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Abstra
t.

We design polynomial time approximation s
hemes (PTASs) for Metri
 MIN-BISECTION, i.e. dividing a

given �nite metri
 spa
e into two halves so as to minimize or maximize the sum of distan
es a
ross the 
ut.

The method extends to partitioning problems with arbitrary size 
onstraints. Our approximation s
hemes

depend on a hybrid pla
ement method and on a new appli
ation of linearized quadrati
 programs.

1 Introdu
tion

MIN-BISECTION 
onsists in dividing a graph into two equal halves so as to minimize the number of

edges a
ross the partition, and belongs to the most intriguing problems in the area of 
ombinatorial op-

timization [H97℄. The reason is that we do not know at the moment how to deal with the minimization

global 
onditions su
h as partitioning the sets of verti
es into two halves. Although there is 
urrently no

approximation hardness result for MIN-BISECTION (
f. [BK01, K02℄, see however [F02℄), the best known

approximation fa
tor is O(log

2

n) [FK00℄.

Here we 
onsider the metri
 version of that problem: given a �nite set V of points together with a metri
,

we ask for a partition of V into two equal parts su
h that the sum of the distan
es from the points of one

part to the points of the other part is minimized. It is easy to see that metri
 MIN-BISECTION is NP-hard

even if restri
ted to distan
es 1 and 2 (
f. [FK98℄). In this paper we give a polynomial time approximation

s
heme (PTAS) for metri
 MIN-BISECTION. (This answers an open problem from [FK98℄.)

We draw on two lines of resear
h to develop our algorithm. One is a method of \exhaustive sampling" for

additive approximation for various optimization problems su
h as MAX-CUT or MAX-kSAT [AKK95, F96,

GGR96, FK96, FK97, AFKK02℄. The other 
onne
ts to the previous papers on approximate algorithms for

metri
 problems and weighted dense problems [FK98, FVK00℄.

The rest of the paper is organized as follows. In Se
tion 2, we formulate some metri
 and sampling lem-

mas. In Se
tion 3, we 
onstru
t our �rst PTAS for the metri
 MIN-BISECTION problem, whi
h is purely


ombinatorial and extends [GGR96℄. In se
tion 4, we use a non-smooth extension of a linear programming

relaxation of [AKK95℄. Note that it is straightforward to adapt our algorithms to the Maximum Bise
tion

problem. In se
tion 6, we give an extension to partitioning into two parts of prespe
i�ed sizes (k; n�k) so as

to minimize the distan
es a

ross the 
ut, and a further extension to \size 
onstraint MIN PARTITIONING"

problems, where the goal is to partition into a �xed number K of parts of prespe
i�ed sizes (n

1

; n

2

; : : : ; n

K

),

so as to minimize the sum of distan
es between the points whi
h are pla
ed in di�erent parts.

In the rest of the paper, we use the following notations. (V; d) denotes a �nite metri
 spa
e. For a subset

U of V , and a vertex v 2 V , we write d(v; U ) =

P

u2U

d(u; v). For A;B � V , d(A;B) =

P

u2A;v2B

d(u; v).

Let w

u

= d(u; V ), W

U

=

P

u2U

w

u

, and W = W

V

.
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2 Preliminary Results

2.1 First attempt

One natural approa
h is to use random (suitably biased) sampling to estimate, for ea
h point v, the sum of

distan
es from v to ea
h side of the optimal bise
tion, d(v; L) and d(v;R). For points whi
h have about the

same sum of distan
es to either side of the partition, it would intuitively seem that it does not matter on

whi
h side they are pla
ed.

Unfortunately, this intuition is misleading, as the example in Figure 1 shows: we have four sets of verti
es,

A, B, C, D, ea
h 
ontaining n verti
es. All distan
es inside A, inside D, between A and B, and between C

and D are equal to 1. All other distan
es are equal to 2.

A

C

B

D

B

C

Figure 1: An example showing why, even if we have a reliable estimate of d(v; L) and of d(v;R) for every v,

that is not suÆ
ient to 
onstru
t a near-optimal partition in the natural manner.

It is not hard to 
he
k that on that input, the minimum bise
tion 
onsists of the partition (L = A[ C;R =

B [D) and has value OPT = 6n

2

.

For v 2 B, d(v; L) = 3n while d(v;R) = 4n� 2. Similarly for v 2 C. Thus an estimator will easily be able

to 
lassify 
orre
tly the verti
es of B and of C.

Noti
e that for v 2 A, d(v; L) = 3n�1 ' 3n = d(v;R). Similarly, for v 2 D, d(v;R) = 3n�1 ' 3n = d(v; L).

Hen
e our sampling and estimating approa
h will 
onsider all of these verti
es to be equivalent and therefore

pla
e half of them on the left side and half of them on the right side, at random. This 
reates the bise
tion

on the right hand side of Figure 1. The value of that bise
tion is: 13n

2

=2, whi
h is a 
onstant fa
tor more

than OPT.

This shows that, even if a vertex u is su
h that d(u; L) ' d(u;R), it still matters where u goes.

2.2 Metri
 lemmas

We are going to formulate some metri
 results used in this paper.

