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Abstract

We present a uni�ed framework for designing polynomial time approx-

imation schemes (PTASs) for \dense" instances of many NP-hard opti-

mization problems, including maximum cut, graph bisection, graph sep-

aration, minimum k-way cut with and without speci�ed terminals, and

maximum 3-satis�ability. By dense graphs we mean graphs with mini-

mum degree 
(n), although our algorithms solve most of these problems

so long as the average degree is 
(n). Denseness for non-graph problems is

de�ned similarly. The uni�ed framework begins with the idea of exhaustive

sampling: picking a small random set of vertices, guessing where they go

on the optimum solution, and then using their placement to determine the

placement of everything else. The approach then develops into a PTAS

for approximating certain smooth integer programs where the objective

function and the constraints are \dense" polynomials of constant degree.
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1 Introduction

Approximation algorithms, whenever they can be found, are a way to deal with

the NP-hardness of optimization problems. Ideally, they should run in polyno-

mial time and have a small approximation ratio, which is the worst-case ratio

of the value of the solution returned by the algorithm to the value of the opti-

mum solution. (This de�nition is for minimization problems; for maximization

problems the ratio is inverted so that it is always at least 1.)

Optimization problems seem to be approximable to di�erent degrees

(see [Shm94] for a survey). We know that unless P = NP, problems such as

CLIQUE [FGL

+

91, AS92, ALM

+

92] and CHROMATIC NUMBER [LY93] can-

not be approximated even to within a factor of n

�

in polynomial time, for some

�xed � > 0. (More recently, H�astad [H96] showed that if SAT does not have

randomized polynomial-time algorithms, then CLIQUE cannot be approximated

to within a factor n

1��

, for every � > 0.) Others problems, such as those related

to graph separators [LR88], have algorithms with approximation ratios close to

O(log n). No inapproximability results are known for them. MAX-SNP prob-

lems, such as MAX-CUT or MAX-3-SAT, can be approximated to within some

�xed constant factor but no better [PY91, ALM

+

92]. Only a few problems, such

as KNAPSACK [S75] and BIN PACKING [FL81], are known to have polynomial

time approximation schemes (PTASs).

A PTAS is an algorithm that, for every �xed � > 0, achieves an approximation

ratio of 1+� in time that is polynomial in the input size (but could grow very fast

with 1=�, such as O(n

1=�

)). A PTAS thus allows us to trade o� approximation

accuracy for running time. (In the previous de�nition, if the running time is

polynomial in 1=� as well, then we have a fully polynomial time approximation

scheme. These are known to exist for a few problems [GJ79, DFK91, KLM89].)

Unfortunately, recent results ([ALM

+

92]) show that if P 6= NP, then PTASs

do not exist for many NP-hard problems. In particular, this is is true for

every MAX-SNP-hard problem. (The class of MAX-SNP-hard problems in-

cludes VERTEX COVER, MAX-3-SAT, MAX-CUT, METRIC TSP, MULTI-

WAY CUTS, and many others [PY91].)

Note that the inapproximability results mentioned above, like all NP-
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hardness results, rule out approximation only on worst case instances of the

problem. They do not rule out the existence of algorithms (heuristics) that do

well on most instances. This observation is the starting point of our research.

This paper gives PTASs for a large class of NP-hard problems when the

problem instance is dense. The de�nition of denseness depends on the problem;

for example, dense graphs are graphs with 
(n

2

) edges while dense 3-SAT for-

mulas are those with 
(n

3

) clauses. Note that almost all graphs (asymptotically

speaking) are dense, as are almost all 3-SAT instances.

The design of many (but not all) of our PTAS's relies on the observation that

many optimization problems can be phrased as nonlinear integer programs in

which the objective function is a low degree polynomial. For dense problems,

the optimum value of the objective function is quite large. Thus, to achieve a

multiplicative approximation for dense instances it su�ces to achieve an additive

approximation for the nonlinear integer programming problem. We design such

an additive approximation algorithm (see Sections 1.2 and 1.3).

