
On the Power of Randomized Branching

Programs

Farid Ablayev

�

Marek Karpinski

y

Abstract

We de�ne the notion of a randomized branching program in the nat-

ural way similar to the de�nition of a randomized circuit. We exhibit an

explicit function f

n

for which we prove that:

1) f

n

can be computed by polynomial size randomized read-once or-

dered branching program with a small one-sided error;

2) f

n

cannot be computed in polynomial size by deterministic read-

once branching programs;

3) f

n

cannot be computed in polynomial size by deterministic read-

k-times ordered branching program for k = o(n= logn) (the required

deterministic size is exp

�




�

n

k

��

).

1 Preliminaries

Di�erent models of branching programs introduced in [13, 15], have been stud-

ied extensively in the last decade (see for example [19]). A survey of known

lower bounds for di�erent models of branching programs can be found in [17].

Developments in the �eld of digital design and veri�cation have led to

the introduction of restricted forms of branching programs. In particular,

ordered read-once branching programs are now commonly used in the circuit

veri�cation [9], [20]. But many important functions cannot be computed by

read-once branching programs of polynomial size. For more information see

the survey [9] and papers [18], [16].

It is known that di�erent models of randomized circuits with weak enough

restrictions on the error of randomized computation have only polynomial

advantage over nonuniform deterministic models (see [2], [4], [3], and survey

�

Dept. of Computer Science, University of Bonn. Visiting from University of Kazan.

Research partially supported by the Volkswagen-Stiftung and the Basic Research Grant 96-

01-01962 Email: ablayev@ksu.ras.ru

y

Dept. of Computer Science, University of Bonn, and International Computer Science

Institute, Berkeley, California. Research partially supported by DFG Grant KA 673/4-1,

by the ESPRIT BR Grants 7097 and EC-US 030, and by the Volkswagen-Stiftung. Email:

marek@cs.uni-bonn.de

1



[6]). In the paper we de�ne the notion of a randomized branching program

in a natural way similar to the de�nition of a randomized circuit. Our goal

is to show that randomized computation with a small error for read-once

polynomial branching programs can be more powerful than deterministic ones.

The argument that can help the intuition in this direction is that ampli�cation

method does not work for the case of restricted number of input veri�cations.

Note that in the paper [7] it is presented an explicit function which needs

exponential size for presentation by a nondeterministic read-k-times branching

program for k = o(logn).

We use the variant of a de�nition of a branching program from the paper

[7]. A deterministic branching program P for computing a function g : �

n

!

f0; 1g, where � is a �nite set, is a directed acyclic multi-graph with a single

source node, distinguished sink nodes labeled "accept" and "reject". For each

non-sink node there is a variable x

i

such that all out-edges from this node are

labeled by \x

i

= �" for some � 2 � and for each � there is exactly one such

labeled edge. The label \x

i

= �" indicates that only inputs satisfying x

i

= �

may follow this edge in the computation. We call a node v an x

i

-node if all

output edges of the node v are labeled by "x

i

= �", � 2 �.

A deterministic branching program P computes a function g : �

n

! f0; 1g,

in the obvious way; that is, g(�

1

; : : : ; �

n

) = 1 i� there is a computation on

< �

1

; : : : ; �

n

> starting in the source state and leading to the accepting state.

A randomized branching program is a one which has in addition to its stan-

dard (deterministic) inputs some specially designated inputs called random

inputs. When these random inputs are chosen from the uniform distribution,

the output of the branching program is a random variable. We call a node v

of the randomized branching program a "random generator" node if output

edges of the node v are labeled by random inputs.

We say a randomized branching program (a,b)-computes a function g if it

outputs 1 with probability at most a for input x such that g(x) = 0 and outputs

1 with probability at least b for inputs x such that g(x) = 1. A randomized

branching program computes the function g with one-sided "-error if it ("; 1)-

computes the function g.

For a branching program P , we de�ne size(P ) (complexity of the branching

program P ) as the number of internal nodes in P .

From the de�nition of the complexity of a branching program it follows

that the size of randomized branching program is the sum of random generator

nodes and x

i

-nodes.

Read-once branching programs are branching programs in which for every

path, every variable is tested no more than once. A read-once ordered branch-

ing program is a read-once branching program which respects a �xed ordering

� of the variables, i.e. if an edge leads from an x

i

-node to an x

j

-node, the

condition �(i) < �(j) has to be ful�lled.

