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0 Introduction

In this paper we improve the main result of [W96] by weakening the assump-
tion that & is determined by its smooth functions.

We assume complete familiarity with [W96]. Wilkie starts with a weak
structure S which is o-minimal, and passes to S ([W96], Definition 1.6),
which should perhaps be called the Charbonel closure of §. Wilkie shows
that of S is DSF (determined by its smooth functions) then S is closed under
complement, is the structure generated by S, and is o-minimal.

The main action in Wilkie’s paper involves his 3.6. This result involves
reference to definitions of type 3.5. We observed after reading [W96] (our mo-
tivation came from our paper [KM97a] in which Sardian arguments abound)
that one may modify 3.5 so that the modification of 3.6 remains true under
assumptions surely weaker than his DSF.

The original 3.5 involved subsets of R™ x ]le_ defined by conditions on
(T1,..., &, €1,...,€) of the form

k
I s S A /\ fi(l'la cee 751?n-|—k—1) = ¢
=1

where the fi,..., fi are C™ functions from R"**~! to R which lie in S.
A close look at [W96] shows that (without use of DSF) one gets o-
minimality of & provided one has, instead of 3.6, the following for each

AecS,:

(3.6)*: For each N > 1 there exists k& > 1, a k-modulus g, and a set
Sy CR"™ x ]R]_T_, which is a finite union of sets defined in the form

k
I s S A /\ fi(l'la cee 751?n-|—k—1) = ¢
=1

with the f; CV functions from R to R which lie in S, such that 9A <
S(mod i) and § < A(mod f).
Now one looks for hypotheses on &, weaker than DSF, which permit an

inductive proof of (3.6)* along the lines of Wilkie’s inductive proof of 3.6.
One such is given by:

Definition 1. A prestructure (S, : n > 1) satisfies DC? for all N if for
each A € S, there exists an m > n such that for each N A is of the form
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7[Z(fn)] where fy is a C function in S, fy : R™ — R, and 7 is the natural
projection R™ — R".

Obviously DSF implies DC¥ for all N. Our refinement of Wilkie’s result

is:

Theorem 1. Suppose S is an o-minimal weak structure satisfying DC™ for
all N. Then S is o-minimal, and is the smallest structure containing S.

We prove also a converse:

Theorem 2. Let J be an o-minimal structure. Then there is an o-minimal
weak structure S satisfying DCV for all N and § = J.

Indeed S can be chosen so that it satisfies DC® for all N in the strong
sense that we can take m = n in Definition 1.

Theorem 1 needs only a small modification to Wilkie’s proof. Theorem 2
follows from a striking result in [DM96].

We applied Theorem 1 already in late 1996 to get o-minimality of sys-
tems got by adjoining to o-minimal & total C* functions ”Pfaffian over §”.
The proof used refinements of the basic method of Khovanski [K91]. The
restriction to total functions was not seen by us as essential, but the C'*
assumption seemed hard to eliminate. This was first done by Speissegger
[S97], by a totally different method.

By using the more routine part of [S97], and dispensing entirely with the
7Te-Pfaffian” terminology, we are now able to give a simple proof of the
o-minimality of Pfaffian (or, maybe better, Rolle) closure.

1 Proof of Theorem 1

Nothing in [W96] needs to be changed until 3.5, which should be replaced by
(3.5)n for each N, where (3.5)y is just like 3.5 except that f; is now assumed
only to be a ' element of S.

The goal now is to show that if S satisfies DO for all N then for each
n>1, AeS,, and each N > 1:
(3.6)ny There exists k& > 1 (the N-complexity of A), a k-modulus f (the
N-modulus of A) and a set § C R" x ]RI_T_ (the N-approximation of A)

which is a finite union of sets defined by conditions of the form (3.5)x (the



N-approximating constituents of A) such that A4 < S (mod ji) and S <
A (mod ).

Now, Wilkie’s Lemma 3.7 holds if 3.6 is replaced by (3.6)y for some fixed
N.

However, the statement and proofs of the subsequent lemmas need mod-
ification, though the basic ideas remain the same.

One wants first to show for A € S, that A satisfies (3.6)y for all N. We
will use the assumption of DC? for all N, and get the obvious analogue of
3.11. Thereafter nothing will need to be changed.