In the remainder of this introduction, we describe the problems we solve and

sketch our solution techniques.

1.1 Applicable Optimization Problems

We now describe the problems to which we apply our techniques. The reader

will note that the problems span a broad spectrum. Some, like maximum cut

and maximum k-satis�ability, are MAX-SNP-complete. Thus they do not have

PTASs on general (that is, non-dense) instances [ALM

+

92], but they can all be

approximated within some constant factor in polynomial time [PY91]. Others,

like graph bisection and separation, do not currently have any algorithms with

approximation ratios better than O(log n) on general instances. It is an open

problem whether they are hard to approximate.

MAX-CUT: Partition the vertices of an undirected graph into two groups so as

to maximize the number of edges with exactly one endpoint in each group.

An algorithm in [GW94] achieves an approximation ratio of 1:13 for the

problem.
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MAX-DICUT: The directed version of the MAX-CUT problem. An algorithm

in [FG95] (improving [GW94]) achieves an approximation ratio of 1:15.

MAX-HYPERCUT(d): A generalization of MAX-CUT to hypergraphs of dimen-

sion d; an edge is considered cut if it has at least one endpoint on each side.

SEPARATOR: Partition the vertices of a graph into two groups, each with at

least 1=3 of the vertices, so as to minimize the number of edges with exactly

one endpoint in each group. An algorithm in [LR88] achieves approximation

ratio O(log n) (though it may produce a 1=4 : 3=4 separator instead of a

1=3 : 2=3 separator).

BISECTION: Partition the vertices of an undirected graph into two equal halves

so as to minimize the number of edges with exactly one endpoint in each

half. Some algorithms, for example using eigenvalues [B87] or simulated

annealing [JS93] do well on certain random graphs (see also [BCLS84]).

For worst-case inputs, no true approximation algorithms are known. Some

known \bisection approximators" (based upon techniques of [LR88]) yield

separators whose capacity is within a factor O(log n) of the capacity of the

optimum bisection. Our algorithm gives an exact bisection.

MAX-k-SAT: Given a conjunctive normal form formula with k variables per

clause, �nd a true-false assignment to the variables making the maximum

possible number of clauses true. An algorithm in [Yan92] achieves an ap-

proximation ratio of 1:33 for the problem. Improved algorithms have since

been given for MAX-3-SAT; an approximation ratio of 8=7 + � is achieved

in [KZ97]. It also known that achieving an approximation ratio of 8=7 � �

is N P-hard [H97].

MIN-k-CUT: Given an n-vertex graph, remove a minimum set of edges that par-

titions the graph into k connected components. Saran and Vazirani [SV91]

gave a (2�2=k)-approximation algorithm. The variant k-terminal cut prob-

lem speci�es k vertices that must all be disconnected from each other by

the removal of the edges. Dalhaus et al. [DJP

+

94] give an algorithm that

achieves an approximation ratio of (2� 2=k).

DENSE-k-SUBGRAPH: Given a graph, �nd a subset of k vertices that induces

a graph with the most edges. This problem was studied in [KP93], where
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an approximation algorithm with ratio n

7=18

was presented.

3-COLORING: Color the vertices of a graph with 3 colors such that no two

adjacent vertices have the same color. Application of our techniques to this

problem yields a result already shown in [Edw86].

MAX-SNP: The class of \constant factor approximable" problems de�ned

in [PY91].

We now de�ne a natural notion of dense instance for each problem. (The

de�nition of dense instances for the class MAX-SNP appears in Section 4.4,

where we also describe a PTAS for them.) Exact optimization on dense instances

is NP-hard for all problems except MIN-k-CUT and 3-COLORING (see Sec-

tion 7).

