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Abstra
t

We study the approximability of dense and sparse instan
es

of the following problems: the minimum 2-edge-
onne
ted

(2-EC) and 2-vertex-
onne
ted (2-VC) spanning subgraph,

metri
 TSP with distan
es 1 and 2 (TSP(1,2)), maximum

path pa
king, and the longest path (
y
le) problems. The

approximability of dense instan
es of these problems was left

open in Arora et al. [3℄. We 
hara
terize the approximability

of all these problems by proving tight upper (approximation

algorithms) and lower bounds (inapproximability). We

prove that 2-EC, 2-VC and TSP(1,2) areMax SNP-hard even

on 3-regular graphs, and provide expli
it hardness 
onstants,

under P 6= NP. We also improve the approximation ratio

for 2-EC and 2-VC on graphs with maximum degree 3.

These are the �rst expli
it hardness results on sparse and

dense graphs for these problems. We apply our results to

prove bounds on the integrality gaps of LP relaxations for

dense and sparse 2-EC and TSP(1,2) problems, related to

the famous metri
 TSP 
onje
ture, due to Goemans [18℄.

1 Introdu
tion

Re
ently, 
onsiderable e�orts of resear
hers were put

into approximating optimization problems on spe
ial

instan
es. It turned out that even when one restri
ts

the input, most of the known problems still remain

NP-hard. Of parti
ular interest are the problems on

dense and sparse instan
es, see re
ent surveys [23, 24℄

for referen
es. We study the following fundamental


ombinatorial optimization problems.

2-EC: 2-edge-
onne
ted (or 2-EC) spanning subgraph

problem, where given a 2-EC graph, the goal is to �nd

�

Max-Plan
k-Institut f�ur Informatik, Stuhlsatzenhausweg 85,

D-66123 Saarbr�u
ken, Germany. E-mail: 
saba�mpi-sb.mpg.de.

Partially supported by the IST Program of the EU under 
ontra
t

number IST-1999-14186 (ALCOM-FT).

y

Department of Computer S
ien
e, University of Bonn,

R�omerstrasse 164, D-53117 Bonn, Germany. E-mail:

marek�
s.uni-bonn.de. Supported in part by DFG grant, DI-

MACS, and IST grant 14036 (RAND-APX).

z

Max-Plan
k-Institut f�ur Informatik, Stuhlsatzenhausweg 85

D-66123 Saarbr�u
ken, Germany. E-mail: krysta�mpi-sb.mpg.de.

Partially supported by the DFG proje
t no. 1126 on \Algorithmik

gro�er und komplexer Netzwerke," and by the IST Program of the

EU under 
ontra
t number IST-1999-14186 (ALCOM-FT).

a 2-EC spanning subgraph with minimum number of

edges. A graph is 2-EC if for any pair of its verti
es,

there are at least two edge-disjoint paths between them.

2-VC: 2-vertex-
onne
ted (2-VC) spanning subgraph

problem, where the de�nition is analogous to 2-EC, but

the paths are assumed to be internally vertex-disjoint.

TSP(1,2): The traveling salesman problem on a 
om-

plete graph with weight 1 or 2 on ea
h edge. For an

instan
e of TSP(1,2) problem, the graph indu
ed by all

weight 1 edges is 
alled the input graph.

Longest path problem: Given a graph, �nd a simple

path with maximum number of edges.

Path pa
king problem: Given a graph, �nd a set of

vertex disjoint paths su
h that the number of edges in

all the paths is maximized. Single verti
es are treated

as paths with zero edges.

We study the approximability of these problems on

dense and sparse graphs. Dense instan
es of the above

problems 
onstitute a list of problems that were left

open from the approximability point of view, in the pa-

per of Arora et al. [3℄ (see also [14℄). In this paper Arora

et al. show a general te
hnique that provides polyno-

mial time approximation s
hemes for dense instan
es of

many optimization problems. It seems that one 
annot

use their methods to give better approximation ratios to

the above problems, mostly due to a non-lo
al nature of

these problems. We resolve the problem of approxima-

bility of dense versions of all these problems by prov-

ing tight upper (approximation algorithms

1

) and lower

bounds (inapproximability).

Dual instan
es to dense give sparse graphs. Many

graph optimization problems are Max SNP-hard

2

al-

ready on very restri
ted sparse instan
es { graphs with

maximum degree bounded by a 
onstant. Examples are

the vertex 
over, maximum independent set and max-

1

For a minimization (maximization, resp.) problem, a polyno-

mial time algorithm is 
alled an �-approximation algorithm, if it

�nds a solution of 
ost at most (at least, resp.) � times the 
ost of

an optimal solution. � is 
alled an approximation ratio (fa
tor),

and the problem is said to be approximable within �.

2

Max SNP-hardness implies that the problem 
annot be ap-

proximated in polynomial time within 
onstant ratios that are

arbitrarily 
lose to 1, unless P = NP.



imum 
ut problems on maximum degree 3 graphs, see

[24℄. We give the �rst known expli
it hardness fa
tors

for the 2-EC, 2-VC and TSP(1,2) problems on maxi-

mum degree 3 graphs, and on 3-regular graphs.

Suppose we are given a graph G with n verti
es,

and the minimum degree at least 
n, 
 2 [0; 1℄ is a �xed


onstant. We 
all su
h a graph 
-dense. The 
lassi
al

theorem of Dira
 [20℄ says that if 
 �

1

2

, then G has

a Hamilton 
y
le whi
h 
an be found in polynomial

time (even in the NC 
lass [9℄). Observe that the

Hamilton 
y
le 
onstitutes an optimal solution to all of

the 
onsidered problems. That is why we assume 
 <

1

2

.

Previous results.

2-EC & 2-VC: This is the simplest non-trivial version

of the 
onne
tivity problem and has been studied for

a long time, but tight approximation guarantees and

inapproximability results are not fully understood yet

[7, 17, 25, 33, 29, 13, 8℄. For 2-EC, Khuller and Vishkin

[25℄ gave a

3

2

-approximation, improved by Cheriyan et

al. [7℄ to

17

12

, and to

4

3

by Vempala and Vetta [33℄. The

best known result, due to Krysta and Kumar [29℄, is

a (

4

3

�

1

1344

)-approximation. For 2-VC, Khuller and

Vishkin [25℄ gave a

5

3

-approximation, improved to

3

2

by

Garg et al. [17℄, and to

4

3

by Vempala and Vetta [33℄.

Both 2-VC and 2-EC problems are NP-hard even

on 3-regular planar graphs. Fernandes [13℄ proved Max

SNP-hardness on arbitrary graphs; Czumaj & Lingas [8℄

show Max SNP-hardness on bounded degree 6 graphs.

These results do not give expli
it hardness 
onstants.