Proposition 1 ([FKKR03℄) Let X;Y; Z � V . Then jZjd(X;Y ) � jXjd(Y; Z) + jY jd(Z;X):

Lemma 1 ([FK98℄) d(v; u) � 4w

v

w

u

=W for every u; v.

The following lemma implies that, in order to get a PTAS for metri
 MIN-BISECTION, it suÆ
es to obtain

an additive approximation to within �W .

Lemma 2 The optimal value of Metri
 MIN-BISECTION satis�es OPT � W=6.
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Proof: Let (L;R) be the optimal min bise
tion. Apply Proposition 1 to X = Y = L;Z = R and to

X = Y = R;Z = L to get

�

2(n=2)OPT � (n=2)d(L;L)

2(n=2)OPT � (n=2)d(R;R):

Thus W = d(L;L) + d(R;R) + 2d(L;R) � 6OPT .

In the (k; n� k) Metri
 MIN-PARTITIONING problem, we are given a metri
 spa
e (V; d) on n points and

an integer k < n. The goal is to partition V into two sets with sizes k and n� k so as to minimize the sum

of distan
es a
ross that partition. (Thus, MIN-BISECTION is the parti
ular 
ase of k = n=2.) Lemma 2

generalizes to Metri
 MIN-PARTITIONING as follows.

Lemma 3 The optimal value of (k; n� k) Metri
 MIN-PARTITIONING satis�es

OPT � W

k(n� k)

2((n� 1)(n� k) + k(k � 1))

:

Proof: Apply Proposition 1 again to X = Y = L;Z = R and to X = Y = R;Z = L to get

d(R;L) � max(

k

n � k � 1

d(R;R);

n� k

k � 1

d(L;L))

The maximum is minimized by equalizing the two terms on the right hand-side of the above, hen
e the

Lemma.

2.3 Sampling lemmas

We re
all, in the Lemma below, an inequality of Hoe�ding (see also [HM98℄, Theorem 2.5, page 202).

Lemma 4 ([H63℄) Let (Y

i

) be a sequen
e of independent random variables su
h that 0 � Y

i

� b

i

for every

i. Let Z =

P

1�i�n

Y

i

. Then, for any a > 0, we have

Pr(jZ �EZj � a) � 2e

�2a

2

=(

P

b

2

i

)

:

Corollary 1

E(jZ � EZj) �

r

�

P

b

2

i

2

:

Proof: E(jZ � EZj) =

R

Pr(jZ � EZj > x)dx �

R

2e

�2x

2

=(

P

b

2

i

)

dx.

For U � V , the following lemma shows how to estimate d(v; U ) from a small biased sample of U .

Lemma 5 (Metri
 Sampling) Let t be given and U � V . Let T be a random sample fu

1

; u

2

; :::u

t

g of U

with repla
ement, where ea
h u

i

is obtained by pi
king a point u 2 U with probability w

u

=W

U

. Consider a

�xed vertex v 2 V . Then:

Pr

 

�

�

�

�

�

d(v; U )�

W

U

t

X

u2T

d(v; u)

w

u

�

�

�

�

�

� �d(v; U )

!

� 1� 2e

�t�

2

=8

E(jd(v; U )�

W

U

t

X

u2T

d(v; u)

w

u

j) � 2

r

2�

t

d(v; U ):

Proof: Consider the random variable Z =

P

u2T

d(v; u)=w

u

. We have:

Z =

t

X

i=1

Y

i

;
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where the Y

i

s are i.i.d.r.v.'s with

8u 2 U; Pr

�

Y

i

=

d(v; u)

w

u

�

=

w

u

W

U

:

Y

i

has average value d(v; U )=W

U

and maximum possible value at most 
 = 4d(v; U )=W

U

(by Lemma 1

applied to U [ fvg). Applying Lemma 4 and its 
orollary and s
aling by W

U

=t gives the lemma.

Lemma 6 Let Let s = 3=�

2

be given and U � V . Let T be a random sample fu

1

; u

2

; :::u

s

g of U with

repla
ement, where ea
h u

i

is obtained by pi
king a point u 2 U with probability w

u

=W

U

. and 
onsider

a partition of U = (U

L

; U

R

). Assume that W

U

L

� W

U

R

. Then, with probability at least 1 � �, we have

jS \ U

L

j � 1=�

2

.

Proof: Note that the probability that any �xed point of S falls in U

L

is at least 1=2 and that these events

are independent. Thus, the probability distribution of t dominates the Binomial distribution B(s; 1=2). The

assertion of the lemma then follows from Lemma 4.

We will use the Metri
 Sampling Lemma jointly with exhaustive sampling. In our algorithms, the target

U will be unknown; we will take a random biased sample S of a set whi
h is larger than U , and try every

possible subset T of S, so that, when we happen to try T = S \ U , our subset T will be a biased sample of

U .

3 A Combinatorial PTAS

In this se
tion we design and analyze a 
ombinatorial PTAS for metri
 MIN-BISECTION. The method

builds on the known metri
 sampling of [FK98℄ and hybrid pla
ement te
hniques of [GGR96℄.

