
Polynomial Time Approximation Schemes for Dense

Instances of NP-Hard Problems

Sanjeev Arora

�

David Karger

y

Marek Karpinski

z

Abstract

We present a uni�ed framework for designing poly-

nomial time approximation schemes (PTASs) for

\dense" instances of many NP-hard optimization

problems, including maximum cut, graph bisection,

graph separation, minimum k-way cut with and with-

out speci�ed sources, and maximum 3-satis�ability.

Dense graphs for us are graphs with minimumdegree

�(n), although some of our algorithms work so long

as the graph is dense \on average". (Denseness for

non-graph problems is de�ned similarly.) The uni�ed

framework begins with the idea of exhaustive sam-

pling: picking a small random set of vertices, guess-

ing where they go on the optimum solution, and then

using their placement to determine the placement of

everything else. The approach then develops into a

PTAS for approximating certain smooth integer pro-

grams where the objective function is a \dense" poly-

nomial of constant degree.

1 Introduction

Approximation algorithms, whenever they can be

found, are a practical way to deal with the NP-

hardness of optimization problems. Ideally, they

should run in polynomial time and have a small ap-

proximation ratio|the worst-case ratio of the value

�

Princeton University. arora@cs.princeton.edu

y

MIT Laboratory for Computer Science. Work done at

AT&T Bell Laboratories. email: karger@lcs.mit.edu URL:

http://theory.lcs.mit.edu/~karger

z

University of Bonn. marek@cs.bonn.edu

of the solution returned by the algorithm to the value

of the optimum solution. (This de�nition is for min-

imization problems; for maximization problems the

de�nition is inverted so that the ratio is always at

least 1.)

The approximation properties of di�erent prob-

lems vary a great deal (see [Shm94] for a sur-

vey). We know that unless P = NP, problems

such as clique [FGL

+

91, AS92, ALM

+

92] and chro-

matic number [LY93] cannot be approximated even

within a factor of n

�

in polynomial time. Oth-

ers problems, such as those related to graph sepa-

rators [LR88], have algorithms with approximation

ratios close to O(logn) and no non-trivial lower

bounds. Still others, such as the maximum cut prob-

lem, can be approximated to within some �xed con-

stant factor [GW94]. Only a few problems, such as

bin packing [KK82] and knapsack problems [IK75],

are known to have polynomial time approximation

schemes (PTASs).

A PTAS gives, for any �xed � > 0, a polynomial

time algorithm with approximation ratio 1 + �. A

PTAS is a valuable approximation algorithm, since it

allows us to trade o� the accuracy of the approxima-

tion with the running time. (Note that the de�nition

of a PTAS allows the algorithm's running-time to de-

pend arbitrarily on �.)

However, recent results show that unless P = NP,

PTASs do not exist for manyNP-hard problems, in-

cluding all MAX-SNP-hard problems such as vertex

cover, maximum 3-satis�ability, maximum cut, met-

ric TSP, and multiway cuts (see [ALM

+

92, PY91]).

Note that the inapproximability results mentioned

above, like all NP-hardness results, rule out approx-

imation only on worst case instances of the prob-

lem. They do not rule out the existence of algorithms

(heuristics) that do well on most instances.

1.1 Our Results

This paper gives PTASs for a large class of NP-hard

problems on dense instances. Density is a property of

the problem instance; for example, dense graphs are

graphs with
(n

2

) edges, while dense 3-SAT formulas

are those with
(n

3

) clauses. Note that almost all

graphs (in the probabilistic sense) are dense, as are

almost all 3-SAT instances.

Our techniques apply, in a uniform way, to a broad

spectrum of problems, which otherwise seem to have

various degrees of hardness (at least on general|i.e.,

non-dense|instances). Some, like maximum cut and

maximum k-satis�ability, are MAX-SNP-complete.

Thus they do not have PTASs in general, but they can

all be approximated within some constant factor in

polynomial time [PY91]. Others, like graph bisection

and separation, are not known to be approximable

within a factor better than O(logn), but also are not

known to be hard to approximate. It is notable that

existing weak-approximation algorithms do not even

give a bisection, but instead give a 1=3 : 2=3 cut of

the graph that approximates the minimum bisection

in value. Our PTAS gives an exact bisection.

Most of our PTASs are instances of a general ap-

proximation algorithm for certain smooth integer pro-

grams of low degree, which might �nd other applica-

tions.

Two ideas underlie our general approach. To un-

derstand the �rst, consider the (undirected) maxi-

mum cut problem, in which the goal is to partition

the vertices of a graph into two groups|called the

left and right sides|so as to minimize the number of

edges with an endpoint on each side. Notice that in

the optimium solution, every vertex has the majority

of its neighbors on the opposite side of the partition

(else, it would improve the cut to move the vertex to

the other side). Thus, if we knew where the neigh-

bors of each vertex lay, we would know where to put

each vertex. This argument may seem circular, but

the circularity can be broken (in dense graphs) by the

following exhaustive sampling approach. Suppose we

take a sample of O(logn) vertices. By exhaustively

trying all possible (i.e., 2

O(logn)

) placements of the

vertices in the sample, we will eventually guess where

each vertex of the sample belongs in the optimumcut.