3

TSP(1,2): For this version of the TSP, Karp has shown

NP-
ompleteness in his seminal paper [22℄. Papadim-

itriou and Yannakakis [31℄ prove Max SNP-hardness of

this problem, when the input graph has maximum de-

gree 6. They also show a

7

6

-approximation algorithm

for TSP(1,2). The �rst expli
it hardness fa
tor for

TSP(1,2) was 5381=5380, due to Engebretsen [11℄. This

was improved to 743=742 by Engebretsen & Karpinski

[12℄. Let us �x any 
 2 (0; 1=2). In [14℄, de la Vega &

Karpinski show, that TSP(1,2) is Max SNP-hard, when

the input graph is 
-dense (impli
it in their work is a

parametrization of the hardness fa
tor by 
).

Longest path problem: Given a graph, let n be

the number of its verti
es. Karger et al. [21℄ have

given a polynomial algorithm that �nds a path of

length 
(logn) in a 1-tough graph, i.e. an 
(

log n

n

)-

approximation (Hamiltonian graphs are also 1-tough).

Alon et al. [2℄ give a polynomial algorithm that for

any 
onstant p > 0, �nds a path of length p logn,

3

In this paper, saying that a minimization problem is hard to

approximate or inapproximable within a fa
tor of f means that

there is no (f � �)-approximation algorithm for any � > 0, unless

P = NP. f is 
alled a hardness fa
tor (or 
onstant). Similarly for

a maximization problem.

if there is su
h a path. Vishwanathan [35℄ has im-

proved this bound for Hamiltonian graphs, by showing

a 
(

(logn)

2

n(log logn)

2

)-approximation. The problem is very

hard, as it has no 
onstant approximation for any 
on-

stant, unless P = NP, even for graphs with maximum

degree 4 [21℄. Bazgan et al. [4℄ have proved the same

hardness result on 3-regular Hamiltonian graphs. The

same holds for the longest 
y
le problem.

For dense graphs, Karger et al. [21℄ gave a polyno-

mial algorithm that �nds a path of length at least m=n

in a graph with n verti
es and m edges. This is a




2

-

approximation algorithm for the longest path problem

on 
-dense graphs. F. de la Vega & Karpinski [14℄ prove,

that the problem isMax SNP-hard on 
-dense instan
es,

for any �xed 
 2 (0; 1=2).

Path pa
king problem: This problem �nds many ap-

pli
ations, see [34℄. Vishwanathan [34℄ shows that from

the approximation view point, the problem is equivalent

to TSP(1,2). This, and the algorithm of Papadimitriou

and Yannakakis [31℄ imply a

5

6

-approximation algorithm

for the path pa
king problem (see [34℄ for details). The

path pa
king problem is also Max SNP-hard [34℄.

Our 
ontributions.

We give a new, general and uniform te
hnique that

provides approximation algorithms for dense instan
es

of all the problems above. Our te
hnique provides

the �rst approximation algorithms for the mentioned

problems that are parametrized with the density 
,

where the parametrization is tight. This means that in

ea
h 
ase the approximation ratio approa
hes 1 when

the density 
 approa
hes

1

2

, whi
h by Dira
's result

is the threshold above whi
h the problems be
ome

polynomially solvable. Our algorithms and analyses

rely on deep results from graph theory, for instan
e

the Regularity Lemma of Szemer�edi [32℄, the Blow-up

Lemma of Koml�os, S�ark�ozy and Szemer�edi [26℄, or a

generalization of Dira
's Theorem due to Bollob�as and

Brightwell [20℄. The algorithms are very eÆ
ient, as

they 
an be implemented in parallel in the NC 
lass

(details omitted). For NC implementations of the Blow-

up and Regularity lemmas, see [1, 27℄.

We prove that our parametrized approximation al-

gorithms are 
lose to best possible by showing expli
it

lower bounds (also parametrized by 
) on the approx-

imation ratios, under the usual P 6= NP 
onje
ture.

These lower bounds show that there is an explosion of

diÆ
ulty in approximating our problems when 
 <

1

2

.

We also prove the �rst expli
it hardness ratios and

improve the approximation ratios for some of these

problems on graphs with maximum degree 3. The

pre
ise list of our results appears below. Let the input

graph G = (V;E) have minimum degree � 
jV j, where


 2 [0;

1

2

℄ is any �xed 
onstant, and � > 0 be any �xed



arbitrarily small 
onstant, and "

0

= 1=742.

2-EC & 2-VC: We give a (2 � 2
 + �)-approximation

algorithm for 2-EC and 2-VC problems on G. This

improves on the

4

3

-approximations in [33℄, and on (

4

3

�

1

1344

)-approximation in [29℄, for almost any 
 >

1

3

. We

prove that the problems areMax SNP-hard for any �xed

density 
 2 (0; 1=2), and an expli
it hardness fa
tor

is 1 + (

1

2

� 
)"

0

. If 
 tends to

1

2

, the algorithms are

essentially 1-approximation, and the approximation and

hardness fa
tors are arbitrarily 
lose to ea
h other. This

is also true for the other dense results. 2-EC and 2-VC

are proved NP-hard to approximate within: 1573=1572

on maximum degree 3 graphs, and 2581=2580 on 3-

regular graphs. We give a (

5

4

+ �)-approximation for 2-

EC and 2-VC on maximum degree 3 graphs. A (

21

16

+�)-

approximation for 2-EC and 2-VC on su
h graphs was

previously known [29℄. To our knowledge, no results

were known for dense 2-EC and 2-VC problems, ex
ept

the ones on arbitrary graphs 
ited above. Max SNP-

hardness on bounded degree 3 and on dense graphs was

not known before. Our results signi�
antly improve on

Czumaj & Lingas [8℄, sin
e they do not give expli
it

hardness ratios and their bound on degree is 6.

TSP(1,2): We give a (2 � 2
 + �)-approximation,

improving on the

7

6

-approximation of Papadimitriou

and Yannakakis [31℄ when 
 >

5

12

. Our algorithm 
an

be viewed as a generalization of the mentioned Dira
's

theorem. We give a hardness fa
tor of 1 + (1 � 2
)"

0

for any �xed 
 2 (0; 1=2). If the input graph has

maximum degree 3, we show a hardness of 787=786, and

of 1291=1290 for 3-regular input graphs. This improves

on the results of Engebretsen and Karpinski [12℄, sin
e

they need graphs of maximum degree 4.

Path pa
king problem: We show a (2
 � �)-

approximation, and a hardness fa
tor of 1�(1�2
)"

0

on


-dense graphs. This improves on the

5

6

-approximation

due to Papadimitriou and Yannakakis [31℄ and Vish-

wanathan [34℄ when 
 >

5

12

.

Longest path problem: We show a (




1�


� �)-

approximation algorithm, and a hardness fa
tor of

1 � (1 � 2
)"

0

for 
-dense instan
es. This improves

signi�
antly on




2

-approximation algorithm of Karger

et al. [21℄, for all values of 
.