The algorithm 
an be found in Figure 2. It takes as input a �nite metri
 spa
e (V; d). It makes a series of

guesses and returns, when all these guesses are 
orre
t, a bise
tion of V whose 
ost is, with probability at

least 3=4, at most (1 +O(�))OPT. The algorithm assumes that n is larger than some 
onstant value, sin
e

for n small enough, one 
an just solve the problem by exhaustive sear
h on V .

Theorem 1 With probability at least 3=4, the algorithm of Figure 2 
omputes a (1 + O(�)) approximation

to Metri
 MIN-BISECTION. Its running time is n

2

� 2

O(1=�

2

)

.

3.1 Preliminary Properties

We start with the following Lemma.

Lemma 7 Consider the partition 
onstru
ted by the algorithm, (B; V

1

; : : : ; V

`

). Consider the minimum

partition of V , subje
t to the further 
onstraint that it must be a bise
tion of every V

j

. Then its expe
ted

value is at most OPT+ O(W

p

`=n).

Proof: The optimal bise
tion (L

�

; R

�

) indu
es a partition (L

�

j

; R

�

j

) of V

j

. For ea
h j, if jL

�

j

j > jR

�

j

j, we

move (jL

�

j

j � jR

�

j

j)=2 random verti
es from L

�

j

to R

�

j

(or vi
e-versa if jL

�

j

j < jR

�

j

j). This de�nes a bise
tion

(L;R) satisfying the 
onditions of the lemma.

Using X

u

= 1I(u 2 V

j

), the 
ardinality of L

�

j


an be written as

P

u2L

�

X

u

, and a Chernov bound shows that

E(jL

�

j

�

�

2

jU jj) = O(

p

n=`):

Similarly for R

�

j

. Thus the expe
ted number of points moved is O(

p

`n).

The 
hange in value when going from (L

�

; R

�

) to (L;R) is at most the weight of the points whi
h are moved.

The points moved have random weights, hen
e the expe
ted weight of the points moved equals O(W

p

`=n).
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1. Large weight verti
es. Let B denote the set of verti
es with weight > �

2

W=10 and let U = V nB.

2. Sampling. Let s = 3=�

2

. Take a random sample S of U of size s obtained by independently

drawing s points u

1

; u

2

; :::u

s

a

ording to: Pr(u

1

= u) = w

u

=W

U

for u 2 U .

3. Exhaustive sear
h. Let P

0

= (L;R) be an (unknown) near-optimal bise
tion. By exhaustive

sear
h, guess B

L

= B \ L and B

R

= B \ R. Let U

L

= U \ L and U

R

= U \ R (U

L

and U

R

are

not known). Assume that W

U

L

� W

U

R

. By exhaustive sear
h, guess T = S \ U

L

. Let t = jT j.

Moreover, by exhaustive sear
h, guess

[

W

U

L

, the power of (1 + �) whi
h is 
losest to W

U

L

.

4. Estimation.

8v 2 V; let e

v

= minf

[

W

U

L

t

X

u2T

d(v; u)

w

u

+ d(v;B

L

); w

v

g: (1)

5. Partition. Let ` = 1=� and de�ne a partition V

1

; V

2

; :::; V

`

of U by pla
ing ea
h vertex in a V

j


hosen uniformly at random (possibly moving one vertex from ea
h V

j

to B if ne
essary so that the


ardinality of V

j

is even).

6. Constru
tion. Let A

0

= L

0

and B

0

= R

0

.

For ea
h j = 1; 2; : : :; `, do the following:

(a) Estimation. For ea
h v 2 V

j

, let

f

v

=

X

k<j

d(v;A

k

) +

`� (j � 1)

`

e

v

; (2)

b

b(v) = f

v

� (w

v

� f

v

):

(b) Constru
t a bise
tion (A

j

; B

j

) of V

j

by pla
ing the jV

j

j=2 verti
es with smallest value of

b

b(v)

in B

j

and pla
ing the other jV

j

j=2 verti
es in A

j

.

Let A = [

j

A

j

and B = [

j

B

j

.

7. Output. Output the best of the bise
tions (A;B) thus 
onstru
ted.

Figure 2: A 
ombinatorial algorithm for metri
 Minimum Bise
tion.
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Pl0P =(L,R)

...

...

A0

A1

Pj

v

L0B

V1

Vj

Vl

...

...

...

...

A0

A1

Aj

Al

Figure 3: The hybrid partitions used by the 
ombinatorial algorithm. f

v

is an estimate of d(v;Left(P

j

)) for

v 2 V

j

.

3.2 Proof of Theorem 1

The �rst part of the analysis is purely deterministi
 and, ex
ept for the last inequality, quite similar to the

analysis in [GGR96℄.