So assume we have partitioned the sampled vertices

correctly according to the optimal cut. Now consider

some unsampled vertex. With high probability, some

of its neighbors were sampled (high probability means

probability 1�n

�
(1)

). Furthermore, if a majority of

its neighbors belong on the right side of the optimum

cut, then we expect that a majority of its sampled

neighbors will be from the right side of the optimum

cut. This suggests the following scheme: put each

unsampled vertex on the side opposite the majority

of its sampled neighbors.

This scheme works well for vertices whose opposite-

side neighbors signi�cantly outnumber their same-

side neighbors. More problematic are vertices for

which the neighbors split evenly between the two

sides; sampling will not typically give us con�dence

about the majority side. This brings us to the second

major idea of our paper: by examining the sampled

neighbors of a vertex, we can estimate what fraction

of its neighbors lie on each side of the optimum cut.

The collection of these estimates|one per vertex|

allows us to turn the classical quadratic program for

MAX-CUT into an integer linear program whose so-

lution approximates the solution to the quadratic pro-

gram. This lets us �nd an approximate solution using

the randomized rounding techniques of Raghavan and

Thompson [RT87].

Generalizations of these ideas work for dense in-

stances of the following problems:

MAX-CUT: Partition the vertices of an undirected

graph into two groups so as to maximize the

number of edges with exactly one endpoint in

each group. A :878-approximation algorithm is

given in [GW94].

MAX-DICUT: The directed version of the MAX-CUT

problem. A :859-approximation algorithm is

given in [FG95] (improving [GW94]).

MAX-HYPERCUT(d): A generalization of MAX-

CUT to hypergraphs of dimension d; an edge is

considered cut if it has at least one endpoint on

each side.

BISECTION: Partition the vertices of an undirected

graph into two equal halves so as to minimize

the number of edges with exactly one endpoint

in each half. No good approximation algorithm

exists that output the actual bisection. But some

algorithms, including those using eigenvalues

([BH92]) or simulated annealing ([JS93]) do well

on certain random graphs (see also [BCLS84]).

SEPARATOR: Partition the vertices of a graph into

two groups each with at least 1=3 of the vertices

so as to minimize the number of crossing edges.

An algorithm in [LR88] achieves approximation

ratio O(logn).

MAX-k-SAT: Given a k-CNF formula, �nd a true-

false assignment to the variables making the

maximum possible number of clauses true. An

algorithm in [Yan92] approximates it within a

factor 3=4. This has recently been improved to

0:758 ([GW94]).

MIN-k-CUT: Given an n-vertex graph with k source

vertices, partition the graph vertices into k

groups such that (i) each group contains one

source and (ii) the number of edges with end-

points in di�erent groups is minimized. A (2 �

1=k)-approximation is given in [DJP

+

92].

DENSE-k-SUBGRAPH: Given a graph, �nd a sub-

set of k vertices that induces a graph with the

most possible edges. This problem was stud-

ied in [KP93], where an approximation algorithm

with ratio n

2=5

was presented.

3-COLORING: Color the vertices of a graph with 3

colors such that no two adjacent vertices have

the same color.

Exact optimization is NP-hard for each of these

problems, typically by a reduction from the non-dense

to the dense case. We now de�ne a natural notion of

dense instance for each problem. Exact optimization

remains NP-hard on dense instances for all of them

except MIN-k-CUT and 3-COLORING.

De�nition 1.1 A graph is �-dense if it has �n

2

=2

edges. It is everywhere-�-dense if the minimum de-

gree is �n. We abbreviate
(1)-dense as dense and

everywhere-
(1)-dense as everywhere-dense. Thus

everywhere-dense implies dense, but not vice versa.

Similarly, a k-SAT formula is dense if it has
(n

k

)

clauses, and a dimension-d hypergraph if it has
(n

d

)

edges.

Theorem 1.2 Everywhere-dense instances of all the

problems listed above have PTASs.

Theorem 1.3 Dense (and thus everywhere-dense)

instances of the following problems have PTASs:

MAX-CUT, MAX-DICUT, MAX-k-SAT for any

constant k, MAX-k-CUT for k = o(n) ,

DENSE-k-SUBGRAPH for k =
(n), and MAX-

HYPERCUT(d).

Theorem 1.4 Exact algorithms exist on everywhere-

dense graphs for MIN-k-CUT when k = o(n) and for

3-COLORING.

Note: There are stronger forms of some of the above

results that we omit from this abstract. To give an

example, we can solve BISECTION and SEPARA-

TOR on dense graphs exactly when the objective is

O(n). We also note that the 3-COLORING result is

not new|see [Edw86].

As mentioned earlier, the PTASs share common

design principles, and are quite similar to the MAX-

CUT algorithm outlined above. A better unifying

framework turns out to be a general approximation

algorithm for low-degree integer programs with a cer-

tain smoothness condition. Most of the above PTASs

are subcases of this general algorithm, though BI-

SECTION and MIN-k-CUT require additional ideas.