So, consider A € S,,. Since we assume DC® for all N, there exists m > n
such that for each N thereisa OV gy : R™ = R, gy in S, A= 7[Z(gn)].

Firstly, by inspection of the proof of Wilkie’s Lemma 3.8, one sees that
(3.6)n holds for Z(gn).

Now (the crucial step) one inspects the proof of 3.10. This shows that if
N > m then (3.6)n_,, holds for A (= n[Z(gn)]). The drop to N —m comes
about via the differentiations used in each application of 3.10. By replacing
N by N + m, we conclude that (3.6)x holds for A.

We thus have, in the obvious adaptation of Wilkie’s notation,

Corollary (3.11)y Suppose S is o-minimal and satisfies DC™ for all N. Let
n>1, A€S,. Then (3.6)y holds for A.

JFrom here on, we can take up Wilkie’s development without change. His
3.10 should in its general application be unwound to:
Let n > 1, A € S’n_H, and suppose (3.6)y41 holds for A. Then (3.6)x
holds for n[A], where 7 : R"* — R" is the projection map onto the first n
coordinates.

His Lemma 3.12 goes through with (3.6)x replacing (3.6) in its two oc-
curences. His Theorem 3.13 becomes:

Assume S satisfies DCV for all N. Let n > 1 and suppose A € S,,. Then
(3.6)n holds for A, for all N.

His proof simply goes through, and his Section 4 adapts (as he essentially
remarks at its outset) to our hypothesis. Theorem 1 is proved.

2 The Converse. Theorem 2

Let J be an arbitrary o-minimal structure on R. The following is a remark-

able result of van den Dries and Miller [DM96] (inspired by unpublished work



of Bierstone, Milman and Pawlucki):
Suppose A € J,, A closed. Then for each 7 > 1 there is a total C7 f in
J with A= Z(f).

Rather more trivial is the fact that every element of .J is a Boolean combi-
nation of closed sets (this follows from cell decomposition [D97]). Combining
this with Theorem 3, and using the usual equivalence

v #0 (Gy)ye—1=0)
one gets immediately

Theorem 2 Any o-minimal structure J is of the form S, where S is an
o-minimal weak structure satisfying DC? for all N.

Proof Take & = J.

3 The Application to Pfaffian Closure

3.1 As Wilkie remarks at the end of [W96], our method permits a
relativization of his theorem on o-minimality of the structure based on the
(total) classical Pfaffian functions. A first version of this was shown to Wilkie
in late 1996. Later (less carefully presented) versions dealt with the case of
adjoining C* total functions Pfaffian over C'' functions of an o-minimal
S. The restrictions to €' and total are blemishes, removed by Speissegger
[S97] in later, independent work relying heavily on work of Moussu - Roche
[MR91] and Lion - Rolin [LLR96] (the latter inspired also by [W96]). While
the restriction to total was never really imposed by our original method, we
faced serious difficulties in trying to remove the (> assumption in certain
variations on Sard’s Theorem (as in Wilkie’s 2.7).

In this exposition we will profit from (a small) part of Speissegger’s [S97]
to give a new proof of his main result, and to give a small generalization of
it. We stress that without access to Speissegger’s preprint [S97] we would
have had to settle for a weaker result (albeit with a more perspicuous proof).

3.2 Rolle leaves (following Speissegger) Let U C R" be open, and
w=aydy; + ...+ a,dy, a 1-form on U of class C!. Let

Sw)y={yelU :a(y)=01<i<n}.
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Let F be the closed subset of (U — S(w)) x R" defined by

{(y,l') : Zai(y)l'i = 0}7

and let p: £ — U — S(w) be the projection to U — S(w). Let U; be the open
set {y € U : a;(y) # 0}. Then

p H(U;) = {(y,:z;) yel;, 1, = —Z ai(y)xi}

and the right hand side is homeomorphic to U; x R*™! via the map ¢; given
by
(Yy @) = (Yy Ty ooy X1y Tty e e ey Ty
Also, if 7 is the projection U; x R” to U;, we have for (x,y) € p~*(U;),

ply, x) =y, and mo;(y, z) = y.
If y € U;, we have the homeomorphism

#i
pia i Hy) > {yx R R

Now if y € U,,

Piy © @;yl(xlv R e LR L ER '7xn) = S«Qi,y(t)v

where

Viy(t) = (1, ooy Tic1, Tig1y ey Tpy).