3.2.1 Deterministi
 analysis

Let P

j

be the following hybrid bise
tion:

P

j

= (

[

k<j

A

j

[

[

k�j

L

j

;

[

k<j

B

j

[

[

k�j

R

j

) = (Left(P

j

);Right(P

j

)):

The output is P

`

:

COST(P

`

)� COST(P

0

) �

X

1�j�`

[COST(P

j

)� COST(P

j�1

)℄:

Consider the verti
es whi
h are 
lassi�ed di�erently in P

j�1

and in P

j

: there is a subset X = fx

1

; : : : ; x

m

g

of L

j

and a subset Y = fy

1

; : : : ; y

m

g of R

j

, of the same 
ardinality, su
h that A

j

= L

j

� X + Y and

B

j

= R

j

� Y +X. For ea
h vertex u, let b(u) = d(u;Left(P

j�1

))� (w

u

� d(u;Left(P

j�1

))): We have:

COST(P

j

) �COST(P

j�1

) �

X

x

i

2X

b(x

i

)�

X

y

i

2Y

b(y

i

) + 2

X

X�Y

d(x; y)

�

X

1�i�m

(b(x

i

)� b(y

i

)) + 2d(V

j

; V

j

):

Now, here is the 
entral part of the proof:

b(x

i

)� b(y

i

) = (b(x

i

)�

b

b(x

i

)) + (

b

b(x

i

)�

b

b(y

i

)) + (

b

b(y

i

)� b(y

i

)) � (b(x

i

) �

b

b(x

i

)) + (

b

b(y

i

)� b(y

i

));
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sin
e x

i

is pla
ed to the right and y

i

is pla
ed to the left, and so by de�nition of the algorithm it must be

that

b

b(x

i

) �

b

b(y

i

). Thus

COST(P

j

) �COST(P

j�1

) �

X

u2V

j

jb(u)�

b

b(u)j+ 2d(V

j

; V

j

) (3)

� 2

X

u2V

j

j

X

k�j

d(u; L

k

) �

` � (j � 1)

`

(e

u

� d(u;B

L

))j+ 2d(V

j

; V

j

): (4)

Now,

j

X

k�j

d(u; L

k

) �

` � (j � 1)

`

(e

u

� d(u;B

L

))j �

j

X

k�j

d(u; L

k

)�

`� (j � 1)

`

d(u; U

L

)j+

`� (j � 1)

`

jd(u; U

L

)� (e

u

� d(u;B

L

))j: (5)

We must now use probabilisti
 tools to analyze this equations.

3.2.2 Probabilisti
 analysis

We �rst analyze the �rst term of the right hand side of Equation 5.

Fix v 2 V

j

and let Z

v

=

P

k�j

d(v; L

k

). The expe
tation of Z

v

is d(v; U

L

), and so we must analyze

jZ

v

� EZ

v

j. We have: Z

v

=

P

u2U

L

d(v; u)X

u

, where the X

u

are i.i.d.r.v.'s, with X

u

equal to 1 with

probability (` � (j � 1))=` and to 0 with the 
omplementary probability.

We split the sum into two parts, writing Z

v

= A

v

+ B

v

, with

�

A

v

=

P

u:d(u;v)�w

v

�=

p

n

d(u; v)X

u

B

v

=

P

u:d(u;v)>w

v

�=

p

n

d(u; v)X

u

:

The �rst of these two parts is straighforward: applying Lemma 4 to A

v

, with b

i

= w

v

�=

p

n, yields

E(jA

v

� EA

v

j) � �w

v

:

For the se
ond part, from Proposition 1 for X = fug; Y = fvg, Z = V , we get nd(u; v) � w

u

+ w

v

, so

d(u; v) > w

v

�=

p

n implies that w

u

> (�

p

n � 1)w

v

. Thus d(u; v) � (w

u

+ w

v

)=n � 2w

u

=n. Applying

Lemma 4 to B

v

, with b

u

= 2w

u

=n, now yields

E(jB

v

�EB

v

j) �

r

�

2

P

u

4w

2

u

n

2

:

Sin
e

P

w

u

� W and maxw

u

� �

2

W , we have

P

w

2

u

� �

2

W

2

, and so

E(jB

v

� EB

v

j) �

p

2�

�W

n

:

Summing gives

E(jZ

v

�EZ

v

j) � �w

v

+

p

2�

�W

n

:

As for the se
ond term of Equation 5, from Lemma 5 applied to U

L

, we have:

E(jd(v; U

L

)� (e

u

� d(u;B

L

))j) � 2

r

2�

t

d(v; U

L

) � 2

r

2�

t

w

v

:

The rest of the proof is easy and entirely deterministi
 again.
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3.2.3 Deterministi
 analysis

Plugging these bounds into Equation 4, we obtain:

E(COST(P

j

)� COST(P

j�1

)) � 2

X

u2V

j

(�w

u

+

p

2��

W

n

+ 2

r

2�

t

w

u

) + 2E(d(V

j

; V

j

)):

Summing over j, we get:

E(COST(P

`

) �COST(P

0

)) � 2[�W +

p

2��W + 2

r

2�

t

W ℄ + 2E(

X

j

d(V

j

; V

j

)):

The last term is easy to deal with: its expe
tation is bounded by W=`.

From Lemma 6, t � 1=�

2

with probability at least 1� �, and then, with Lemma 7 we obtain:

E(COST(P

`

) �OPT) � 2W [�(1 + 3

p

2�) +

1

`

+O(

r

`

n

)℄:

Using Markov's inequality, remembering that ` = 1=� and 
omparing with the lower bound from Lemma 2

then 
on
ludes the proof of the Theorem.

Remarks.