Further, in Section 4.1, we will give a plausible de�ni-

tion of denseness for the class MAX-SNP de�ned in

[PY91]. Our algorithm for approximating low-degree

integer programs gives a PTAS for all dense MAX-

SNP problems.

De�nition 1.5 A smooth degree-d integer program

has the form

maximize p(x

1

; : : : ; x

n

)

subject to x

i

2 f0; 1g 8i � n (1)

where p(x

1

; : : : ; x

n

) is a degree-d polynomial in which

the coe�cient of each degree-i monomial (term) is

O(n

d�i

). The program could involve minimization

instead of maximization.

Smooth integer programs represent many combina-

torial problems in a natural way.

Example 1 A smooth degree-2 integer program has

the form

maximize

P

a

ij

x

i

x

j

+

P

b

i

x

i

+ c

subject to x

i

2 f0; 1g 8i � n

where each a

ij

= O(1), b

i

= O(n), c = O(n

2

).

We show how to represent MAX-CUT on the graph

G = (V;E). De�ne a variable x

i

for each vertex v

i

.

Then, assign 0; 1 values to the x

i

so as to maximize

1

2

X

fi;jg2E

(x

i

(1� x

j

) + x

j

(1� x

i

)):

(Notice, an edge fi; jg contributes 1 to the sum when

x

i

6= x

j

and 0 otherwise.) Expanding the sum shows

that the coe�cients of the quadratic terms are 0 and

�1 while the coe�cients of the linear terms are O(n).

Theorem 1.6 Let OPT be the maximum value of the

objective function in the IP in Equation (1). For each

�xed � > 0 there is a polynomial-time algorithm that

produces a 0; 1 assignment for the x

i

satisfying

p(x

1

; : : : ; x

n

) � OPT� �n

d

:

For minimization problems the solution satis�es

p(x

1

; : : : ; x

n

) � OPT+ �n

d

:

Related Work

There are known examples of problems which are

seemingly easier to approximate in dense graphs than

in general graphs. For instance, in graphs with degree

more than n=2, the following problems are solved:

�nding Hamiltonian cycles [Po76] and approximat-

ing the number of perfect matchings [JS89]. In

everywhere-dense graphs it is easy to approximate the

values of the Tutte polynomial and, as a special case,

to estimate the reliability of a network [AFW94].

Vega [dlV94] has independently developed a PTAS

for everywhere-dense MAX-CUT using principles

similar to ours; however, his algorithm does not ap-

pear to generalize to the other problems we have

listed. Edwards [Edw86] shows how to 3-color a 3-

colorable everywhere-dense graph in polynomial time.

Our sampling approach gives an alternative algo-

rithm.

The exhaustive sampling approach also appears, in

a di�erent context, in [KPa92].

2 Approximating Smooth IPs

This section describes the proof of Theorem 1.6.

For simplicity, we describe the proof for the case of

quadratic programs, and then merely outline a proof

for the general case.

The proof uses two lemmas. The �rst is a standard

fact about estimating the sum of n numbers using

random sampling.

Lemma 2.1 (Sampling Lemma) Let p be the sum

of n numbers a

1

; : : : ; a

n

, each O(1). When we pick a

random subset of s = O(logn=�

2

) numbers and com-

pute their sum q, with high probability qn=s lies in

the range [p� �n; p+ �n].

In other words, we can sample to estimate the sum

to within an additive error of �n.

The next lemma, due to Raghavan and Thomp-

son [RT87] shows how to round approximate linear

integer programs by solving the corresponding frac-

tional program and then rounding the fractional so-

lutions to integers.

Lemma 2.2 (Randomized Rounding) Let x =

(x

i

) be a vector of n variables, 0 � x

i

� 1, that sat-

is�es certain linear constraints a

i

x = b

i

, where each

a

i

= O(1). Construct y

i

randomly by setting y

i

= 1

with probability x

i

and 0 otherwise. Then with high

probability, a

i

y = b

i

+ O(

p

n logn).

Now we state and prove Theorem 1.6 for quadratic

programs. For simplicity we describe a randomized

algorithm. Later we show how to derandomize it.

Theorem 2.3 Suppose there is a 0; 1 solution to the

quadratic integer program

xAx+ bx � c; (2)

where x is a vector of n variables, A is an n � n

matrix with entries O(1), b is a vector of length n,

with entries O(n), and c is a constant. Then for any

�xed �, in time n

O(1=�

2

)

we can �nd an assignment of

0; 1 values to x such that

xAx+ bx � c� �n

2

:

Proof: The main idea is to reduce the instance of

quadratic programming to an instance of linear pro-

gramming, and then use the Raghavan-Thompson

technique to round the fractional solution to a 0; 1

solution. The reduction runs in time n

O(1=�

2

)

, and is

meaningful only when c > �n

2

, the nontrivial case of

the theorem.

