Now recall that we started from an instance of E2-LIN-2 problem

with some n variables and m equations, n < m. Our instance of BGD has

�(mn) nodes and edges. Below we will show that the number of hurdles not

greater than n, and thus Theorem 12 applies also to MIN-SBR.

The de�nition of hurdles is somewhat complicated, but we will use only

a small part of it. GET-PERMUTATION embeds the graph of BGD in the

following manner: vertices become consecutive numbers 1 to IV I , all white

edges are between consecutive numbers and all black edges are between non-

consecutive numbers, and permutation � satis�es the property that all black

edges have the form f�(i); �(i+1)g. Hurdles are de�ned as certain equivalence

20

Q R

to P to S

Figure 8: A slice and its possible embeddings.

classes of the transitive closure of interleave relation, de�ned on the black edges:

if i < j < k < l, then fi; kg and fj; lg interleave. We will show that the number

of these classes is bounded by n.

Observe that our BGD instance consists of n edge disjoint wheels. To show

our claim, we will prove that all black edges from a single wheel must belong to

the same equivalence class.

For the sake of our reasoning, we decompose a wheel (see Fig. 9) into slices.

The left part of Fig. 8 depicts a slice; it consists of two white paths with 5 edges

each, and 5 connecting black edges. Consecutive slices share a white path, but

each black edge is in one slice only. The right part of Fig. 8 shows all ways in

which a slice may be embedded by GET-PERMUTATION.

Fragment of a wheel of gadgets,
one of the gadgets is shaded,
its contacts have darker shade,
dash lines show the contact with
another wheel

Figure 9: Gadget for breakpoint graphs.

Fist we will show that the black edges of a single slice must be in a single

equivalence class. In the top two cases, it is evident, because each two of them

interleave. In the remaining case, we must consider the placement of white

paths of the neighboring slices, P and S, in relation to the white paths of this

slice, Q and R (notation from Fig. 8, all �gures are in Appendix A). If P lies

between Q and R, then the \outer" black edge of PQ slice interleaves all black

edges of QR slice. Similarly, if S does lie between Q and R, then the \inner"

black edge of RS interleaves all black edges of QR. It remains to consider the

21

case when P lies outside Q and R, and S inside. Then the \inner" black edge of

PQ interleaves the top 3 black edges of QR, and the \outer" black edge of RS

interleaves the bottom 3 black edges.

Now we can observe that black edges from consecutive slices must be in a

single equivalence class. As we observe at the end of the previous reasoning, for

each pair of consecutive slices, say PQ and QR, some of their black edges must

interleave. Because slices of a single wheel are connected, our claim follows.

9 Further Research and Open Problems

It would very interesting to improve still huge gaps between approximation

upper and lower bounds for bounded approximation problems of Table 1. The

lower bound of 1.0008 for MIN-SBR is the �rst inapproximability result for this

problem. The especially huge gap between 1.5 and 1.0008 for the MIN-SBR

problem re
ects a great challenge for future improvements.

Acknowledgments

We thank Johan H�astad and Luca Trevisan for stimulating remarks on the

preliminary version of this paper.

References

[AFWZ95] N. Alon, U. Feige, A. Wigderson and D. Zuckerman, Derandomized

Graph Products, Computational Complexity 5 (1995), pp. 60{75.

[A94] S. Arora, Probabilistic Checking of Proofs and Hardness of Approximation

Problems, Ph. D. Thesis, UC Berkeley, 1994;

available as TR94-476 at ftp://ftp.cs.princeton.edu

[ALMSS92] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof

Veri�cation and Hardness of Approximation Problems, Proc. 33rd IEEE

FOCS (1992), pp. 14{23.

[BP96] V. Bafna and P. Pevzner, Genome rearrangements and sorting by re-

versals, SIAM J. on Computing 25 (1996), pp. 272{289.

[BF95] P. Berman and T. Fujito, Approximating Independent Sets in Degree 3

Graphs, Proc. 4th Workshop on Algorithms and Data Structures, LNCS

Vol. 955, Springer-Verlag, 1995, pp. 449{460.

[BF94] P. Berman and M. F�urer, Approximating Maximum Independent Set in

Bounded Degree Graphs, Proc. 5th ACM-SIAM SODA (1994), pp. 365{371.

22

[BH96] P. Berman and S. Hannenhali, Fast Sorting by Reversals, Proc. 7th

Symp. on Combinatorial Pattern Matching, 1996, pp. 168{185.

[BS92] P. Berman and G. Schnitger, On the Complexity of Approximating the

Independent Set Problem, Information and Computation 96 (1992), pp. 77{

94.

[B78] B. Bollob�as, Extremal Graph Theory, 1978, Academic Press.

[C97] A. Caprara, Sorting by reversals is di�cult, Proc. 1st ACM RECOMB

(Int. Conf. on Computational Molecular Biology), 1997, pp. 75{83.

[C98] D.A. Christie, A 3/2-Approximation Algorithm for Sorting by Reversals,

Proc. 9th ACM-SIAM SODA (1998), pp. 244{252.

[CB95] D. Cohen and M. Blum, Improved Bounds for Sorting Burnt Pancakes,

Discrete Applied Mathematics 61 (1995) pp. 105-125.

[CK97] P. Crescenzi and V. Kann, A Compendium of NP Optimization Prob-

lems, Manuscript, 1997;

available at http://www.nada.kth.se/theory/problemlist.html

[FG95] U. Feige and M. Goemans, Approximating the Value of Two Prover

Proof Systems with Applications to MAX-2SAT and MAX-DICUT,

Proc. 3rd Israel Symp. on Theory of Computing and Systems, 1995,

pp. 182{189.

[GP79] W.H. Gates, and C.H. Papadimitriou, Bounds for Sorting by Pre�x

Reversals, Discrete Mathematics, 27 (1979), pp. 47{57.

[GW94] M. Goemans and D. Williamson, .878-Approximation Algorithms for

MAX CUT and MAX 2SAT, Proc. 26th ACM STOC (1994), pp. 422{431.

[H96] J. H�astad, Clique is Hard to Approximate within n

1��

, Proc. 37th IEEE

FOCS (1996), pp. 627{636.

[H97] J. H�astad, Some Optimal Inapproximability Results, Proc. 29th ACM

STOC, 1997, pp. 1{10.

[HP95] S. Hannenhali and P. Pevzner, Transforming Cabbage into Turnip (Poly-

nomial time algorithm for sorting by reversals), Proc. 27th ACM STOC

(1995), pp. 178{187.

[KST97] H. Kaplan, R. Shamir and R.E. Tarjan, Faster and simpler algorithm

for sorting signed permutations by reversals, Proc. 8th ACM-SIAM SODA,

1997, pp. 344{351.

[PY91] C. Papadimitriou and M. Yannakakis, Optimization, approximation and

complexity classes, JCSS 43, 1991, pp. 425{440.

23

[TSSW96] L. Trevisan, G. Sorkin, M. Sudan and D. Williamson, Gadgets, Ap-

proximation and Linear Programming, Proc. 37th IEEE FOCS (1996),

pp. 617{626.

24