The Linear Programming (LP) relaxation for 2-

EC problem and the subtour LP relaxation for TSP

are 
losely related [7℄. The integrality gap

4

of the LP

relaxation for 2-EC is not well understood. The best

known upper bound is

17

12

[7℄. It has been 
onje
tured

4

De�nition of the LP relaxation of the unweighted 2-EC

appears in Se
tion 5. The integrality gap of the LP relaxation

is de�ned as sup

I

OPT

INT

(I)

OPT

LP

(I)

, where OPT

INT

(I) is the value of an

optimum integral solution on a problem instan
e I, and OPT

LP

(I)

is the value of an optimum LP solution on instan
e I.

that the integrality gaps of both LPs are

4

3

. We give

stronger bounds than

4

3

for some versions of these


onje
tures for dense and sparse 2-EC and TSP(1,2).

Related work. The Regularity Lemma was used in a


ontext of approximating dense problems by Frieze and

Kannan [16℄ to speed-up some algorithms.

Organization of paper. Se
. 2: preliminaries; Se
. 3:

the te
hnique and algorithms for dense problems; Se
. 4:

algorithms for bounded degree 2-EC & 2-VC; Se
. 5:

appli
ations to integrality gaps; Se
. 6: hardness results.

Missing material is deferred to the full paper version.

2 Preliminaries

Given an (undire
ted) graph G = (V;E), we write

V (G) = V , E(G) = E, and v(G) = jV j, e(G) = jEj.

The elements of V are verti
es, and elements of E are

edges. A 
losed path of length l is a 
y
le, denoted C

l

,

and a simple path means that the verti
es are distin
t.

A u�v path is a path with end verti
es u; v. A vertex v

is a 
ut vertex if its removal dis
onne
ts the graph. If v

is a 
ut vertex of a graph G, and some two verti
es x; y

are in distin
t 
omponents of G n v, then v separates x

and y. For a given non-empty set S � V , (S;

�

S) denotes

an edge 
ut, i.e. the set of the edges in E with exa
tly

one end vertex in S (

�

S = V n S). An edge is a bridge

if its removal dis
onne
ts the graph. deg

G

(v) denotes

the degree of vertex v in G. Let Æ(G) be the minimum

degree of G. The density of graph G is Æ(G)=jV (G)j. If

density � 
, then G is 
-dense.

An ear de
omposition E of a graph G is a parti-

tion of the edge set into open or 
losed paths, E =

fQ

0

; Q

1

; : : : ; Q

k

g, su
h that Q

0

is the trivial path with

one vertex, and ea
h Q

i

(i = 1; : : : ; k) is a path that has

both end verti
es in V

i�1

= V (Q

0

) [ � � � [ V (Q

i�1

) but

has no internal vertex in V

i�1

. A (
losed or open) ear

means one of the (
losed or open) paths Q

0

; Q

1

; : : : ; Q

k

in E . In the ear de
omposition E = fQ

0

; Q

1

; : : : ; Q

k

g,

we say that ear Q

i

is earlier than ear Q

j

, and Q

j

is

later than Q

i

, when i < j. Given a positive integer

`, `-ear is an ear with ` edges. An ear de
omposition

fQ

0

; Q

1

; : : : ; Q

k

g is open if all earsQ

2

; : : : ; Q

k

are open.

If a graph is 2-vertex(edge)-
onne
ted, then we say it is

2-VC(EC). opt(G) or opt denotes the value of an optimal

solution on G to the 
onsidered problem.

Proposition 2.1. ([20℄) A graph is 2-EC i� it has an

ear de
omposition. Also, a graph is 2-VC i� it has an

open ear de
omposition. An (open) ear de
omposition


an be found in polynomial time.

3 Approximation Te
hnique on Dense Graphs

We use tools from the Extremal Graph Theory to give

a te
hnique for approximating dense problems. We �rst



give an overview based on [28℄ (see also Diestel [10℄).

Regularity and Blow-up Lemmas. Let G = (V;E)

be a graph, and deg(x; Y ) be the number of neighbors of

vertex x 2 V in set Y � V . Let X;Y � V , X \ Y = ;,

then e(X;Y ) denotes the number of edges between X

and Y . Let G = (A;B;E) denote a bipartite graph

with 
olor 
lasses A and B, and the set of edges E.

For disjoint X;Y we de�ne a density d(X;Y ) =

e(X;Y )

jXj�jY j

.

The density of a bipartite graph G = (A;B;E) is

d(G) = d(A;B) =

jEj

jAj�jBj

. Given two graphs G and

H , we say that G has a subgraph isomorphi
 to H , or

H is embeddable into G if and only if there is a one-to-

one map (inje
tion) ' : V (H) �! V (G) s.t. for ea
h

(x; y), (x; y) 2 E(H) implies ('(x); '(y)) 2 E(G).

Regularity Condition. Let " > 0. Given a graph

G = (V;E) and two disjoint sets A;B � V , we say

that the pair (A;B) is "-regular if for every X � A and

Y � B su
h that jX j > "jAj and jY j > "jBj, we have

jd(X;Y )� d(A;B)j < ".

Theorem 3.1. (Regularity Lemma, [32, 28℄)

For every " > 0, there is an M = M(") su
h that

if G = (V;E) is any graph and d 2 [0; 1℄ is any real

number, then there is a partition of the vertex set V into

k + 1 
lusters V

0

; V

1

; : : : ; V

k

, and there is a subgraph

G

0

of G with the following properties: (i) k � M ,

jV

0

j � "jV j; (ii) all 
lusters V

i

, i � 1, are of the same

size m � d"jV je; (iii) deg

G

0

(v) > deg

G

(v) � (d + ")jV j

for all v 2 V ; (iv) e(G

0

(V

i

)) = 0 for all i � 1; (v)

all pairs G

0

(V

i

; V

j

) (1 � i < j � k) are "-regular with

density either 0 or greater than d.

Lemma 3.1. (Fa
t 1.3 in [28℄) Let (A;B) be an "-

regular pair with density d. Then for any Y � B, with

jY j > "jBj, we have jfx 2 A : deg(x; Y ) � (d�")jY jgj �

"jAj.

Lemma 3.2. (Fa
t 1.5 in [28℄) Let (A;B) be an "-

regular pair with density d, and, for some 
 > ", let

A

0

� A, jA

0

j � 
jAj, B

0

� B, jB

0

j � 
jBj. Then

(A

0

; B

0

) is an "

0

-regular pair with "

0

= max("=
; 2"),

and jd(A

0

; B

0

)� dj < ".

Super-Regularity Condition. Given a graph G = (V;E)

and A;B � V (A \ B = ;), we say that pair (A;B)

is ("; Æ)-super-regular if for every X � A and Y � B

s.t. jX j > "jAj, jY j > "jBj, we have d(X;Y ) > Æ, and

deg(a) > ÆjBj for all a 2 A, deg(b) > ÆjAj for all b 2 B.