1. It is not ne
essary to take the number of parts V

j

exa
tly ` = 1=�. The algorithm 
ould be adapted to

work for any number ` 2 [1=�; n�

2

℄. Indeed, going ba
k to previous work on dense graphs, one may have

been intrigued to noti
e that a partition into ` = 1=� parts was used in [GGR96℄, while a partition into

` = n�

2

parts was used in [F96℄. Indeed, we now see from the above analysis that, with our algorithm,

the number of parts is largely irrelevant: this may serve as an explanation. Perhaps the algorithm is

ni
er to think about in the 
ase when ` = n�

2

, sin
e it is then very 
lose to a natural greedy algorithm:

take the verti
es by groups of 1=�

2

at a time, and bise
t ea
h group in the best possible way, taking

into a

ount the 
hoi
es made so far (and adding an estimate to take into a

ount the verti
es not yet


onsidered.)

2. The running time 
an be improved in a manner similar to [GGR96℄: �rst, in Equation 2, instead of


al
ulating d(v;A

i

) exa
tly, we 
ould estimate it via sampling, thus gaining a fa
tor of n. Se
ond,

instead of running the algorithm on the whole graph, we 
ould run it on a (larger) sample of the point

set.

3. Ex
ept for biased sampling, whi
h is spe
i�
 to the metri
 situation, the additional ideas used here

to modify the hybrid pla
ement te
hnique from [GGR96℄ 
an be applied to the dense graphs setting

as well. We 
onje
ture that in dense graphs, it might be possible to use ideas from our 
ombinatorial

algorithm so as to improve the query 
omplexity from [GGR96℄ by a fa
tor of O(1=�).

4. Considering the metri
 versus dense graph settings, let us 
ompare our 
ombinatorial algorithm in the

metri
 setting with its natural analog in the dense graph setting:

� In the metri
 setting, some verti
es 
an have overwhelming importan
e (the ones with weight


lose to W ), and so we need to set those verti
es aside and treat them separately. This does not

happen in dense graphs.

� In the metri
 setting, instead of doing a straightforward uniform sample, we need to perform a

biased sample, where we give higher probability to verti
es with high weight; this is ne
essary in

order to get reliable estimates.

� In the metri
 setting, the estimate 
an be (with low probability) una

eptably large, thus we need

to 
ap it to w

v

. This does not happen in dense graphs.

8



� In the metri
 setting, the partition (V

j

) must be done at random, whereas in dense graphs, one


an take an arbitrary partition.

� In the metri
 setting the analysis no longer deals with sums of f0; 1g variables; instead the terms

in the sums 
an be quite large; thus a more sophisti
ated version of Hoe�ding's inequality is

required, and applying it requires a mu
h more deli
ate analysis.

� Finally, in the metri
 setting our lower bound on OPT means that an additive error of O(�W )

implies a PTAS for the problem; that is not true for dense graphs.

5. Fo
using on dense graphs, let us 
ompare the dense graph analog of our 
ombinatorial algorithm to

the 
ombinatorial algorithm from [GGR96℄:

� The hybrid pla
ement te
hnique, whi
h was introdu
ed in [GGR96℄, is 
entral to our algorithm

as well.

� We sample O(1=�

2

) points in total, as opposed to 
(1=�

3

ln(1=�)).

� The partition (V

j

) is random instead of arbitrary (ne
essary for this smaller sampling to work).

� Our estimator is slightly di�erent, sin
e we do not re-sample the hybrid partitions, but instead

use an estimator whi
h 
ombines the distan
es to verti
es already 
lassi�ed with a s
aled version

of the original estimate. This is ne
essary for the smaller sampling to work.

� For partitioning into two parts, we only use sampling to estimate for the distan
e from v to the

left side of the partition; sin
e the sum of its distan
es to the left and to the right side is equal

to its degree, this immediately implies an estimate for the distan
e from v to the right side of the

partition. (This is a detail).

� In the analysis, instead of separating the point set into \normal" and \ex
eptional" verti
es, we

just integrate Hoe�ding's formula so as to dire
tly use the resulting formula for the expe
ted

deviation from the mean. (It would however still have been possible to prove the result with a

separation into normal and ex
eptional verti
es).

4 A PTAS Based on Linear Programming

In this part we 
ombine exhaustive sear
h on the points with highest weights, biased sampling, and give a

new non-smooth extension of the linearization approa
h of [AKK95℄. In addition, we modify the LP approa
h

slightly (by introdu
ing n new variables z

v

) in su
h a way that one 
an 
ompute estimates by taking samples

of size O

�

(1) only (instead of O(logn)). (We believe that this improvement 
ould also be applied to the

algorithms of [AKK95℄.)

We represent a bipartition (S; T ) of V by the ve
tor (x

v

) where x

v

= 0 if v 2 S, and x

v

= 1 if v 2 T . We

denote by (L;R) an optimum bise
tion. For ea
h vertex v, e

v

will be an estimator for d(v; L).

If n is smaller than some 
onstant depending on � (see proof of lemma 11), we solve by exhaustive sear
h.

Otherwise, we run the algorithm presented on Figure 4 at the end of the paper. Throught this se
tion we

will refer to the notation used in the des
ription of this algorithm.