A read-k-times branching program is a branching program with the prop-

2



erty that no input variable x

i

appears more than k times on any path in the

program. A read-k-times ordered branching program is a read-k-times branch-

ing program which is partitioned into k layers such that the each layer is a

read-once ordered respecting the same ordering �. In [5] it is proved that de-

terministic ordered read-(k+ 1)-times branching programs are more powerful

than deterministic ordered read-k-times branching programs. Namely classes

of functions computed by deterministic polynomial-size read-k-times ordered

branching programs form proper hierarchy for k = o(n

1=2

= log

2

n).

We exhibit an explicit function f

n

: f0; 1;

^

0;

^

1g

2n

! f0; 1g, for which we

prove that:

(i) Function f

n

can be computed with one sided "(n)-error by randomized

read-once ordered branching program with the size O

�

n

6

"

3

(n)

log

2 n

"(n)

�

(Theo-

rem 1).

(ii) Any deterministic read-once branching program that computes func-

tion f

n

has the size no less than 2

n

(Theorem 2).

(iii) Any deterministic read-k-times ordered branching program for com-

puting function f

n

has size no less than 2

(n�1)=(2k�1)

(Theorem 3).

Function f

n

can be easily de�ned as a boolean function. For technical

reasons in the proofs we prefer to use the above notation.

Note that one can think of each internal node of a branching program as

a state of a computation. This point of view is essential for the investigation

of the amount of space necessary to compute functions. Restricted models

of branching programs are useful for the investigation of time-space tradeo�s.

We can think of read-k-time (k � 1) restrictions as a restriction on time, say

time � kn (see survey [8] for more information). This approach draws time-

space tradeo� point of view to our results. Recent results on the general lower

bounds on randomized space and time can be found in [1] and [11].

2 Function

Consider the �nite alphabet � = f0; 1;

^

0;

^

1g. As usual �

�

and �

n

denote the

set of all words of �nite length and the length n over � respectively.

For �

1

; �

2

2 �, x 2 �

�

de�ne Proj

�

1

;�

2

(x) to be the longest subsequence

x

0

of the sequence x that consists only of symbols �

1

and �

2

.

De�ne function f

n

: �

2n

! f0; 1g as follows: f(x) = 1 i�

1) Proj

0;1

(x) and Proj

^

0;

^

1

(x) have the same length and

2) i-th symbol in Proj

0;1

(x) is �

i

i� the i-th symbol in Proj

^

0
;

^

1

(x) is �̂

i

for

all i.

Informally speaking inputs of f

n

are words over the alphabet � which con-

sists of two kinds of zeroes and two kinds of ones. f

n

(x) = 1 i� a subsequence

z of x formed by the �rst kind of zeroes and ones and a subsequence y of x

formed by the second kind of zeroes and ones are binary notations of the same

natural number.

3



As it is mentioned in the section above, function f

n

can be easily de�ned

as a boolean function f

0

n

: f0; 1g

4n

! f0; 1g. One can encode, for example,

0 by 00, 1 by 01,

^

0 by 10, and

^

1 by 11. Our presentation help us to make

main ideas of proof methods more clear and help us to avoid several technical

details in proofs.

3 Results

Theorem 1. Function f

n

can be computed with one sided "(n)-error by ran-

domized read-once ordered branching program of size

O

 

n

6

"

3

(n)

log

2

n

"(n)

!

:

Proof: Randomized read-once ordered branching program P that com-

putes f

n

works as follows:

Phase 1. (probabilistic). Choose d(n) to be some function in O(n), s.t.

d(n) > 2n. P randomly selects a prime number p from the set Q

d(n)

=

fp

1

; p

2

; : : : ; p

d(n)

g of �rst d(n) prime numbers.

P selects a prime number p in the following way. P use t = dlog d(n)e ran-

dom variables y

1

; y

2

; : : : ; y

t

, where y

i

2 f0; 1g and Prob(y

i

= 1) = Prob(y

i

=

0) = 1=2. The branching program P reads its random inputs in the �xed order

y

1

; y

2

; : : : ; y

t

. Sequence y = y

1

y

2

: : : y

t

is interpreted as binary notation of the

number N(y). P selects i-th prime number p

i

2 Q

d(n)

i� N(y) = i mod d(n).

Phase 2. (deterministic). Let � 2 �

2n

be a valuation of x. Denote

� = Proj

0;1

(�), � = Proj

^

0
;

^

1

(�). We treat �̂

i

to be the number 0 if �̂

i

=

^

0,

and to be the number 1 if �̂

i

=

^

1. Sequences � and � are interpreted as binary

notations of numbers N(�) and N(�). P reads input sequence x = � in the

order x

1

; : : : ; x

2n

.