Theorem 3.2. (Blow-up Lemma, [26℄) Given a

graph R with v(R) = r and positive parameters Æ, �,

there exists an " > 0 su
h that the following holds. Let

n

1

; n

2

; : : : ; n

r

be arbitrary positive integers, and let

us repla
e the verti
es of R with pairwise disjoint sets

V

1

; V

2

; : : : ; V

r

of sizes n

1

; n

2

; : : : ; n

r

(blowing-up). We


onstru
t two graphs on the same vertex-set V = [

i

V

i

.

The �rst graph

~

R is obtained by repla
ing ea
h edge

(v

i

; v

j

) of R with the 
omplete bipartite graph between

the 
orresponding vertex-sets V

i

and V

j

. The graph G is


onstru
ted by repla
ing ea
h edge (v

i

; v

j

) of R with an

("; Æ)-super-regular pair between V

i

and V

j

. If a graph

H with maximum degree bounded by � is embeddable

into

~

R, then it is also embeddable into G.

The Generi
 Algorithm. Let G = (V;E) be a given

graph, jV j = n, with minimum degree at least 
n, where


 =

1

3

+� and � 2 (0;

1

6

) (else 
 �

1

2

). Let us �x � > 0

to be very small and mu
h smaller than �, i.e. � � �.

Step 1. We apply the Regularity Lemma to G with

parameters " and d, s.t. " <

1

2

, " � d and

2"+d

1�d

� �.

Note: when " and d are arbitrarily small, then so is

�. Also, d + " � �. Based on the output from the

Regularity Lemma, we de�ne a redu
ed graph R as

follows. The verti
es of R are the 
lusters V

1

; V

2

; : : : ; V

k

(we skip the 
luster V

0

here), and we put an edge

between V

i

and V

j

in R if (V

i

; V

j

) is "-regular with

density� d. From now on we mostly deal with graph R.

In parti
ular, we will treat 
luster V

0

in the end, and will

also dis
ard some verti
es from 
lusters V

i

, i � 1, and

pla
e them into V

0

. " was a �xed 
onstant, k � M("),

k = jV (R)j, so k is also a �xed 
onstant.

Lemma 3.3. The degree of ea
h vertex in R is at least

(

1

3

+ �� �)k.

Proof. Let us �x a vertex v

i

2 V (R). Let V

i

be the


luster 
orresponding to vertex v

i

. Assume towards a


ontradi
tion that deg

R

(v

i

) < (

1

3

+ � � �)k. Consider

all the 
lusters V

j

6= V

i

su
h that d(V

i

; V

j

) < d. The

number of su
h 
lusters V

j

is k � deg

R

(v

i

) � 1, and

for ea
h su
h 
luster V

j

there are less than dm

2

edges

between V

i

and V

j

(by d(V

i

; V

j

) < d). The overall

number of edges running between V

i

and su
h k �

deg

R

(v

i

)�1 
lusters V

j

is less than dm

2

(k�deg

R

(v

i

)�1).

Therefore, there is a vertex in 
luster V

i

, say u 2 V

i

,

su
h that deg(u;W ) < dm(k � deg

R

(v

i

)� 1), where W

is the union of k� deg

R

(v

i

)� 1 
lusters V

j

. Finally, the

degree of u in G 
an be bounded as

deg

G

(u) < deg(u;W ) + deg

R

(v

i

)m+ deg(u; V

i

)+

deg(u; V

0

) � dm(k � deg

R

(v

i

)� 1) + deg

R

(v

i

)m+

m+ "n = deg

R

(v

i

)m(1� d) + dmk +m(1� d)+

+"n <

�

1

3

+ �� �

�

(1� d)mk + dmk + 2"n �

((1=3 + �� �) (1� d) + d+ 2")n � (1=3 + �)n:



a

u

b




d

e

Figure 1: An illustration for proofs of Lemma 3.4 & 3.5.

The last estimate follows by using our assumption, that

2"+d

1�d

� �. And thus we have derived a 
ontradi
tion,

whi
h proves the 
laim. �

Step 2. We 
all a path on 3 verti
es a v-shape, and a


y
le of length 3 a triangle. Compute a de
omposition

of R into a maximal 
olle
tion of edges, triangles and v-

shapes, s.t. these subgraphs are pairwise vertex-disjoint

in R. Sin
e R has 
onstant size, we 
an use brute for
e.

Lemma 3.4. Ea
h vertex of R is in
luded in this de-


omposition.

Proof. Otherwise, there is a vertex u 2 V (R) not in-


luded in any edge, triangle or v-shapes of the de
om-

position. Sin
e the degree of u is, by Lemma 3.3, greater

than

1

3

k, u 
annot be just adja
ent to all 
enter verti
es,

like vertex d in Fig. 1, of all v-shapes. Thus, if u is adja-


ent to an end vertex { vertex 
 in Fig. 1 { of a v-shape,

then we 
ould produ
e two new edges (u; 
) and (d; e)

from u and the v-shape. A 
ontradi
tion. If u is adja-


ent to a vertex of a triangle { vertex b in Fig. 1 { then

we 
an produ
e two new edges from u and that trian-

gle, whi
h again gives a 
ontradi
tion. If u is adja
ent

to a vertex, say a of an edge in Fig. 1, then we obtain a


ontradi
tion by produ
ing a new v-shape. �

Step 3. Let us �x an edge (V

i

; V

j

) of the de
omposition

of R. Re
all, that pair (V

i

; V

j

) was "-regular with

density � d. We �rst make the pair (V

i

; V

j

) super-

regular. We know: jV

i

j = jV

j

j = m. By Lemma

3.1, the number of verti
es v 2 V

i

with small degree

deg(v; V

j

) � (d�")jV

j

j is at most "jV

i

j = "m. We delete

these "m low degree verti
es from V

i

and put them

into V

0

. Similarly, we delete "m low degree verti
es

from V

j

and put them into V

0

. After that, for any

v 2 V

i

, deg(v; V

j

) > (d � 2")jV

j

j, and for any w 2 V

j

,

deg(w; V

i

) > (d�2")jV

i

j. By Lemma 3.2, with 
 = 1�",

we get "

0

= 2" (sin
e " �

1

2

). And by that lemma, the

new pair (V

i

; V

j

) is 2"-regular, with density � d � ".

Now easily, pair (V

i

; V

j

) is (2"; d � 3")-super-regular,

and jV

i

j = jV

j

j.

We 
an now apply the Blow-up Lemma to pair

(V

i

; V

j

), with Æ = d�3", � = 2 (i.e. we are looking for a

Hamilton 
y
le), r = 2, n

1

= n

2

= jV

i

j = jV

j

j. By that

lemma, there is a Hamilton 
y
le of length 2n

1

spanning

(V

i

; V

j

) (this 
y
le 
an be found eÆ
iently [27℄).