De�nition 1.1. A graph is �-dense if it has �n

2

=2 edges. It is everywhere-�-dense

if the minimumdegree is �n. We abbreviate 
(1)-dense as dense and everywhere-


(1)-dense as everywhere-dense. Thus everywhere-dense implies dense, but not

vice versa. Similarly, a k-SAT formula is dense if it has 
(n

k

) clauses, and a

dimension-d hypergraph if it has 
(n

d

) edges.

Theorem 1.2. There are PTASs for everywhere-dense instances of BISECTION

and SEPARATOR.

Theorem 1.3. There are PTASs for dense instances of the following prob-

lems: MAX-CUT, MAX-DICUT, MAX-k-SAT for any constant k, DENSE-

k-SUBGRAPH for k = 
(n), MAX-HYPERCUT(d) for constant d, and any

MAX-SNPproblem.

Theorem 1.4. Exact algorithms exist on everywhere-dense graphs for MIN-k-

CUT when k = o(n) and for 3-COLORING.

Remark. The 3-COLORING result is not new|see [Edw86]|but does follow

from a direct application of our general technique

1.2 Our Methods

Our heuristics are based upon two main ideas: exhaustive sampling and its use

in approximation of polynomial integer programs. We discuss these ideas in the

5



context of the maximum cut problem (MAX-CUT), one of the problems to which

our techniques apply.

The goal in MAX-CUT is to partition the vertices of a given graph into two

groups|called the left and right sides|so as to maximize the number of edges

with an endpoint on each side. Notice that in the optimum solution, every vertex

has the majority of its neighbors on the opposite side of the partition (else, it

would improve the cut to move the vertex to the other side). Thus, if we knew

where the neighbors of each vertex lay, we would know where to put each vertex.

This argument may seem circular, but the circularity can be broken (in dense

graphs) by the following exhaustive sampling approach. Suppose we take a sample

of O(log n) vertices. By exhaustively trying all possible (i.e., 2

O(logn)

) placements

of the vertices in the sample, we will eventually guess where each vertex of the

sample belongs in the optimum cut. Since there are 2

O(logn)

= n

O(1)

possibilities,

we can a�ord to try every one of them in polynomial time. So assume we have

partitioned the sampled vertices correctly according to the optimal cut. Now

consider some unsampled vertex. If a majority of its neighbors belong on the

right side of the optimum cut, then we expect that a majority of its sampled

neighbors will be from the right side of the optimum cut. This suggests the

following scheme: put each unsampled vertex on the side opposite the majority

of its sampled neighbors.

This scheme works well for vertices whose opposite-side neighbors signi�cantly

outnumber their same-side neighbors. More problematic are vertices for which

the neighbors split evenly between the two sides; sampling will not typically

give us con�dence about the majority side. This brings us to the second major

idea of our paper: approximately solving nonlinear integer programs. De�ne a

variable x

i

for vertex i which is 1 if the vertex is on the right side of a cut and 0

otherwise. Then �nding a maximum cut corresponds to �nding a 0-1 assignment

that maximizes the following function (where E is the edge set of the graph):

X

i

x

i

0

@

X

(i;j)2E

(1� x

j

)

1

A

:

To see this, note that the formula counts, for every vertex i on the right side of

the cut, the number of edges leading from it to neighbors j on the left side of the

cut.
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Of course, solving even linear integer programs is N P-complete, and the

above program involves a quadratic objective function. However, we show that

exhaustive sampling can be used to approximately maximize such functions, and

more generally, to approximately solve integer programs in which the constraints

and objective involve low-degree polynomials instead of linear functions. We state

our main approximation result in the next section.

Most of our approximation algorithms are more properly viewed as algorithms

that compute an additive approximation (see Section 1.3). For example, our

algorithm for MAX-CUT computes, for every graph, a cut of capacity at least

OPT � �n

2

, where � is any desired constant. Such an approximation is also

within a small multiplicative factor of the optimum in a dense graph (i.e., one

with 
(n

2

) edges) because OPT = 
(n

2

) for such graphs (this follows from our

earlier observation that in an optimum cut, every vertex is on the opposite side

from a majority of its neighbors). However, our algorithms for BISECTION and

SEPARATOR are not additive approximation algorithms.