Denote by x

�

some value for x that satis�es Equa-

tion (2). Rewrite the formula xAx + bx as

P

i

r

i

x

i

,

where r(x) = xA+ b, so that r

i

=

P

x

j

a

ji

+ b

i

. Sup-

pose that we knew the value r

�

= x

�

A + b. Then

consider the following set of linear equations:

xA+ b = r

�

r

�

x � c ; 0 � x � 1

Note that the above system has a feasible 0; 1 solu-

tion, namely x

�

. In polynomial time we can solve the

system by linear programming, obtaining a fractional

solution x. Randomized rounding of this solution

(Lemma 2.2) gives, with high probability, a 0; 1 solu-

tion y such that ya

i

+b

i

= r

�

i

+O(

p

n logn). Further-

more, since each r

�

i

= O(n), we know that with high

probability we will have r

�

y � c�O(n) �O(

p

n logn):

Then

yAy + by = (yA + b)y

= r

�

y �O(n

3=2

p

logn)

� c�O(n

3=2

p

logn):

Of course, this all depends on our assumption that

the values r

�

i

are available. We will shortly show that

in polynomial time, it is possible to estimate these

values, �nding r

i

such that jr

�

i

� r

i

j < �n. We show

that the above idea works even with such estimates.

De�ne a slightly di�erent linear program:

max rx

xA+ b � r + �n

xA+ b � r � �n

0 � x � 1:

(For a vector v and scalar s, the notation v+s denotes

the vector with i

th

component v

i

+ s.)

As before, x

�

demonstrates that there is a feasible

0; 1 solution to this system for which the objective

function is rx

�

= r

�

x

�

� (r

�

� r)x

�

� c� �n

2

. Again,

solve the system by linear programming, and let x

be the fractional solution thus obtained. Note rx �

rx

�

. Let � = xA + b � r, so that j�

i

j < �n and

thus j�yj � �n

2

. If we now proceed according to the

randomized rounding scheme above, we will get y

i

such that ry � rx� O(n

3=2

p

logn). Thus,

yAy + by = (yA + b)y

= (yA + b� (xA+ b))y + �y + ry

� O(n

3=2

p

logn) � �n

2

+(c � �n

2

� O(n

3=2

p

logn))

� c � (2�+ o(1))n

2

It remains to prove that we can estimate r

�

to

within the desired accuracy. To do so we give a ran-

domized method to produce n

O(1=�

2

)

estimates for r

�

,

one of which is accurate. This is good enough, since

we can run the above algorithm for each estimate and

choose the answer that works best.

The estimation method is a generalization of the

sampling approach for MAX-CUT outlined in Sec-

tion 1.1. Choose a set S of k = O((logn)=�

2

) in-

dices at random. Exhaustively go through each of

the 2

k

= n

O(1=�

2

)

ways of assigning values 0 or 1 to

each variable whose index is in S. For each assign-

ment, produce an estimate r of r

�

by setting

r

i

= b

i

+

n

k

X

j2S

a

ij

s

j

where s

j

is the value assigned to the jth variable.

Note that trying all possible assignments ensures that

we try the \correct" assignment, namely, one in which

s

j

= x

�

j

for each j 2 S. Call the estimate correspond-

ing to this assignment the special estimate.

To �nish the proof, it su�ces to show that the spe-

cial estimate approximates r

�

with additive error �n,

as desired. To do so, use the Sampling Lemma (2.1).

Consider one sum r

�

i

= a

i

x

�

+ b

i

. Since b

i

is a con-

stant, it su�ces to estimate

P

a

ij

x

�

j

. By sampling

and guessing values for O(�

�2

logn) of the variables

x

�

j

, we determine the values of the same number of

terms a

ij

x

�

j

in the the sum for r

�

i

. Since each a

ij

x

�

j

is O(1), the Sampling Lemma tells us that this sam-

ple of term values lets us estimate r

�

i

to within �n

with probability 1 � 1=2n. We conclude that with

probability at least 1 � n=2n = 1=2, all n sums are

estimated correctly.

The proof of Theorem 1.6 for integer programs of

degree exceeding 2 goes via an induction on degree.

Just as we randomly reduced (in an approximate

sense) a quadratic program to a linear program, we

can reduce degree-d programs to degree-(d � 1) pro-

grams.

2.1 Derandomization

Derandomizing the algorithm in Theorem 2.3 involves

derandomizing its components: randomized round-

ing and the Sampling Lemma. Raghavan [R88] de-

randomized the former through the method of con-

ditional probabilities. Derandomizations of the Sam-

pling Lemma appear in [BR94] and [BGG93]. For

example, instead of picking s = O(logn=�

2

) vertices

independently, it su�ces to pick the vertices encoun-

tered on a random walk of length O(logn=�

2

) on a

constant degree expander [Gil93]. The number of

such walks is n

O(1=�

2

)

, so our algorithm can deter-

ministically go through all possible choices.

3 Applications

In this section we use our theorem on approximat-

ing constant-degree smooth integer programs to con-

struct PTASs for (dense instances of) many problems.

Most applications require approximating quadratic

programs. Approximating dense MAX-k-SAT re-

quires approximating degree-k integer programs. Ob-

taining PTASs for graph bisection and minimum k-

way cut requires some additional ideas, speci�cally, a

di�erent application of the Sampling Lemma.