We sket
h that the same 
an be done for any v-

shape (V

i

; V

j

; V

l

) of the de
omposition. First, we make

the pairs (V

i

; V

j

) and (V

j

; V

l

) super-regular exa
tly in

the same way as before. Then, the new 
lusters V

i

and V

j

have sizes greater than the size of the new

V

l

. To make the sizes equal, we use Lemma 3.2 on
e

to pair (V

i

; V

j

) and on
e to pair (V

j

; V

l

), by deleting

arbitrary "m verti
es in V

i

and arbitrary "m verti
es

in V

j

. Then, we use the Blow-up Lemma and �nd:

(i). Two Hamilton 
y
les: one in (V

i

; V

j

) and the other

in (V

j

; V

l

) (for 2-VC and 2-EC problems); or (ii). A

set of jV

i

j vertex disjoint paths, ea
h going between

three verti
es { one in V

i

, one in V

j

, and one in V

l

(for

maximum path pa
king and TSP(1,2) problems). In

this 
ase we delete from ea
h 
luster 2"m verti
es and

pla
e them into V

0

.

Similar arguments 
an be applied to any triangle

(V

i

; V

j

; V

l

) of our de
omposition, to �nd one Hamilton


y
le for the subgraph indu
ed by the vertex-set V

i

[

V

j

[V

l

. In this 
ase we need to delete up to 4"m verti
es

from ea
h 
luster, and pla
e them into V

0

.

Finally, in the worst 
ase for ea
h 
luster V

i

, we

have deleted at most 4"m verti
es from V

i

and pla
ed

them into V

0

. Thus, the size of V

0

in
reased by at most

4"mk � 4"n, and so the new V

0

has size at most 5"n.

We use the 
omputed stru
tures in the de
omposi-

tion subgraphs to built the �nal solution to a problem

in mind. The rest of the algorithm is problem-spe
i�
.

We have to spe
ify how to put the stru
tures together,

and how to deal with 
luster V

0

. The lower/upper

bound used to relate the size of the solution to the

optimum, will always be n { the number of verti
es.

We upper/lower bound the sizes of the 
omputed stru
-

tures in the de
omposition by 
harging the verti
es in

the 
lusters, using them as a \lo
al" lower/upper bound.

Generi
 Analysis. The next lemma is 
ru
ial.

Lemma 3.5. If

1

2

p

2

k is the number of all edges in the

de
omposition of R (p

2

2 [0; 1℄), then p

2

� 6(�� �).

Proof. Re
all, that k is the number of 
lusters (verti
es)

of the redu
ed graph R. Let p

1

� k be the number of

verti
es (
lusters) in V (R) in all the triangles of the

de
omposition, and let p

2

� k be the number of verti
es

in V (R) in all the edges of the de
omposition, for some

p

1

; p

2

2 [0; 1℄. Then (1 � p

1

� p

2

) � k is the number of

verti
es in all the v-shapes. If there is no v-shape, then

by Lemma 3.6, the lo
al approximation fa
tor is one.

Assume thus that there is at least one v-shape, say P ,

in the de
omposition. Consider an end vertex, say 
,



of P (see Fig. 1). There is no edge in E(R) between


 and any triangle, sin
e otherwise we 
ould repla
e

that triangle and the v-shape P by three new edges in

the de
omposition (this is impossible by the maximality

of our de
omposition). Now, if 
 is adja
ent to some

edge of the de
omposition, then it 
annot be adja
ent

simultaneously to its two end verti
es. Otherwise, we


ould repla
e that edge and the v-shape P by a new

triangle and a new edge in the de
omposition (this

is again impossible by the maximality). Finally, we

observe that if 
 is adja
ent to an end vertex of any other

v-shape, then we 
ould repla
e the two v-shapes by three

new edges, whi
h 
ontradi
ts the maximality. Thus,

the maximum possible degree of 
 is

p

2

2

k +

(1�p

1

�p

2

)

3

k,

and sin
e R has minimum degree at least (

1

3

+ � �

�)k by Lemma 3.3, we obtain:

p

2

2

k +

(1�p

1

�p

2

)

3

k �

(1=3 + �� �) k; whi
h gives p

2

� 6(�� �). �

Appli
ation to 2-Conne
tivity. We run Steps 1,2

and 3 of the generi
 algorithm. In this way, we 
onne
t

ea
h edge and ea
h triangle in the de
omposition by

one Hamilton 
y
le, and ea
h v-shape by two Hamilton


y
les. Thus, 
harging the edges used in the Hamilton


y
les to the verti
es of the original graph (as a \lo
al"

lower bound of 2-VC), the \lo
al" approximation fa
tor

for ea
h edge or triangle is one (Hamilton 
y
le has the

number of edges equal to the number of verti
es in these

subgraphs), and for ea
h v-shape it is

4

3

(Hamilton 
y
le

has 4jV

i

j edges, and we have 3jV

i

j verti
es).

Lemma 3.6. The worst 
ase lo
al ratio for 2-
onne
ting

within any edge or triangle in the de
omposition is one,

and the ratio for 2-
onne
ting within any v-shape is

4

3

.

Step 4. So far we have 2-vertex-
onne
ted ea
h sub-

graph of the de
omposition. Let us 
ontra
t ea
h su
h

subgraph into a single super-vertex, and delete all re-

sulting self-loops. Consider now a graph, say

~

G, with

verti
es being the union of the new super-verti
es and

the verti
es in V

0

. This graph is 
learly 2-EC, and it

has at most k+5"n verti
es. Compute an ear de
ompo-

sition of

~

G, and dis
ard all 1-ears from it. The resulting

graph is a spanning 2-EC subgraph of

~

G. It is easy to


he
k that the ear de
omposition has at most 2(k+5"n)

edges. To make the graph 2-VC, it 
learly suÆ
es to add

one additional edge for ea
h blo
k. Sin
e the number of

blo
ks is at most k + 5"n, the overall additive error is

at most 3(k + 5"n) = 15"n+ 3k.

Lemma 3.7. The overall additive error, i.e. the number

of edges added to 2-
onne
t all the stru
tures of the

de
omposition and the verti
es of 
luster V

0

together,

is at most 15"n+ 3k.

Finally, by Lemma 3.6 and 3.7, the size of the

output solution 
an be upper-bounded by: 1 �

p

1

3

k � 3 �

(m � 4"m) + 1 �

p

2

2

k � 2 � (m � "m)+

4

3

�

1�p

1

�p

2

3

k � 3 �

(m� 2"m) + 15"n+ 3k � p

1

km+ p

2

km+

4

3

� (1� p

1

�

p

2

)km+ 15"n+ 3k � "mk:

Assume that 3k � "mk. Then, sin
e mk � n, the

size of the solution is at most: p

1

n+ p

2

n+

4

3

� (1� p

1

�

p

2

)n + 15"n =

�

4

3

�

p

1

+p

2

3

+ 15"

�

n: This, by Lemma

3.5, and by the fa
t that " � d + " � �, and n �

opt, is upper-bounded by:

�

4

3

� 2(�� �) + 15"

�

n �

�

4

3

� 2�+ 17�

�

opt: By 
hoosing �=17 instead of �, we


an get a bound of (

4

3

� 2�+ �)opt.