1.3 Smooth Integer Programs

Many existing approximation algorithms for N P-hard problems are based on

representation of the problem as a linear integer program (LIP). All problems in

N P have such formulations since solving LIPs is N P-complete. Many problems

have natural formuations as LIPs that give insight into their structure and lead

to approximation algorithms. But formulation as a LIP masks the true nature of

many other problems|in particular, an approximately optimum solution to the

LIP may correspond to a far from optimum solution to the original optimization

problem. A more natural formulation involves nonlinear integer program in which

the objective function is a low degree polynomial. Most of our PTAS's for dense

problems are derived from such a representation. We solve a general class of

optimization problems in which the objective function and the constraints are

polynomials.
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De�nition 1.5. A polynomial integer program (or PIP) is of the form

maximize p

0

(x

1

; : : : ; x

n

) (1)

subject to l

i

� p

i

(x) � u

i

(i = 1; : : : ;m) (2)

x

i

2 f0; 1g 8i � n (3)

where p

0

; : : : ; p

m

are polynomials. (The PIP could involve minimization instead

of maximization.)

When all p

i

have degree at most d, we call this program a degree d PIP.

Since they subsume integer programs, it is clear that solving PIPs is N P-hard.

One might hope to de�ne a more tractable class by eliminating the integrality

requirement, but this accomplishes nothing since the 0{1 integrality of x

i

can be

enforced by the quadratic constraint x

i

(x

i

� 1) = 0.

We now describe a class of PIPs that are easy to approximate.

De�nition 1.6. An n-variate, degree-d polynomial has smoothness c if the abso-

lute value of each coe�cient of each degree i monomial (term) is at most c � n

d�i

.

Remark. The reader should think of c and d as being �xed constants, and n as

being allowed to grow. We call the resulting family of polynomials a family of

c-smooth degree d polynomials.

De�nition 1.7. A c-smooth degree-d PIP is a PIP in which the objective func-

tion and constraints are c-smooth polynomials with degree at most d.

Smooth integer programs can represent many combinatorial problems in a

natural way. We illustrate this using MAX-CUT as an example.

Example 1.8. A degree-2 polynomial with smoothness c has the form

X

a

ij

x

i

x

j

+

X

b

i

x

i

+ d

where each ja

ij

j � c; jb

i

j � cn; jdj � cn

2

.

We show how to formulate MAX-CUT on the graph G = (V;E) using a 2-

smooth integer program. De�ne a variable x

i

for each vertex v

i

. Then, assign

0; 1 values to the x

i

(in other words, �nd a cut) so as to maximize

X

fi;jg2E

(x

i

(1 � x

j

) + x

j

(1� x

i

)):
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(Notice that an edge fi; jg contributes 1 to the sum when x

i

6= x

j

and 0 otherwise.

Thus the sum is equal to the cut value.) Expanding the sum shows that the

coe�cients of the quadratic terms are 0 and �2 while the coe�cients of the

linear terms are at most n.

Now we can state our general theorem about approximation of smooth integer

programs.

De�nition 1.9. A solution a is said to satisfy a constraint l

i

� p

i

(x) � u

i

to

within an additive error � if l

i

� � � p

i

(a) � u

i

+ �:

Theorem 1.10. There is a randomized polynomial-time algorithm that approx-

imately solves smooth PIPs, in the following sense. Given a feasible c-smooth

degree d PIP with n variables, objective function p

0

and K constraints, the algo-

rithm �nds a 0=1 solution z satisfying

p

0

(z

1

; : : : ; z

n

) � OPT � �n

d

;

where OPT is the optimum of the PIP. This solution z also satis�es each degree

d

0

constraint to within an additive factor of �n

d

0

for d

0

> 1, and satis�es each

linear constraint to within an additive error of O(�

p

n log n).

The running time of the algorithm is O((dKn

d

)

t

), where t = 4c

2

e

2

d

2

=�

2

=

O(1=�

2

).