So @i (1) = (p(t), @1, ... Tic1, Tig1y ..., x,) and p(t) = y.
SOt = (Y, @1yeney Tim1, Tiy Tig1y ..., Ty) SOME T,
and 99]71/(t) = (1’1, SRR PRUF SN PR 7$n)‘

Thus ;0 c,o;yl(:z;l, ey L1y g1y - - Ty) 18 linear and (p, £, U\ S(w)) is
a vector bundle of dimension n — 1.

An integral manifold of w = 0 is an (n — 1) dimensional immersed C*
submanifold on which the above is the tangent bundle.

A leafof w = 0is a Rolle leafif L is an embedded submanifold of U\ S(w),
closed in U\ S(w), such that for each C'* curve~ : [0,1] — U with v(0), (1) €
L there is t € [0, 1] with (ai(y(2)),...a,(y(1))), grad v(¢) = 0.



The crucial example is (as in Speissegger):
Frample: V C R", nonempty, open, connected, f: V — IR C! such that

df
ayi

Then the graph I'(f) of f is a Rolle leaf on U =V x R of

(y) = Fi(y, f(y)), yeV,1 <1 <n.

w= Fidy + ...+ F,dy, — dy,1.

As Speissegger remarks, there is no reason to restrict to integrable
I-forms, when one is working over an o-minimal theory (Section 2 of [S97],
routine Remark).

3.3 Here is our setting. S is an o-minimal structure in Wilkie’s sense.
Let U be an open element of S,,, and ay,...,a, C! functions U — R in S.
Let w = aydxy + ...+ aydx,, so clearly w can naturally be called ”in §”. Let
L be a Rolle leaf for w = 0.

Let S[L] be the structure generated by § and L. Then Speissegger proved
that S[L] is o-minimal. Iteration of these operations § — S[L] leads to a
natural notion of Pfaffian (or, perhaps better, Rolle) closure of S.

Speissegger’s proof has a distinctly clear and elementary component (Sec-
tion 2), and then a longer section involving "7 - Pfaffian” sets. We will
show that the latter (which is hardly constructive) is unnecessary, and can
be replaced by use of our Theorem 1.

3.4 Let S be an o-minimal structure. We pass to Rolle(S), a prestructure
extending S, where (Rolle(S)),, consists of all finite unions of sets

ANLin...0 Ly (%)

where A € S,,, and each L; is a Rolle leaf associated with data (U;,w;) in S.

We will show, rather easily, that Rolle(S) is an o-minimal weak structure
in Wilkie’s sense, and satisfies DCV for all N.

For various reasons we need to represent sets of the form (*) as projections
of sets of the same form, but where U; = U for all 5. The idea is standard.
We work in (R™)* and let U = U; x ... x Uy. Use coordinates z;;(1 <1 < n)
for the 5% copy of R"™ in (IR™)*, and let

(ﬁ]‘ = Z aﬁ(l'ﬂ, e 7xjn)dxﬁ
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where
wj = Z aﬁ(:zjl, ceey :L'n)de
The &; are forms on U. Let

Ly =U; x...xU;_y X Ly x Ujy1 x ... x U,.

Clearly [jj is a Rolle leaf for w; on U.
Now consider

A*NLin...nL,NA,

where A\ is the diagonal copy of R™ in (IR")*. This set is of form (*), and
its projection to the first copy of R" gives our original set.

The main point of this is that to prove uniform bounds for the number of
connected components of sets (*) we can assume that the U; are the same.

3.5 Lemma 3 Rolle(S) is a weak structure.

Proof The product condition (WS3) follows from a variant of the argument
above. (WS4), the closure under GL,, action, is obvious. O

Lemma 4 Rolle(S) satisfies (WS6).

Proof Using the final remark of 3.4, this follows from Corollary 2.7 of [S97],
which has a straightforward proof. O

Lemma 5 Rolle(S) satisfies WS6.

Proof We repeatedly use
1) union commutes with projection;

ii) the class of projections (from various R™) of closed sets is closed under
intersection.

It clearly suffices to show that any L is the projection of a closed set in
Rolle(S), where L is a Rolle leaf for w on U, where w and U are in S,.