Theorem 2 With probability at least 3=4, the algorithm in Figure 4 
omputes a (1+6(60

p

2�+3)�) approx-

imation to metri
 MIN-BISECTION. Its running time is LP (n)2

O(1=�

2

)

, where LP (n) denotes the running

time to solve a linear program with O(n) underlying variables and 
onstraints.

4.1 Proof of Theorem 2

Let (x

v

) be the optimal bise
tion, (x

�

v

; y

�

v

) the optimal fra
tional solution of the linear program, (y

v

) the

partition obtained by the randomized rounding, and (y

0

v

) the bise
tion output by the algorithm.
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1. Large weight verti
es. Let B denote the set of verti
es v with w

v

� �

2

W=100, and let U = V nB.

2. Sampling. Let s = 3=�

2

. Take a random sample S of U of size s obtained by independently

drawing s points u

1

; u

2

; :::u

s

a

ording to: Pr(u

1

= u) = w

u

=W

U

for u 2 U .

3. Exhaustive sear
h. Let (L;R) be the (unknown) optimal bise
tion. By exhaustive sear
h, guess

B

L

= B \ L and B

R

= B \ R. Let � =

P

B

L

�B

R

d(u; v). Let U

L

= U \ L and U

R

= U \ R (U

L

and U

R

are not known). Assume that W

U

L

� W

U

R

. By exhaustive sear
h, guess T = S \ U

L

. Let

t = jT j. Moreover, by exhaustive sear
h, guess

[

W

U

L

, the power of (1 + �) whi
h is 
losest to W

U

L

.

4. Estimation.

8v 2 V; let e

v

= minf

[

W

U

L

t

X

u2T

d(v; u)

w

u

+ d(v;B

L

); w

v

g: (6)

5. Constru
tion.

(a) Let 
(x) =

P

v2U

x

v

e

v

+

P

v2U

(1�x

v

)d(v;B

R

)+�. Solve the following linear program LP (n)

with variables x

v

and z

v

, v 2 U ,

Minimize 
(x) s.t.

8

>

>

>

>

<

>

>

>

>

:

8v; 0 � x

v

� 1

8v; d(v;B

L

) +

P

u2U

(1� x

u

)d(u; v) � e

v

+ z

v

8v; z

v

� 0

P

v

z

v

� 20

p

2��W

P

v

x

v

+ jB

L

j = n=2:

Let (x

�

v

; z

�

v

) denote the optimal fra
tional solution.

(b) Use randomized rounding to obtain an integer ve
tor (y

v

): for every v independently, y

v

is

set to 1 with probability x

�

v

and to 0 with the 
omplementary probability. Together with

(B

L

; B

R

), this de�nes a partition of V .

(
) Repair the unbalan
e by moving from the side with the larger size to the other side the required

number of verti
es with smallest weights.

6. Output. Output the best of the bise
tions thus 
onstru
ted.

Figure 4: A linear programming algorithm for metri
 Minimum Bise
tion.
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e v

v

B BB

U U U

L

L

R

R

(L,R)

Figure 5: The partition used by the linear programming algorithm. e

v

is an estimate of d(v; L) = d(v; U

L

)+

d(v;B

L

).

Lemma 8 With probability at least 89=100 we have that the optimum solution (x

v

) is feasible and moreover

that

OPT = COST(x

v

) � COST(x

�

v

)� 20

p

2��W:

Proof: Let Æ

v

be the di�eren
e between e

v

and its expe
tation. By Lemma 5, we have that

E

 

X

U

jÆ

v

j

!

� 2

r

2�

t

W:

Using Lemma 6, we 
an assume that t � 1=�

2

, and use Markov's Inequality to get that

Pr

 

X

U

jÆ

v

j � 20

p

2��W

!

� 9=10

for suÆ
iently small �. This shows the feasibility of (x

v

) with probability 89=100 and proves also the se
ond

part of the lemma sin
e COST(x

v

) di�ers from COST(x

�

v

) by at most

P

U

jÆ

v

j.

Lemma 9 With probability at least 1� 1=100, we have: 
(x

�

) + 2�W � 
(y):

Proof: We must bound above the sum S =

P

U

z

v

a

v

, where z

v

= x

�

v

� y

v

; and a

v

= e

v

� d(v;B

R

) v 2 U .

Note that the absolute values of the a

v

are all bounded above by �

2

W=100. Sin
e their sum is at most W

we have that the varian
e of S is bounded above �

2

W

2

=100. Using Cheby
hev's inequality we get that S is

bounded above by �W=10 with probability 1� 1=100.

Lemma 10 With probability at least 1� 1=10, we have 
(y) + 40

p

2��W � COST(y

v

):

Proof: We have, with probability 1� 1=10,

j
(y)� COST(y

v

)j = j

X

U

y

v

(d(v; L)� e

v

� z

�

v

) j

�

X

U

z

�

v

+

X

U

jd(v; L)� e

v

j

� 20

p

2��W + 20

p

2��W

from the LP and from Lemma 5 applied to L, followed by Markov's inequality.

11



Lemma 11 With probability at least 1� 1=100, we have COST(y

0

v

) � COST(y

v

) + �W:

Proof: Note that the y

v

have expe
tation x

�

v

and varian
e bounded above by 1=4. The sum Z =

P

V

y

v

has expe
tation n=2 and varian
e at most n=4. Cheby
hev's Inequality gives us that

Pr(jZ � n=2j � �n) � 1� 4�

2

� 1� 1=100

for suÆ
iently small �. The lemma follows now from the fa
t that the sum of the �n smallest weights does

not ex
eed �W .