The algorithm can be derandomized (i.e., made deterministic), while increas-

ing the running time by only a polynomial factor.

Remark. The statement of the theorem can be stronger: the input PIP does not

need to be feasible, but only approximately feasible (that is, there must be a

point that satis�es each degree d

0

constraint to within an additive error �

0

n

d

0

for

some �

0

< �=2.)

Theorem 1.10 underlies almost all of our PTASs. However, our PTASs for

BISECTION and MIN-k-CUT require some additional ideas since an additive

approximation is not good enough.
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1.4 Related Work

There are known examples of problems that are seemingly easier to approximate

in dense graphs than in general graphs. For instance, in graphs with degree ex-

ceeding n=2, one can �nd Hamiltonian cycles [P

�

76] and approximate the number

of perfect matchings [JS89]. In everywhere-dense graphs it is easy to approxi-

mate the values of the Tutte polynomial and, as a special case, to estimate the

reliability of a network [AFW94].

Independent of our work, Fernandez de la Vega [FdlV94] developed a PTAS

for everywhere-dense MAX-CUT using exhaustive sampling principles similar to

ours. After sampling and guessing, Fernandez de la Vega replaces our linear-

programming solution with a greedy placement procedure. While this procedure

is signi�cantly simpler than ours (at least conceptually; the running time is still

dominated by the exhaustive sampling procedure and is similar to ours), it is

not obvious (and is an interesting open question) whether the procedure can

generalize to the other problems we have listed.

Edwards [Edw86] shows how to 3-color a 3-colorable everywhere-dense graph

in polynomial time. Our sampling approach gives an alternative algorithm.

A random-sampling based approach related to ours also appears in [KP92].

In the last section of the paper (Section 8) we describe some results related

to our work that have been discovered since the conference presentation of the

current paper.

1.5 Paper Organization

In Section 2 we give details of the main ideas of our approach, exhaustive sampling

and transforming polynomial constraints into linear constraints, already sketched

in Sections 1.2 and 1.3. We continue to use MAX-CUT as a motivating example.

In Section 3 we generalize these techniques to derive our (additive error)

approximation algorithm for any smooth polynomial integer program (PIP). In

Section 4, we use these PIPs to approximate most of the problems listed in

Section 1.1. Solving BISECTION and SEPARATOR requires some additional

exhaustive sampling ideas that are explained in Section 5. In Section 6, we
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describe some problems that can be solved purely by exhaustive sampling, with

no recourse to PIPs. Finally, in Section 7, we con�rm that all of the problems

we are approximating are still N P-complete when restricted to dense instances,

demonstrating that an exact solution is unlikely.

2 Our Techniques: An overview

In this section we introduce our two major techniques, exhaustive sampling and

reducing degree d constraints to linear constraints (in an approximate sense) to

give a PTAS for dense MAX-CUT.

First we express MAX-CUT as a quadratic integer program as follows. Let

the 0=1 vector x be the characteristic vector of a cut, i.e., x

i

= 1 i� i is on the

right side. Let N(i) be the set of neighbors of vertex i, and let

r

i

(x) =

X

j2N(i)

(1 � x

j

)

be the linear function denoting the number of number of neighbors of i that are

on the left side of cut x. Then

MAX-CUT = max

P

i

x

i

� r

i

(x)

s.t. x

i

2 f0; 1g 8i

The above formulation looks a lot like an integer linear program, for which

numerous approximation techniques are known. Unfortunately, the \coe�cients"

r

i

(x) in the objective function are not constants|the program is actually a

quadratic program. However, exhaustive sampling lets us estimate the value

these coe�cients have in the optimum solution. We arrive at our approximation

in three steps:

1. Using exhaustive sampling, we estimate the values of r

i

(a) at the optimum

solution a = (a

1

; : : : ; a

n

). See Section 2.1.