3.1 MAX-CUT, MAX-DICUT, MAX-

HYPERCUT

Note that a �-dense graph has at least �n

2

edges.

Thus the capacity c of the maximum cut exceeds

�n

2

=2, since this is the expected size of a cut ob-

tained by randomly assigning each vertex to one side

of the graph or the other with equal probability. We

already saw in Example 1 how to represent MAX-

CUT using smooth quadratic integer programs with

coe�cient bound O(1). Using the approximation

scheme for quadratic programs in Theorem 2.3, we

can in time n

O(1=�

2

�

2

)

�nd a cut of value at least

c � ��n

2

=2 � (1 � �)c, in other words a (1 � �) ap-

proximation to the maximum cut.

MAX-DICUT has a similar PTAS. Again, an ex-

pected case argument shows that the maximum cut

in a �-dense graph exceeds �n

2

=4. The representa-

tion by a quadratic program is also similar; in the

quadratic program for MAX-CUT in Example 1 just

replace (x

i

(1�x

j

)+x

j

(1�x

i

)) in the objective func-

tion by (1� x

i

)x

j

.

The PTAS for dense MAX-HYPERCUT(d) is simi-

larly obtained by modelling the problems as a smooth

degree-d IP.

3.2 MAX-k-SAT

We show how to represent MAX-k-SAT as a degree-

k smooth IP. Let y

1

; : : : ; y

n

be the variables and m

be the number of clauses. Introduce 0; 1 valued vari-

ables x

1

; : : : ; x

n

. For each i, 1 � i � n, replace each

unnegated occurence of variable y

i

by 1 � x

i

, each

negated occurence by x

i

, the logical _ by multipli-

cation (over integers), and for each clause subtract

the resulting term from 1. Thus a clause changes

into a degree-k polynomial. To give an example,

the clause y

1

_ :y

2

_ y

3

is replaced by the term

1� (1�x

1

)x

2

(1�x

3

). Now associate, in the obvious

way, 0; 1 assignments to the variables x

i

with truth

assignments to the boolean variables y

i

. Clearly, an

assignment of values to the x

i

makes the term 1 if the

corresponding assignment to the y

i

makes the clause

TRUE, and 0 otherwise.

Let t

j

be the term obtained in this way from the jth

clause. The following degree-k program represents

the MAX-k-SAT instance, and is smooth.

maximize

P

j�m

t

j

(x

1

; : : : ; x

n

)

subject to x

i

2 f0; 1g 8i

Now suppose the number of clauses m is at least

�n

k

. Let OPT be the maximum number that any

assignment can satisfy. Since the number of clauses

of size k is m � O(n

k�1

), and a random assignment

satis�es each of them with probability 1 � 2

�k

, we

have

OPT � (1� 2

�k

)(m� O(n

k�1

)):

Using our general theorem on approximating

degree-k balanced programs with coe�cient bound

O(1), we can in time O(n

2

k

=�

2

) �nd an assignment

that satis�es OPT �

�

2

k

n

k

clauses, which is at least

(1 � �)OPT.

3.3 BISECTION and SEPARATOR

In this section we describe a PTAS for BISECTION;

the PTAS for SEPARATOR is similar and is not de-

scribed. Let the graph have minimum degree �n for

� > 0 and let k denote the capacity of the minimum

bisection. The PTAS consists of two di�erent algo-

rithms, one of which is a PTAS when k � �n

2

, and

the other when k < �n

2

(where � is a certain small

constant).

The algorithm for k � �n

2

is essentially our al-

gorithm for approximating smooth quadratic integer

programs. Note that we can formulate graph bisec-

tion using the same quadratic program as for MAX-

CUT (see Example 1), except we change \maximize"

to \minimize," and add the constraint

P

x

i

= n=2.

Although smooth integer programs with added linear

constraints were not previously discussed, they can

clearly be solved the same way as before (i.e., solving

linear programs and then using randomized round-

ing).

When the capacity of the minimum bisection, k, is

at least �n

2

, our algorithm for approximating integer

programs gives us an assignment to the x

i

that makes

the objective function less than k+ �n

2

� k(1+ �=�).

There is a slight problem, though: this 0; 1 assign-

ment might not induce a bisection, since it only

approximately satis�es the constraint

P

x

i

= n=2.

However, the error introduced by the randomized

rounding (Lemma 2.2) is small: on a linear system

that includes the (fractional) constraint

P

x

i

= n=2,

the 0=1 values obtained after rounding satisfy

P

x

i

2

[n=2 � O(

p

n logn)]. Hence we need to move only

O(

p

n logn) vertices from one side to another in or-

der to balance the cut. This a�ects the bisection value

by at most O(n

1:5

logn) = o(n

2

).

The case k � �n

2

is more di�cult. We need the

following lemma.

Lemma 3.1 In a minimum bisection, there is one

side whose every vertex has at most half its neighbors

on the other side.

Proof: If not, then we can reduce the cut value by

picking from each side a vertex that has more than

half its neighbors on the other side and switching

them.