Assume now that 3k > "mk. Then m < 3=", and

sin
e jV

0

j � 5"n, we must have that the number of the

rest of the verti
es inside 
lusters V

1

; : : : ; V

k

is at least

(1 � 5")n. But mk � jV

1

j + : : : + jV

k

j � (1 � 5")n.

This, by m < 3=", gives n �

3k

"(1�5")

�

3M(")

"(1�5")

. Thus,

the input graph has a �xed size, and we 
an solve the 2-


onne
tivity problem on it exa
tly by enumeration. The

polynomial running time of the overall algorithm follows

basi
ally by the algorithmi
 versions of the Regularity

and Blow-up lemmas [1, 27℄. Finally, we have proved

the following theorem (implementation omitted).

Theorem 3.3. Let G = (V;E) be a given 2-EC (or

2-VC) graph, with jV j = n, and degree of ea
h vertex

being at least (

1

3

+ �)n, where � 2 [0;

1

6

℄ is any �xed


onstant. Let � > 0 be any �xed 
onstant. Then there is

a polynomial time (

4

3

�2�+�)-approximation algorithm

for the unweighted 2-EC (and 2-VC) problem on G. The

algorithm 
an be implemented in the NC 
lass.

Remark. If density is smaller than

1

3

(� � 0), then we


an use known

4

3

-approximation algorithms.

Appli
ations to path pa
king and TSP.

Theorem 3.4. Let G = (V;E) be a given graph, with

jV j = n, and degree of ea
h vertex at least (

1

3

+ �)n,

where � 2 [0;

1

6

℄ is any �xed 
onstant. Let � > 0

be any �xed 
onstant. Then there is a deterministi


polynomial time (

2

3

+ 2�� �)-approximation algorithm

for the maximum path pa
king problem on G.

Theorem 3.5. Let G = (V;E) be a given 
omplete

graph, with jV j = n, with weights 1 or 2 on its edges.

Let H be a subgraph of G indu
ed by all the edges of

weight 1. Assume that the minimum degree of H is at

least (

1

3

+ �)n, where � 2 [0;

1

6

℄ is any �xed 
onstant.

Then G de�nes a dense instan
e of the TSP(1,2), and

there is a deterministi
 polynomial time (

4

3

� 2� + �)-

approximation algorithm for the TSP(1,2) de�ned by G

for any �xed � > 0.



Remark. If � �

1

6

, H has a Hamilton 
y
le, whi
h 
an

be found in poly-time (Dira
's theorem). In this regard,

Theorem 3.5 is a generalization of Dira
's theorem.

Appli
ation to longest path problem. To apply

here the te
hnique, we need the following result due to

Bollob�as and Brightwell.

Proposition 3.1. (Thm. 2.14, p. 27 in [20℄) Let

p 2 N be positive and G be a simple graph with n

verti
es and of minimum degree at least

n

p+1

, where

n � 3. Then G 
ontains a simple 
y
le of length �

n

p

.

Theorem 3.6. Let G = (V;E) be a given graph, with

jV j = n, and degree of ea
h vertex at least 
n, where


 2 [0;

1

2

℄ is any �xed 
onstant. Let � > 0 be any �xed


onstant. Then there is a deterministi
 polynomial time

(




1�


� �)-approximation algorithm for the longest path

problem on G. More exa
tly, the algorithm produ
es a

path of length at least (




1�


� �)n.

Remark. We 
an obtain a similar result for the dense

version of the longest 
y
le problem.

4 2-EC & 2-VC on Bounded Degree 3 Graphs

It is easy to see that in a graph with maximum degree

3, any ear de
omposition is open. Thus 2-EC and 2-VC

problems are here equivalent.

Lo
al Optimization Heuristi
s. Let � be a min-

imization problem on G = (V;E), s.t. we want to

�nd a subgraph of G feasible w.r.t. �, with minimum

number of edges. Given j 2 N, the j-opt heuristi


is the algorithm whi
h given any feasible solution

H � G to �, repeats, until possible, the j-opt ex
hange

operation: if there are sets E

0

� E nE(H); E

1

� E(H)

with jE

0

j = j, jE

1

j > j, and (H n E

1

) [ E

0

is feasible

w.r.t. �, then set H  (H nE

1

) [ E

0

.

The Algorithm. Let G = (V;E) be a given 2-EC

graph, with jV j = n. W.l.o.g. we 
an assume that

G is 2-VC. Otherwise we 
an solve the 2-EC problem

separately on ea
h 2-VC 
omponent.

The 1st step of the algorithm �nds an ear de
ompo-

sitionH of G with minimum number � of even ears, us-

ing the algorithm of Frank [15, 7℄ (delete all 1-ears, sin
e

they are redundant). In the 2nd step, the algorithm

performs all possible 1-opt ex
hanges on H w.r.t. 2-EC.

The resulting ear de
omposition, say H

0

, is the output.

Lemma 4.1. ([7℄) n + � � 1 is a lower bound on the

optimum 2-EC solution in G. An ear de
omposition

with � even ears 
an be 
omputed in O(jV j � jEj) time.

Analysis. For the purpose of our analysis, we analyse

a slightly di�erent algorithm that produ
es a solution

of a size lower bounded by the size of H

0

{ the size of

the original solution. Let a j-opt ex
hange that does

not in
rease the number of even ears in H be 
alled

a parity-preserving j-opt ex
hange. More pre
isely, a

parity-preserving j-opt ex
hange is a j-opt ex
hange

whi
h given H , produ
es a new feasible graph, say

^

H,

su
h that

^

H has an ear de
omposition with no more

than � even ears.

The modi�ed algorithm has the same �rst step as

the previous one, produ
ing the ear de
omposition H .

In the se
ond step, the algorithm uses only parity-

preserving 1-opt ex
hanges w.r.t. 2-EC, produ
ing the

�nal solution, say H

00

. It is 
lear that the size of H

0

is at most the size of H

00

. (We 
an just perform the

se
ond step of the original algorithm skipping all the

1-opt ex
hanges that are not parity-preserving.)

Let p

`

be the number of internal verti
es in all `-

ears of H

00

. Then, p

`

=(` � 1) is the number of `-ears.

Let us �x a positive integer k �

n

2

. Then:

jE(H

00

)j �

2k

X

i=2

i

i� 1

p

i

+

2k + 1

2k

 

n�

2k

X

i=2

p

i

!