To prove Theorem 2, it now suÆ
es to 
ombine Lemmas 11, 10, 9 and 8 so as to prove that the value of the

partition output is at most OPT + O(�W ). By Lemma 2, this is at most (1 + O(�))OPT.

The running time follows by inspe
tion.

Remarks.

1. Ex
ept for biased sampling, whi
h is spe
i�
 to the metri
 situation, the additional ideas used here to

modify the algorithm from [AKK95℄ 
an be applied to the dense graphs setting as well.

2. Considering the metri
 versus dense graph settings, let us 
ompare our 
ombinatorial algorithm in the

metri
 setting with its natural analog in the dense graph setting:

� In the metri
 setting, some verti
es 
an have overwhelming importan
e (the ones with weight


lose to W ), and so we need to set those verti
es aside and treat them separately. This does not

happen in dense graphs.

� In the metri
 setting, instead of doing a straightforward uniform sample, we need to perform a

biased sample, where we give higher probability to verti
es with high weight; this is ne
essary in

order to get reliable estimates.

� In the metri
 setting, the estimate 
an be (with low probability) una

eptably large, thus we need

to 
ap it to w

v

. This does not happen in dense graphs.

� In the metri
 setting the analysis no longer deals with sums of f0; 1g variables; instead the terms

in the sums 
an be quite large; thus a more sophisti
ated version of Hoe�ding's inequality is

required, and applying it requires a mu
h more deli
ate analysis.

� Finally, in the metri
 setting our lower bound on OPT means that an additive error of O(�W )

implies a PTAS for the problem; that is not true for dense graphs.

3. Fo
using on dense graphs, let us 
ompare the dense graph analog of our 
ombinatorial algorithm to

the 
ombinatorial algorithm from [AKK95℄:

� The linearized programming te
hnique, whi
h was introdu
ed in [AKK95℄, is 
entral to our algo-

rithm as well.

� We sample O(1=�

2

) points in total, as opposed to 
(1= logn).

� We modify the LP slightly by introdu
ing n new variables z

v

, to make the 
onstraints more


exible. This is ne
essary for the smaller sample to work.

5 Metri
 MAX-CUT Revisited

We note that both algorithms in se
tions 3 and 4 
an be adapted to 
onstru
t mu
h more eÆ
ient algorithms

for the problem of Metri
 MAX-CUT [FK98℄.

Theorem 3 There is a PTAS for Metri
 MIN-BISECTION, with running time is O(n

2

� 2

O(1=�

2

)

).
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6 Extensions

6.1 Extension to (k; n � k) Metri
 MIN-PARTITIONING

We re
all from se
tion 2.2 the following de�nition of the (k; n� k) Metri
 MIN-PARTITIONING problem:

we are given a metri
 spa
e (V; d) on n points and an integer k < n. The goal is to partition V into two sets

with sizes k and n� k so as to minimize the sum of distan
es a
ross that partition.

Theorem 4 The problem of (k; n� k) Metri
 MIN-PARTITIONING has a PTAS.

Proof: There are two 
ases a

ording to the values of the ratio k=n and of the a

ura
y requirement �.

(i) Suppose �rst that k=n � �=2. Then we apply one of the above algorithms, say the se
ond one, with

�

0

= �

2

and the ne
essary modi�
ations 
on
erning the sizes 
onstraints: we run two distin
t LPs, one with

jLj = k and the other one with jLj = n�k. This ensures that in one of these programs we haveW

U

L

� W

U

R

.

(ii) Suppose now that k=n < �=2. We 
laim that in this 
ase a solution with approximation ratio 1 + � is

obtained just by separating the k points with smallest weights from the rest. In order to prove this 
laim,

�x attention �rst on 2 verti
es x

1

; x

2

. Let w

i

be the weight of x

i

. For any other vertex x

3

we have of 
ourse

d(x

1

; x

2

) � d(x

1

; x

3

) + d(x

3

; x

2

)

Summing over all 
hoi
es for x

3

, this gives:

w

1

+ w

2

� nd(x

1

; x

2

)

Take now k verti
es x

1

; x

2

; :::x

k

. The pre
eding inequality gives

(k � 1)

k

X

1

w

i

� n

X

i<j

d(x

i

; x

j

) (7)

Let U � V . The value of the partition (U; V nU ) is

Val(U; V nU ) =

X

x

i

2U

w

i

� 2

X

x

i

;x

j

2U

d(x

i

; x

j

)

Thus,

OPT � min

jSj=k

0

�

X

x

i

2S

w

i

� 2

X

x

i

;x

j

2S

d(x

i

; x

j

)

1

A

�

�

1�

2(k � 1)

n

�

min

jSj=k

X

x

i

2S

w

i

;

the last by using equation (7).