Let L

opt

and R

opt

denote the sets of vertices on the

two sides of a particular minimumbisection. Without

loss of generality, we will assume that L

opt

is the side

referred to in Lemma 3.1.

The algorithm is given in Figure 3.3. For simplicity,

we describe it as a randomized algorithm, although

we can easily derandomize it using the techniques

mentioned earlier.

Now we prove the correctness of the algorithm.

Since it exhaustively tries all possible partitions of

the vertices in the sample S, it also tries the \cor-

rect" partition, which labels each of the vertices of

S according to a minimum bisection (L

opt

; R

opt

) of

the entire graph. From now on we call this partition

(S

l

; S

r

) of S special. We will show that with high

probability (over the choice of S) the special parti-

tion leads the algorithm to a near-optimum graph

bisection.

Let T be the set constructed by the �rst step of

the algorithm using the special partition. The next

lemma describes some useful properties of T .

Lemma 3.2 With high probability (over the choice

1. Pick a set S of O((logn)=�

2

) vertices at ran-

dom.

2. For each possible partition of S into two sets

(S

l

; S

r

), construct a partition (L;R) as fol-

lows.

(a) Let T be the set of vertices that have

more than 5=8 of their neighbors in S

r

.

(b) Put T in R.

(c) For each vertex v 62 T , de�ne bias(v) as

#(neighbors of v not in T)

� #(neighbors of v in T):

(d) Put the n=2�jT j vertices with the small-

est bias into R.

3. Of all bisections, output the one with the

smallest value.

Figure 1: The Bisection Algorithm

of S), T is a subset of R

opt

, and contains every vertex

that has more than 3=4 of its neighbors in T (note that

such a vertex must be in R

opt

).

Proof: Let v be any vertex. Since its degree exceeds

�n, the Sampling Lemma implies that with high prob-

ability a random sample of size O((logn)=�

2

) contains

�(logn) neighbors of v.

Suppose v 2 L

opt

, and so has fewer than 1=2 of

its neighbors in R

opt

. Then an application of the

Sampling Lemma shows that in a random sample of

�(logn) neighbors of v, the probability that more

than 5=8 of them are in R

opt

is 1= poly(n). Hence the

probability that v 2 T is 1= poly(n).

Now suppose v is has more than 3=4 of its neigh-

bors in R

opt

. An application of the Sampling Lemma

shows that in a random sample of O(logn) neighbors

of v, the probability that more than 5=8 of them are

in R

opt

is 1� 1= poly(n). Hence the probability that

v 2 T is 1� 1= poly(n).

The next lemma says that with high probability, T

has size close to n=2.

Lemma 3.3 If T satis�es the two conditions in

Lemma 3.2 then jT j �

n

2

(1�

8k

�n

2

).

Proof: Every vertex in R

opt

� T must have 1=4 of

its neighbors in L

opt

. Let s = jR

opt

� T j = n=2 �

jT j. The value of the minimum bisection is at least

s�n=4, which by assumption is at most k. Hence s �

4k=(�n).

The following lemma shows that with high prob-

ability the algorithm produces a bisection close to

optimum.

Theorem 3.4 Assuming k < �n

2

, with high proba-

bility (over the choice of S) the bisection produced by

the special partition has value at most k(1+ �), where

� = 16�

2

=�

2

.

Proof: With high probability, the set T produced in

the �rst phase satis�es the conditions in Lemma 3.2.

Hence T � R

opt

, and s = n=2� jT j � 4k=(�n).

For any set U � T ; jU j = s, let d

in

(U) be twice

the number of edges with both endpoints in U , and

let d

out

(T) be the number of edges with exactly one

endpoint in T . Further, let bias(U) be the sum of the

biases of vertices in U . We claim that the capacity of

the bisection whose one side is T [U is

d

out

(T) + bias(U)� d

in

(U): (3)

To see this, note that the expression starts by count-

ing all edges leaving T . The bias term then subtracts

the edges crossing fromU to T while adding the edges

crossing from U to the other side of the cut. The bias

term also incorrectly adds (twice, once for each end-

point) the number of edges with both endpoints in U ,

which do not cross the cut; however, this quantity is

subtracted by the d

in

(U) term, resulting in the cor-

rect quantity.

Let U

�

= R

opt

� T be the optimum way to extend

T to R

opt

and let U

actual

be the set of s vertices that

the algorithm picks to actually extend R.

Since U

�

minimizes Equation (3), we know k =

d

out

(T) + bias(U

�

) � d

in

(U

�

). On the other hand,

U

actual

(since it includes the s vertices with the small-

est bias) minimizes bias(U), and thus also the ex-

pression d

out

(T) + bias(U). Thus the capacity of

the bisection whose one side is T [U

actual

is at

most k + d

in

(U

�

) � d

in

(U

actual

), which is at most

k + s

2

� k + (4k=(�n))

2

. Since k < �n

2

the capacity

is at most k(1 + 16�

2

=�

2

).

If the minimum degree is not constrained, but the

average degree is
(n), our randomized rounding

scheme still works for large bisection values, but our

other algorithm for small bisection values fails. So

the question of a PTAS for bisection on dense graphs

remains open.