Along the computation path, P

a) veri�es if j�j = j�j,

b) counts modulo p the numbers N(�) and N(�) (a = N(�) mod p and

b = N(�) mod p) in the following way. In the beginning of computation

a := 0 and b := 0. When P reads i-th input symbol �

i

2 f0; 1g of the

sequence � (respectively i-th input symbol �̂

i

2 f

^

0;

^

1g of the sequence �) then

a := a + �

i

2

i

mod p (respectively b := b+ �̂

i

2

i

mod p).

Let �

0

and �

0

be �rst parts of the length t and k respectively of subse-

quences � and � that were tested during the path from the source to the

internal node (state) v. For the realization of the procedure described in the

phase 2 it is su�cient to store in the state v four numbers: t; k 2 f0; 1; : : : ; ng,

a = N(�

0

) (mod p), and b = N(�

0

) (mod p).

If j�j 6= j�j then P outputs 1 correct answer with probability 1.

Consider the case j�j = j�j.

4



If N(�) = N(�) (mod p) then P outputs 1 else P outputs 0.

From the description of P it follows that if N(�) = N(�)) then P with

probability 1 outputs correct answer. If N(�) 6= N(�) then it can happen

that N(�) = N(�) (mod p) for some p 2 Q

d(n)

. In these cases P make error

output.

For x = � it holds that jN(�) � N(�)j � 2

n

< p

1

p

2

� � �p

n

where

p

1

; p

2

; : : : ; p

n

are �rst n prime numbers. This means that in the case when

N(�) 6= N(�) the probability "(n) of the error of P on the input x = � is no

more than 2n=d(n).

The size of P is no more than

2

t+1

� 1 +

X

p2Q

d(n)

n

X

l=1

(n+ 1)

2

p

2

:

It is known from the number theory that the value of the i-th prime is of

order O(i log i). Therefore from the above upper bound for the size(P ) and

from the upper bound for "(n) it follows that

size(P ) � O(n

3

d

3

(n) log

2

d(n)) � O

 

n

6

"

3

(n)

log

2

n

"(n)

!

:

Theorem 2. Any deterministic read-once branching program that com-

putes the function f

n

has the size of no less than 2

n

:

Proof: Consider an arbitrary deterministic read-once branching program

P that computes function f

n

. Let v be a node of the P . Let � = �

1

�

2

: : : �

l

be a sequence of symbols over �. We will write v = v(�) if there is a sequence

x

i

1

; x

i

2

; : : : ; x

i

l

of variables such that edges x

i

1

= �

1

; x

i

2

= �

2

; : : : ; x

i

l

= �

l

form a path P from the source to the node v. Denote x(�) = fx

i

1

; x

i

2

; : : : ; x

i

l

g.

For the node v(�) denote f

v(�)

the function which is computed by P when

the node v(�) is considered as a source node. f

v(�)

is the sub function of f

n

where we have replaced the variables read on x(�) by the proper constants

from �.

For proving the lower bound of the theorem it is enough to show that for

any �; �

0

2 f0; 1g

n

, � 6= �

0

it holds that v(�) 6= v(�

0

).

Assume that there are sequences � = �

1

�

2

: : : �

n

2 f0; 1g

n

and �

0

=

�

0

1

�

0

2

: : : �

0

n

2 f0; 1g

n

such that � 6= �

0

and v(�) = v(�

0

) = v. P is read-once.

This means that f

v(�)

and f

v(�

0

)

are functions over the same set of variables

and f

v(�)

= f

v(�

0

)

. From the de�nition of the function f

n

we have that there

exists a sequence �̂ 2 f

^

0;

^

1g

n

such that f

v(�)

(�̂) = 1 but f

v(�

0

)

(�̂) = 0. This

means that f

v(�)

6= f

v(�

0

)

.

Note that the proof of the theorem 2 can be also obtained as a corollary

from theorem 2.1 [18].

5



Below we prove an exponential lower bound for the complexity of pre-

sentation of the function f

n

by deterministic read-k-times ordered branching

program. For proving it we use a method based on two-way communication

game. We present this method in the lemma below for a more common notion

of ordering variables for a branching program than the traditional ones.

Note that the method based on communication game is used in the paper

[12] and later in [5] for proving lower bound for deterministic read-k-times

ordered branching programs.

De�nition 1. Call a read-once branching program a �-weak-ordered read-

once branching program if it respects an ordered partition � of the variables

into two parts X

1

and X

2

, i.e. if an edge leads from an x

i

-node to an x

j

-node,

where x

i

2 X

t

and x

j

2 X

m

, then the condition t � m has to be ful�lled.

Call a read-k-times branching program read-k-times �-weak-ordered if it is

partitioned to k layers such that the each layer is a �-weak-ordered read-once

respecting the same ordered partition � of variables in each layer.