:(1)

The �rst summation in the right-hand-side of (1) is

the number of all edges in `-ears for ` = 2; 3; : : : ; 2k.

Note, n�

P

2k

i=2

p

i

is the number of the internal verti
es

in all `-ears, for ` > 2k. We 
an rewrite (1) as follows.

jE(H

00

)j �

�

2k+1

2k

n+

P

2k

i=2

2ji

�

i

i�1

�

2k+1

2k

�

p

i

�

+

�

P

2k�1

i=3

2-i

�

i

i�1

�

2k+1

2k

�

p

i

�

:

(2)

Sin
e in the modi�ed algorithm we only use parity-

preserving ex
hanges, the bound � on the number of

even ears still applies. Thus, we have: n+

P

2k

i=2

2ji

p

i

i�1

�

1 � n+ �� 1; whi
h gives

2k+1

2k

�

n+

P

2k

i=2

2ji

p

i

i�1

�

�

2k+1

2k

(n+ �� 1) +

2k+1

2k

:

(3)

Lemma 4.2. For any i � 2,

i

i�1

�

2k+1

2k

�

2k+1

2k

1

i�1

.

The �rst term in the bra
kets in (2) 
an be upper

bounded by

2k+1

2k

opt+

2k+1

2k

. Bounding the se
ond term

is harder. Given any ear S in an ear de
omposition E ,

we say that an internal vertex in S is free if its degree in

E is exa
tly two. To prove the next lemma we heavily

use the properties of a lo
ally optimal solution.



Lemma 4.3. Ea
h odd ear in the ear de
omposition H

00

has at least 2 free internal verti
es.

Assumption (�). 9a > 0 :

P

2k�1

i=3

2-i

�

a

i�1

p

i

�

� n.

If assumption (�) holds, then we have.

2k�1

X

i=3

2-i

2

a

�

3

2

�

2k + 1

2k

�

ap

i

i� 1

�

2

a

�

3

2

�

2k + 1

2k

�

n:(4)

Lemma 4.4. For i � 3, (

3

2

�

2k+1

2k

)

2

i�1

�

i

i�1

�

2k+1

2k

.

By Lemma 4.4, and (4), we 
an upper bound the

se
ond term in the bra
kets in (2) by

2

a

(

3

2

�

2k+1

2k

)n.

Sin
e n � opt, and using (3), we bound our solution

from (2) by: jE(H

00

)j �

�

2k+1

2k

+

2

a

�

3

2

�

2k+1

2k

��

opt

+

2k+1

2k

; and so jE(H

00

)j �

�

1 +

1

a

+

a�2

2ak

�

opt +

2k+1

2k

:

We 
an plug n=2 in k, to �nally get.

jE(H

00

)j �

�

1 +

1

a

+

a� 2

an

�

opt+

n+ 1

n

:(5)

Lemma 4.5. If the input graph is of maximum degree

3, then assumption (�) holds with a = 4.

Proof. Note that p

i

=(i � 1) is the number of all i-ears.

For ea
h odd ear, we assign to that ear its 2 free internal

verti
es (they exist by Lemma 4.3) and its 2 end verti
es.

Sin
e the input graph has maximum degree 3, no vertex

is assigned simultaneously to two di�erent ears. �

Using Lemma 4.5, and the fa
t that in su
h a graph

opt �

3

2

n, we obtain: jE(H

00

)j �

�

5

4

+

1

2n

�

opt+

n+1

n

�

5

4

opt +

3

4

+

n+1

n

�

5

4

opt + 2: The last estimate holds

if n � 4. Now, if 2=opt > �, where � > 0 is a �xed


onstant, sin
e n � opt � 2=�, the input graph is of


onstant size. The problem 
an be solved exa
tly by

enumeration. Otherwise, when n � 4 and 2=opt � �, we

get a (

5

4

+ �)-approximation. Our analysis is tight with

respe
t to the lower bound we use. This follows from the

work of Cheriyan et al. [7℄, who show an in�nite family

of maximum degree 3 graphs, where the ratio of the size

of optimum 2-EC and 2-VC subgraph to n + � � 1, is

asymptoti
ally

5

4

. Therefore, we obtain the following

theorem.

Theorem 4.1. The lo
al sear
h is a (

5

4

+ �)-

approximation algorithm for the 2-EC problem on

maximum degree 3 graphs (for any � > 0). The

approximation ratio is asymptoti
ally tight with respe
t

to the lower bound.

5 Related Conje
tures and Integrality Gaps

This se
tion des
ribes appli
ations of our results in the

polyhedral 
ombinatori
s. Consider the standard 
ut

LP relaxation for the unweighted 2-EC problem.

min

P

e2E

x

e

s.t.

P

e2Æ(S)

x

e

� 2 8S � V; S 6= ;(6)

x

e

� 0 8e 2 E

Æ(S) denotes the set of all edges with exa
tly one

end vertex in S. The optimum value of the LP is

a lower bound on the optimal integral solution to 2-

EC problem. If we add to this LP the 
onstraints

P

e2Æ(fvg)

x

e

= 2;8v 2 V , then the new LP is the

famous subtour relaxation of the TSP. It was proved that

the optimal solution to LP (6) is equal to the optimum

of the subtour relaxation, if one assumes metri
 
osts on

the edges [30℄.

5

The famous metri


4

3

TSP 
onje
ture

due to Goemans [18℄ is as follows.

Conje
ture 1. The integrality gap of the subtour

relaxation of TSP with metri
 edge 
osts is at most

4

3

.

A related 
onje
ture, see Carr and Ravi [6℄, reads.

Conje
ture 2. The integrality gap of the LP (6) of 2-EC

problem with metri
 edge 
osts is at most

4

3

.

Conje
ture 1 implies the se
ond one. Both are as

now unsettled. Carr and Ravi [6℄ give a proof of a spe
ial


ase of Conje
ture 2, where they restri
t the LP (6) to

half-integral solutions, i.e. with all x

e

2 f0;

1

2

; 1g.

Fa
t 5.1. (Cheriyan et al. [7℄) If Conje
ture 2 (and

thus also Conje
ture 1) holds, then the integrality gap of

LP (6) for unweighted 2-EC problem is at most

4

3

.

The 
onsiderations in [7℄ and Fa
t 5.1 allow us to

formulate the following.

Conje
ture 3. The integrality gap of LP (6) for the

unweighted 2-EC problem is at most

4

3

.