6.2 Extension to Size Constraint Metri
 MIN-PARTITIONING

Let K be a �xed integer. De�ne the K-ary metri
 MIN-PARTITIONING as follows. Given a sequen
e of

sizes (n

1

; n

2

; : : : ; n

K

) su
h that

P

i

n

i

= n, and given a �nite metri
 spa
e (V; d), �nd a partition of V into

K parts of sizes (n

1

; n

2

; : : : ; n

K

) so as to minimize the sum of distan
es between parts,

X

u;v in di�erent parts

d(u; v):

Theorem 5 There is a PTAS for K-ary metri
 MIN-PARTITIONING.

Proof: We use the following extension of our linear programming algorithm for (k; n � k) MIN-

PARTITIONING.
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1. If n is less than a 
ertain 
onstant, use exhaustive sear
h. Otherwise do the following.

2. Let n

1

be the largest size. If n� n

1

� �n, then use the (k; n� k) MIN-PARTITIONING algorithm of

se
tion 5.1 with k = n�n

1

. Then partition the smallest part arbitrarily into parts of sizes n

2

; n

3

; ::n

K

.

If n� n

1

> �n, do the following

3. The weight W

X

of a part X will be 
alled large if it ex
eeds �W=(K�1). Let h be the number of parts

with large weight in an optimum solution, and let n

1

; n

2

; : : : ; n

h

denote their sizes. We solve in what

follows the partitioning (n

1

; n

2

; : : : ; n

h

; n�

P

n

i

) on (V; d).

4. Let B denote the verti
es with weight � �

2

W=100 and U = V nB.

5. Take a random biased sample S of U of size s = O(1=�

4

). (Note the 
hange in the value of s 
ompar-

atively to its value of s in algorithm of �gure 2. This is due to the fa
t that now the lower bound of

OPT that we have is only 
(�W ) instead of 
(W ) for the MIN-BISECTION algorithm.

6. Guess the partition (B

1

; B

2

; : : :B

K

) of B indu
ed by the optimal solution. Let � =

P

i 6=j

d(B

i

; B

j

):

For ea
h i 2 f1; : : : ;Kg, guess the interse
tion T

i

of S with the i

th

part of the optimal partition, of

size t

i

. Also guess the approximate weight

~

W

i

of that part. Note that the number of samples needed

for a 
orre
t guess has order n

O(1=�

2

)

.

7. For ea
h v 2 U and for ea
h i, let

e

v;i

= minf

~

W

i

t

i

X

u2T

i

d(u; v)

w

u

+ d(v;B

i

); w

v

g:

8. Let 
(x) =

P

v2U

P

i

x

v;i

(

P

k 6=i

e

v;k

+

P

v;i

(1� x

v;i

)d(v;B

i

) + �. Solve the following linear program:

min
(x)

subje
t to the 
onstraints

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

8v; i x

v;i

� 0

8v;

P

i

x

v;i

= 1

8v; i d(v;B

i

) +

P

u2U

(x

u;i

)d(u; v) � e

v;i

+ z

v;i

8v; i z

v;i

� 0

P

i

P

v

z

v;i

� 3�W

8i; jB

i

j+

P

v2U

x

v;i

= n

i

Let (x

�

v;i

; z

�

v;i

) denote the optimal fra
tional solution.

9. Use randomized rounding to obtain an integer ve
tor (y

v;i

): for every v independently, 
hoose an i

a

ording to the distribution de�ned by (x

�

v;i

)

i

, and set that y

v;i

to 1 and the others to 0. Together

with (B

1

; : : : ; B

K

), this de�nes a partition of V .

10. Repair sizes analogously to the last step of the linear programming MIN-BISECTION algorithm.

This ends the des
ription of the algorithm. We prove in what follows the 
orre
tness of the above algorithm.

A key observation is the following. With a partition A

1

; A

2

; :::A

K

with part sizes n

1

; n

2

; :::n

K

we asso
iate

the (n; n � n

1

) partition (A

1

; B) whith B = A

2

[A

3

::: [ A

K

. By Lemma 3 we have that the value of this

partition is at least

W

n

1

(n� n

1

)

2((n � 1)(n� n

1

) + n

1

(n

1

� 1))

:

We distinguish between two 
ases (i) and (ii):

Case (i) If n � n

1

� �n, then the 
orre
tness follows from the 
orre
tness of the (k; n � k) MIN-

PARTITIONING algorithm,
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Case (ii) In this 
ase, the above formula gives us that the value of the partition (A

1

; B) is at least

W (1� �):�n

2((n

2

(1 � �) + �

2

n

2

)

�

�W

3

Plainly, this lower bound is also valid for the optimum of the problem. Our algorithm gives in this 
ase

an additive approximation O(�

2

W ), whi
h by what as just been proved guarantees an approximation ratio

1 +O(�) as desired. This ends the proof of Theorem 5.

7 Further resear
h

An interesting open problem is to improve running times of our PTASs as well as their sample 
omplexity

(also in the sense of random \sub-problem" sample 
omplexity of [AFKK02℄). Our Linear Program PTAS

is based on an extension of the notion of a smooth polynomial program (
f. [AKK95℄). An interesting

open problem is how far su
h an extension 
an be 
arried out. Another question would be to shed some

light on the size-
onstraint (in the general sense of this paper) MIN-SUM-K-CLUSTERING problems (
f.

[FKKR03℄).
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