A �-weak-ordering of variables of a branching program P means that if

some input x

i

2 X

2

is tested by P , then on the rest part of computation path

no variables from X

1

can be tested.

We call branching program P a read-k-times weak-ordered if it is read-k-

times �-weak-ordered for some ordered partition � of the set of variables of P

into two sets.

From the de�nition it follows that if read-once (read-k-times) branching

program is ordered then it is weak-ordered.

For a function g : �

n

! f0; 1g and for a partition � of the set of variables

x of g into two parts X

1

and X

2

, denote by C

k;�

(g) a k-round deterministic

communication complexity of g for the communication game with two players

A and B where A obtains variables from the �rst part X

1

of variables and B

obtains variables from the second part X

2

of variables of g.

Lemma 1. Let for a function g : �

n

! f0; 1g P be a deterministic read-

k-times �-weak-ordered branching program that computes g. Then

size(P ) � 2

(C

2k�1;�

(g)�1)=(2k�1)

:

Proof: Consider the following communication game with two players A

and B for computing function f

n

. Let X

1

and X

2

be two sets determined by

partition � of a set of variables x of P . Part of the input corresponding to

X

1

is known to A, and part of the input corresponding to X

2

is known to

B. Players A and B have the copy of P . In order to compute f

n

, A and B

communicate with each other in (2k� 1) rounds by sending messages in each

round according to the following protocol �. Player A is the �rst one to send

a message. The output is produced by B. Let � 2 �

2n

be a valuation of x.

Denote �

A

and �

B

parts of input � which correspond to variables from X

1

and X

2

(inputs of A and B), respectively.

6



For each i, 1 � i � k�1, communication protocol � simulates computation

on the i-th layer of P by two communication rounds 2i� 1 and 2i.

First round: Player A starts simulation of P on his part �

A

of input �

from the source of P . Let v

1

be a node which is reachable by P on �

A

from

the source. Player A sends node v

1

to B.

Second round: Player B on obtaining message v

1

form A starts its simula-

tion of P on his part �

B

of input � from the node v

1

. Let v

2

be a node which

is reachable by P on �

B

from the v

1

. Player B sends node v

2

to A.

Last round (round 2k � 1): Player A on obtaining message v

2k�2

from B

starts its computation from the node v

2k�2

on his part �

A

of input �. Let v

2k�1

be a node which is reachable by P on �

A

from the node v

2k�2

. Player A sends

node v

2k�1

to B. Player B on obtaining v

2k�1

starts its part of simulation of

P from the v

2k�1

on �

B

and then outputs the result of computation.

The message that A and B has exchanged during the computation is m =

v

1

v

2

: : : v

2k�1

. Call m a full message.

Denote by V

i

the set of all internal nodes which can be send on the i-th

round by player A to B if i is odd (by player B to A if i is even) during the

computations on �

2n

. Denote d

i

= jV

i

j. From our notation it follows that

the number of all full messages that can be exchanged on inputs from �

2n

according to protocol � is no more than

Q

2k�1

i=1

d

i

.

The number of full messages used by � cannot be less than 2

C

2k�1;�

(g)�1

2k�1

Y

i=1

d

i

� 2

C

2k�1;�

(g)�1

:

The lower bound of the lemma follows from the inequality above (with

d = maxfd

i

: i 2 f1; 2; : : : ; 2k� 1gg) for which it holds that

d

2k�1

�

2k�1

Y

i=1

d

i

� 2

C

2k�1;�

(g)�1

and hence

d � 2

(C

2k�1;�

(g)�1)=(2k�1)

:

Theorem 3. Any deterministic ordered read-k-times branching program

that computes function f

n

has the size no less than 2

(n�1)=(2k�1)

:

Proof: Let P be an ordered read-k-times branching program with an

ordering � of variables which computes the function f

n

. Consider the following

partition �̂ of variables x of f

n

into two parts X

1

= fx

�(1)

; x

�(2)

; : : : ; x

�(n)

g

and X

2

= fx

�(n+1)

; x

�(n+2)

; : : : ; x

�(2n)

g. It is obvious that P is read-k-times

�̂-weak-ordered.

Denote CM a communication matrix of the function f

n

for the partition

�̂ of the variables x. Consider the 2

n

� 2

n

sub-matrix CM

0

of CM which

7



is formed by strings that correspond to the part of inputs from f0; 1g

n

and

columns that correspond to the part of inputs from f

^

0;

^

1g

n

. Matrix CM

0

is

the E matrix (elements of the main diagonal are 1 and all rest elements are

0). This means that

C

t;�

(f

n

) � n

for t � 1. From the lower bound for C

t;�

(f

n

) above and the lemma 1 it

follows that

size(P ) � 2

(n�1)=(2k�1)

:

The lower bound of the theorem follows from considering the best read-k-

times ordered branching program that computes f

n

.