Conje
ture 3 is impli
it in Cheriyan et al. [7℄, and

they prove it with

4

3

repla
ed by

17

12

. Let LP be the

optimum value of LP (6). Obviously n � LP , and n

is the lower bound we used to obtain our algorithms

for dense problems. By the parsimonious property, the

optimum value of the LP (6) is equal to the optimum

value of the LP relaxation of TSP(1,2) (weights 1 and

2 de�ne a metri
). This, and our previous results give:

Theorem 5.1. Let G has the minimum degree at least

(

1

3

+�)n, where � 2 [0;

1

6

℄ is a �xed 
onstant. Let � > 0

be any �xed 
onstant. Then the integrality gap of: (i).

the LP relaxation for the unweighted 2-EC problem on

su
h graphs G; and (ii). the subtour LP relaxation of

5

A generalization of this property is a so-
alled parsimonious

property [19℄.



the TSP(1,2) where G is the graph indu
ed by weight

one edges, is at most

4

3

� 2�+�. The integrality gap of

the LP relaxation for the unweighted 2-EC on maximum

degree 3 graphs is at most

5

4

+ �, for any �xed � > 0.

Thus, our results prove stronger (density-

parametrized) versions of Conje
tures 1 and 3,

and of Conje
ture 3 on maximum degree 3 graphs.

On the other hand, the worst known lower bound on

the integrality gap of LP for unweighted 2-EC: (i)

on maximum degree 3 graphs is

10

9

, (ii) on

3

10

-dense

graphs is

11

10

(Petersen graph).

6 Hardness of Approximation

Hardness of Dense TSP, 2-EC & 2-VC.

Lemma 6.1. Assume, that TSP(1,2) is NP-hard to ap-

proximate within (1 + "

0

), for a �xed "

0

> 0. Fix any

d

0

s.t. 0 < d

0

<

1

2

, and let Æ be s.t. d

0

=

1�Æ

2

. Let G

with v(G) = n be an instan
e of TSP(1,2), where the

input graph has minimum degree d

0

n. If we know that

its minimum 
ost TSP tour is either of 
ost n or at least

(1+"

0

Æ)n, it is NP-hard to de
ide whi
h of the two 
ases

holds. The 
laim holds for "

0

= 1=742.

The following simple lemma 
an easily be dedu
ed

from the proof of Lemma 5.1 in [8℄.

Lemma 6.2. ([8℄) Let G = (V;E) be a graph with n

verti
es, and with weights 1 or 2 on its edges. Let H

be the subgraph of G indu
ed by all edges of weight 1,

and assume that H is a spanning 2-VC subgraph of G.

Let moreover T be a spanning tree of H, and T having l

verti
es of degree one. Then, we 
an �nd in polynomial

time a TSP tour in G of 
ost at most n+ l � 1.

Using Lemmas 6.1 and 6.2 we 
an prove:

Theorem 6.1. Let G = (V;E) be a 2-VC graph, and

d

0

be s.t. 0 < d

0

< 1=2. Then the unweighted 2-

VC problem is Max SNP-hard on instan
es G with

density � d

0

. Moreover, if the TSP(1,2) is NP-hard to

approximate within a fa
tor of (1 + "

0

), then it is NP-

hard to approximate the unweighted 2-VC problem on

d

0

-dense instan
es to within (1+

"

0

Æ

2

), where d

0

=

1�Æ

2

.

The 
laim holds for "

0

= 1=742.

Proof. Assume, that we are given an instan
e of the

dense TSP(1,2) problem on G (v(G) = n), where the

subgraph, say G

1

, of G indu
ed by edges of weight

one has minimum degree d

0

n. Let the minimum 
ost

TSP tour, say T

�

, on G be either of 
ost n or at

least (1 + "

0

Æ)n. We show that if the unweighted 2-

VC problem 
ould be approximated to within (1+

"

0

Æ

2

),

then we 
ould de
ide in polynomial time whi
h of the

two 
ases holds.

If G

1

is not 2-VC, then the minimum 
ost TSP tour

T

�

on G has 
ost 
ost(T

�

) > n, and so 
ost(T

�

) �

(1 + "

0

Æ)n. So assume now that G

1

is 2-VC. Noti
e,

that this also means that G

1

is a spanning subgraph

of G. Let H

1

be any 2-VC spanning subgraph of G

1

,

and let T be a spanning tree of H

1

, having l verti
es of

degree one. Sin
e ea
h vertex in H

1

has degree at least

two, we have that jE(H

1

)j � n�1+d

l

2

e. By Lemma 6.2,

we 
an �nd in polynomial time a TSP tour, say T

0

, in G,

su
h that 
ost(T

0

) � n+ l�1 = 2(n�1+

l

2

)� (n�1) �

2jE(H

1

)j � n+ 1.

Let H

1

be a minimum size 2-VC spanning subgraph

of G

1

. If 
ost(T

�

) = n, then of 
ourse jE(H

1

)j = n. If


ost(T

�

) � (1 + "

0

Æ)n, then by the above argument,

we obtain that 2jE(H

1

)j � n + 1 � (1 + "

0

Æ)n, and

so jE(H

1

)j � (1 +

"

0

Æ

2

)n �

1

2

. Thus, if there is a

polynomial time (1 +

"

0

Æ

2

)-approximation algorithm for

the unweighted 2-VC problem (with just a bit smaller


onstant than "

0

), then it 
an de
ide if 
ost(T

�

) = n or


ost(T

�

) � (1+"

0

Æ)n, whi
h is NP-hard by Lemma 6.1.

The best known hardness 
onstant "

0

is 1=742 [12℄. �

Remark. The hardness result in Theorem 6.1 
an be

modi�ed to hold for the dense 2-EC problem.

Hardness of Dense Path Problems. As 
orollaries

to the methods used in the previous se
tion and using

[14℄ one 
an also show:

Theorem 6.2. Let us �x any d

0

su
h that 0 < d

0

<

1

2

, and let Æ be su
h that d

0

=

1�Æ

2

. The longest

path problem and the path pa
king problem on d

0

-dense

graphs are both NP-hard to approximate within (1�"

0

Æ),

where "

0

= 1=742.

Hardness of Sparse TSP, 2-EC & 2-VC. We show

here a similar result to this in Lemma 6.1.

Lemma 6.3. Assume, we are given an instan
e of

TSP(1,2) on a graph G, s.t. subgraph of G (v(G) = n)

indu
ed by weight-1 edges has maximum degree 3. As-

sume, that we know that its minimum 
ost TSP tour

is either of 
ost n or at least (1 + "

0

)n, for some �xed

"

0

> 0. Then there exists su
h a 
onstant "

0

> 0, for

whi
h it is NP-hard to de
ide whi
h of the two 
ases

holds. The 
laim holds for "

0

= 1=786. If G is 3-regular,

then the 
laim holds for "

0

= 1=1290.

Theorem 6.3. Let G = (V;E) be a 2-VC (or 2-EC)

graph, with maximum degree 3. Then the unweighted 2-

VC (and 2-EC) problem is Max SNP-hard on instan
es

G. Moreover, it is NP-hard to approximate the un-

weighted 2-VC (2-EC) problem on su
h graphs G within

1573=1572, and within 2581=2580 if G is 3-regular.
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