4 MIN-k-CUT

Let �n denote the minimum degree. Note that the

optimum cut has value at most kn, since that is the

capacity of a cut in which k � 1 of the sources form

singleton groups, while all other vertices form the re-

maining group. It follows that O(k) vertices can have

more than 1=4 of their
(n) neighbors in di�erent

groups from their own.

First suppose k is constant. Then, by picking a

random sample of O(logn) vertices and doing an ex-

haustive search on it (just as in the other algorithms),

identify for each vertex the group which contains

more than 1=4 of its neighbors. The Sampling Lemma

shows that this fails to place or misplaces only those

vertices with more than 1=4 of their neighbors in a

group other than their own, i.e. O(k) vertices. Now

try all O(k

k

) possible assignments of these O(k) ver-

tices to groups. One of them gives the optimum cut.

When k is large (but still o(n)) this approach still

works. We claim that the minimum k-source cut has

a special form: O(1) groups of size
(n), and all other

groups of size 1 (containing only the sources). It fol-

lows that exhaustive sampling as described above al-

lows us to identify the non-singleton groups exactly.

To see that the claim is true, assume the minimum

k-way cut contains a group of more than 1 but less

than �n=2 vertices. Then each vertex in this group

can have at most �n=2 neighbors within the group and

must therefore have at least �n=2 neighbors outside

the group. This implies that the value of this cut is

at least (�n=2)

2

. If k = o(n), this contradicts the fact

that the minimum cut is at most kn.

A similar result holds for the problem without

sources, where the goal is simply to �nd the best par-

tition into k nonempty groups of vertices.

4.1 Dense MAX-SNP

As pointed out in [PY91], problems such as MAX-

CUT, MAX-k-SAT, MAX-HYPERCUT(d), etc. lie

in a class called MAX-SNP (also called MAX-SNP

0

in [Pap94]). Owing to the model-theoretic nature of

the de�nition of MAX-SNP, it is unclear how to de�ne

denseness for MAX-SNP problems. In fact, problems

such as vertex cover are in MAX-SNP only if the de-

gree of the graph is bounded. In this section we give a

plausible de�nition of denseness and show that under

this de�nition, all dense MAX-SNP problems have a

PTAS.

Let MAX-k-FUNCTION-SAT be the problem in

which the input consists of m boolean functions

f

1

; f

2

; : : : in n variables, and each f

i

depends only

upon k variables. The objective is to assign values

to the variables so as to satisfy as many f

i

's as pos-

sible. As is well-known (see [Pap94], Theorem 13.8),

a MAX-SNP problem can be viewed as a MAX-k-

FUNCTION-SAT problem for some �xed integer k.

We call an instance of a MAX-SNP problem dense

if the instance of MAX-k-FUNCTION-SAT produced

using it has
(n

k

) functions. It is easily checked that

our earlier de�nitions of denseness were subcases of

this de�nition. Also, not all MAX-SNP problems

have a dense version under this de�nition; for exam-

ple vertex cover is excluded.

A slight modi�cation of the technique of Section 3.2

shows that MAX-k-FUNCTION-SAT can be repre-

sented by a smooth degree-k integer program, so it

follows that dense MAX-k-FUNCTION-SAT has a

PTAS.

5 Conclusion

We suspect that our technique of approximately re-

ducing quadratic programs to linear programs might

be useful in nondense instances of problems. Of

course, the exhaustive random sampling we use fails,

but some other approximation method could plau-

sibly replace it. If such an approximation method

can be found, it would probably also improve per-

formance on dense instances, by removing the error

due to the sampling lemma. Note that the error in-

troduced by the Raghavan-Thompson technique (an

additive error of O(n

1:5

logn)) in our approximation

algorithm is much smaller than that introduced by

the sampling.

Does a good approximation algorithm exist for gen-

eral BISECTION? What about an inapproximability

result? Our results suggest how not to try to prove

inapproximability results. Recall that the standard

way to prove the NP-completeness of BISECTION

uses the fact that balanced MAX-CUT is just BI-

SECTION on the complementary graph. Balanced

MAX-CUT (like unrestricted MAX-CUT) is MAX-

SNP hard, and therefore has no PTAS. However, the

operation of taking the complement of a sparse graph

yields a dense graph, for which we have just given

approximation algorithms for MAX-CUT. Hence the

MAX-SNP-hardness proof does not extend to BISEC-

TION. Of course, now we know why that approach

is unlikely to succeed: BISECTION has a PTAS on

dense graphs.

References

[AFW94] N. Alon, A. Frieze, and D. Welsh. Poly-

nomial time randomized approximation

schemes for the tutte polynomial of dense

graphs. In Proc. 35

th

FOCS, pages 24{

35. IEEE, IEEE Computer Society Press,

November 1994.

[ALM

+

92] S. Arora, C. Lund, R. Motwani, M. Su-

dan, and M. Szegedy. Proof veri�cation

and hardness of approximation problems.

In Proc. 33

rd

FOCS, pages 14{23. IEEE,

October 1992.