Corollary. f

n

cannot be computed by any deterministic read-k-times or-

dered branching programs in polynominal size for k = o(n= logn).

4 Further Research and Open Problems

We conclude with two open problems:

1. It will be interesting to describe how to separate "hard functions"

(functions for which randomization does not improve their branching program

complexity for the restricted number of testing variables) from the functions

which can be computed more e�ciently using randomization. Another words

it is an interesting open problem to develop new randomized lower bound

techniques for branching programs.

2. What is the exact dependence of the size of randomized branching pro-

grams on the error of computation?

Acknowledgments. We thank Sasha Razborov and Roman Smolensky

for a number of interesting discussions on the subject of the paper.

References

[1] F. Ablayev, Lower bounds for probabilistic space complexity: communication-

automata approach, in Proceedings of the LFCS'94, Lecture Notes in Computer

Science, Springer-Verlag, 813, (1994), 1-7.

[2] L. Adelman, Two theorems on random polynomial time, in Proceedings of the

19-th FOCS, (1978), 75-83.

[3] M. Ajtai and M. Ben-Or, A theorem on randomized constant depth circuits, in

Proceedings of the 16-th STOC, (1984), 471-474.

[4] C. Bennet and J. Gill, Relative to a random oracle A, P

A

6= NP

A

6= co �NP

A

with probability 1, SIAM J. Comput, 10, (1981), 96-113.

8



[5] B. Bolling, M. Sauerho�, D. Sieling, and I. Wegener, On the power of di�erent

types of restricted branching programs, ECCC Reports 1994, TR94-025.

[6] R. Boppana and M. Sipser, The complexity of �nite functions, in Handbook of

Theoretical Computer Science, Vol A: Algorithms and Complexity, MIT Press

and Elsevier, The Netherlands, 1990, ed. J Van Leeuwen, 757-804.

[7] A. Borodin, A. Razborov, and R. Smolensky, On lower bounds for read-k-times

branching programs, Computational Complexity, 3, (1993), 1-18.

[8] A. Borodin, Time-space tradeo�s (getting closer to barrier?), in Proceedings of

the ISAAC'93, Lecture Notes in Computer Science, Springer-Verlag, 762, (1993),

209-220.

[9] R. Bryant, Symbolic boolean manipulation with ordered binary decision dia-

grams, ACM Computing Surveys, 24, No. 3, (1992), 293-318.

[10] R. Frevalds, Fast probabilistic algorithms, in Proceedings of the Conference Math-

ematical Foundation of Computer Science 1979, Lecture Notes in Computer Sci-

ence, Springer-Verlag, 74, (1979), 57-69.

[11] R. Freivalds and M. Karpinski, Lower time bounds for randomized computation,

in Proceedings of the ICALP'95, Lecture Notes in Computer Science, Springer-

Verlag, 944, (1995), 183-195.

[12] M. Krause, Lower bounds for depth-restricted branching programs, Information

and Computation, 91, (1991), 1-14.

[13] C. Y. Lee, Representation of switching circuits by binary-decision programs, Bell

System Technical Journal, 38, (1959), 985-999.

[14] L. Lovasz, Communication complexity: a survey, in "Paths, Flows and VLSI

Layout", Korte, Lovasz, Proemel, Schrijver Eds., Springer-Verlag (1990), 235-

266.

[15] W. Masek, A fast algorithm for the string editing problem and decision graph

complexity, M.Sc. Thesis, Massachusetts Institute of Technology, Cambridge,

May 1976.

[16] S. Ponzio, A lower bound for integer multiplication with read-once branching

programs, Proceedings of the 27-th STOC, (1995), 130-139.

[17] A. Razborov, Lower bounds for deterministic and nondeterministic branching

programs, in Proceedings of the FCT'91, Lecture Notes in Computer Science,

Springer-Verlag, 529, (1991), 47{60.

[18] J. Simon and M. Szegedy, A new lower bound theorem for read-only-once branch-

ing programs and its applications, Advances in Computational Complexity The-

ory, ed. Jin-Yi Cai, DIMACS Series, 13, AMS (1993), 183-193.

[19] I. Wegener, The complexity of Boolean functions. Wiley-Teubner Series in Comp.

Sci., New York { Stuttgart, 1987.

[20] I. Wegener, E�cient data structures for boolean functions, Discrete Mathematics,

136, (1994), 347-372.

9