Do a cell-decomposition in § to express U as a finite union of open cells
U; in 8, each equipped with a C'' homeomorphism f; : R* ~ U; , f; in S.



L; = LNU; is Rolle on U; (cf. [S97], Lemma 1.4) for w; = w [ U;, or is ().
Also, &; = (f;)*w; is a C'-form on R"™, and (f;)*L; is a Rolle leaf for ;.
So it suffices to prove the result for U = R". Let

w=aidry + ...+ a,dz,

as usual. Let U, = {7 : a,(z) # 0}. Go to a finite decomposition (in ) of
U, as a union of cells C''-homeomorphic to R". Pull back again, to reduce
to U = R", a,(z) never 0. Then it is standard that L is the graph of a C?
function. This concludes the proof. a

Corollary Rolle(S) is o-minimal.

So Rolle(S) enjoys all the nice properties detailed by Wilkie. In par-

N

ticular, Rolle(S) is o-minimal, closed under partial differentiation, has the
unrestricted Sard Property, etc.

Now we come to the last step which will give us the main result that
Rolle(S) generates an o-minimal structure.

Lemma 6 Rolle(S) satisfies DC™ for all N.

Proof This is a significant refinement of the proof of the preceding lemma

(which had to be done first, to exploit the o-minimality of Rolle(S)).

Now we have to prove the following (exploiting the tricks detailed at the
start of the previous proof):

If U € S, is open, and w is a C'! 1-form on U, also ”in” S, and L is a
Rolle leaf for w, then there exists m > n such that for each N > 1 there is a
CV fx :R™ - Rin S so that L =7 [Zer(fn)], where 7 : R™ — R" is the
usual projection.

This time a more delicate decomposition of U is required, depending on
N, and one has to ensure m remains bounded throughout.

Fix N. First decompose U (in §) into CV cells each CY homeomorphic
to R™ (in &) [DM96], so reducing (always with attention to m) to the case U
is a OV cell. Then partition U (in §) into a closed set D and a dense union
of CN cells on which w is a CV form (use [DM96]). So we reduce to the cases
(for U)

i) DN L;



i) UaCN cell, w CV.

For the latter, pull back to R", so U = IR". Then as in the previous proof
we can reduce to U = R" and L the graph of a CN function ¥ on R"™!, so
Lis Zer (W(zy,..., 00 1) — x,), and W(xy1,..., 2, 1) — 7, is a CV function

in Rolle(S).

For the former, write D (in §) as a disjoint union of connected manifolds
D; C U, of dimension < n—1. Within D;, consider the S-definable subset of
points where the tangent space is included in ker (w). Decompose this again
into definable connected submanifolds in §. Any one of these is either C L
or disjoint from L ([S97], 1.4). Thus L N D is a finite union of sets in S, and
so is in §. Thus it satisfies DCY all N, and we are (essentially) done. One
easily checks that the m remains bounded. a

So

Theorem 7 (Speissegger). Rolle (S) generates an o-minimal structure.

Proof. By Theorem 1. a

3.6 (Minor) Refinements We have used the fact that the forms w are
C! rather systematically. However we can make some improvements, with
minimal effort.

Theroem. Let S be o-minimal, U C R" a connected open set in §. Let
f:U = R" be a C! function satisfying a system

af
6:1% N

where the P, are continuous, and in §. Then f is in Rolle (§), so in
particular f lives in an o-minimal extension of S.

Proof. Break up U (in §) into finitely many connected open V' and a D, so
that the union of the V' is dense in U, with complement D, and the P; are
C' on each V. Then f | V is in Rolle (§), and the graph of f on U is got
by closure.

In particular,

Corollary (Speissegger) Rolle (S) is closed under integration of continuous
functions of one variable.

10



4 Concluding Remarks

We came to this topic from our very explicit work [KM97a] on bounds for
Vapnik-Chervonenkis dimension of semi-Pfaffian families. There one made
constant appeal to Sardian arguments. The power of the idea there convinced
us that a ”7Sardian” approach to o-minimality would be fruitful. The work
of Charbnel and Wilkie certainly confirms this.

Our 1996 work gave results significantly weaker than those reported here,
though we could do the closure under integration of the last corollary. Speiss-
egger got the optimal result, using the quite heavily disguised version of
Wilkie’s technology due to [LR96]. Our proof here is explicitly in the style
of Wilkie.
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