[AS92] S. Arora and S. Safra. Probabilistic check-

ing of proofs: A new characterization of

NP. In Proc. 33rd FOCS, pages 2{13,

IEEE, 1992.

[BCLS84] T. Bui, S. Chaudhuri, T. Leighton, and

M. Sipser. Graph bisection algorithms

with good average case behavior. In Proc.

25

th

FOCS, pages 181{192. IEEE, 1984.

[BGG93] M. Bellare, O. Goldreich, and S. Gold-

wasser. Randomness in interactive

proofs. Computational Complexity, 3:319{

354, 1993. Abstract in FOCS 1990.

[BH92] R.B. Boppana and M.M. Halldorsson. Ap-

proximating maximum independent sets

by excluding subgraphs. BIT, 32:180{196,

1992.

[BR94] M. Bellare and J. Rompel. Randomness-

e�cient oblivious sampling. In Proc. 35

th

FOCS, pages 276{287. IEEE, 1994.

[DJP

+

92] E. Dahlhaus, D.S. Johnson, C.H. Pa-

padimitriou, P.D. Seymour, and M. Yan-

nakakis. The complexity of multiway cuts.

In Proc. 24

th

ACM STOC, pages 241{251.

ACM Press, May 1992.

[dlV94] W.F. de la Vega. MAXCUT has a ran-

domized approximation scheme in dense

graphs. manuscript, October 1994.

[Edw86] K. Edwards. The complexity of colour-

ing problems on dense graphs. Theoretical

Computer Science, 43:337{343, 1986.

[FG95] U. Feige and M.X. Goemans, Approxi-

mating the value of 2-Prover proof sys-

tems, with applications to MAX-2SAT and

MAX-DICUT. In Proc. ISTCS95, pages

182-189.

[FGL

+

91] U. Feige, S. Goldwasser, L. Lov�asz,

S. Safra, and M. Szegedy. Approximat-

ing clique is almost NP-complete. In Proc.

32nd FOCS, pages 2{12, IEEE, 1991.

[Gil93] D. Gillman. A cherno� bound for random

walks on expanders. In Proc. 34

th

FOCS,

pages 680{691. IEEE, November 1993.

[GW94] M.X. Goemans and D.P.Williamson. :878-

approximation algorithms for MAX CUT

and MAX 2SAT. In Proc. 26

th

STOC,

pages 422{431. ACM Press, May 1994.

[IK75] O. H. Ibarra and C. E. Kim. Fast ap-

proximation algorithms for the knapsack

and sum of subsets problems. JACM,

22(4):463{468, 1975.

[JS89] M. Jerrum and A. Sinclair. Approximating

the permanent. SIAM J. Comput., 18(6),

1989.

[JS93] M. Jerrum and G. B. Sorkin. Simulated

annealing for graph bisection. In Proc.

34

th

FOCS, pages 94{103. IEEE, Novem-

ber 1993.

[KK82] N. Karmaker and R.M. Karp. An e�-

cient approximation scheme for the one-

dimensional bin-packing problem. In Proc.

23

rd

FOCS, pages 312{320. IEEE, 1982.

[KP93] G. Kortsarz and D. Peleg. On choosing

a dense subgraph. In Proc. 34

th

FOCS,

pages 692{701. IEEE, November 1993.

[KPa92] E. Koutsoupias and C.H. Papadimitriou.

On the greedy heuristic for satis�ability.

IPL, 43 pages 53{55, 1992.

[LR88] T. Leighton and S. Rao. An approxi-

mate max-
ow min-cut theorem for uni-

form multicommodity
ow problems with

applications to approximation algorithms.

In Proc. 29

th

FOCS, pages 422{431. IEEE,

October 1988.

[LY93] C. Lund and M. Yannakakis. hardness of

approximating minimization problems. In

Proc. 25

th

STOC, pages 286{293. ACM,

May 1993.

[Pap94] C. H. Papadimitriou. Computational

Complexity. Addison-Wesley, 1994.

[PY91] C.H. Papadimitriou and M. Yannakakis.

Optimization, approximation and com-

plexity classes. JCSS, 43:425{440, 1991.

Preliminary Version in Proc. ACM STOC,

1988.

[Po76] L. P�osa. Hamiltonian circuits in random

graphs. Discrete Mathematics, 14:359-364,

1976.

[R88] P. Raghavan. Probabilistic construc-

tion of deterministic algorithms: Approx-

imate packing integer programs. JCSS,

37(2):130{43, October 1988.

[RT87] P. Raghavan and C. Thompson. Random-

ized Rounding: a technique for provably

good algorithms and algorithmic proofs

Combinatorica, 7:365-374, 1987.

[Shm94] D. Shmoys. Computing near-optimal solu-

tions to combinatorial optimization prob-

lems. To appear in Dimacs Series in Dis-

crete Math and Theoretical Computer Sci-

ence, 1994.

[Yan92] M. Yannakakis. On the approximation

of maximum satis�ability. In Proc. 3

rd

SODA, pages 1{9. ACM-SIAM, January

1992.