2. We replace each function r

i

by the corresponding estimate of r

i

(a). This

turns the quadratic program into a linear (integer) program. We show that

optimum of this linear integer program is near-optimum for the quadratic

program. See Section 2.2.
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3. We solve the fractional relaxation of the linear integer program, and use

randomized rounding to convert the solution into an integer one. We show

that this does not dramatically change the solution value. See Section 2.3.

A comment on notation: Throughout the paper, we will use a� b where a

and b are real numbers, as a shorthand for the interval [a� b; a+ b].

2.1 Estimating Coe�cients

We begin by using exhaustive sampling to estimate the values r

i

(a) at the op-

timum solution a. Let a be the optimum cut and let �

i

= r

i

(a). Then a is the

solution to the following integer linear program:

MAX-CUT = max

P

i

x

i

� �

i

s.t. x

i

2 f0; 1g 8i

r

i

(x) = �

i

8i

Of course, the usefulness of this observation is unclear, since we don't know

the values �

i

. We show, however, that it is possible to compute an additive error

estimate of the �

i

in polynomial time, in other words, a set of numbers e

i

such

that

�

i

� �n � e

i

� �

i

+ �n 8i: (4)

This can be done using our exhaustive sampling approach. We take a

random sample of O(log n) vertices. By exhaustively trying all possible (i.e.,

2

O(logn)

= n

O(1)

) placements of the vertices in the sample, we will eventually

guess a placement wherein each vertex is placed as it would be in the optimum

cut. So we can assume that we have \guessed" the values a

j

in the optimum cut

for all the sampled vertices j. Now consider any unsampled vertex i. If it has

jN(i)j = 
(n) neighbors, then with high probability, �(log n) of its neighbors are

part of the random sample (high probability means probability 1�n

�
(1)

). A mo-

ment's thought shows that these neighbors form a uniform random sample from

N(i). Hence by examining the fraction of sampled neighbors on the left hand
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side of the cut (namely, neighbors for which a

j

= 0) we can obtain an estimate of

r

i

(a)= jN(i)j that is correct to within a small additive factor. This follows from

the following sampling lemma.

Lemma 2.1 (Sampling Lemma). Let (a

i

) be a sequence of n numbers, each

with absolute value at most M . Let f > 0 be any number. If we choose a multiset

of s = g log n of the a

i

at random (with replacement), then their sum q satis�es

qn

s

2

X

i

a

i

� nM

s

f

g

with probability at least 1� n

�f

.

Proof. Let s = g log n. For j = 1; : : : ; s let X

j

be the random variable denoting

the number picked in the j

th

draw. Since the numbers are drawn with replace-

ment, the values X

j

are identically distributed, and

E[X

j

] =

1

n

n

X

j=1

a

j

:

Since jX

j

j �M by hypothesis, the lemma now follows from the standard H�o�ding

bound [H64].

For MAX-CUT, our goal is to estimate the values �

i

of the form

P

j2N(i)

(1�

a

j

). First, if any jN(i)j � �n=10, we use the estimate 0 for �

i

. To estimate �

i

for the remaining i, we randomly choose (with replacement) g log n indices with

g = O(1=�

3

), and \guess" their values by exhaustively trying all possibilities.

Since each a

j

= 0 or 1, we can take M = 1 in the Sampling Lemma. The

Sampling Lemma shows that for each i, the probability is at least 1 � 1=n

2

that

the following happen (i) 
(log n=�

2

) of the sampled vertices lie in N(i) (note that

the conditional distribution of these vertices is uniform) and (ii) the estimate for

�

i

produced using this sample is accurate to within �n.

2.2 Linearizing the Quadratic Integer Program

Now we use the coe�cient estimates to de�ne an integer linear program whose

solutions are near-optima for MAX-CUT. Given the estimates e

i

just derived
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for the values �

i

, we write the following linear integer program. Note that it is

feasible, since a satis�es it (assuming our sampling step in the previous section

worked).

NEW-OPT = max

P

i

x

i

� e

i

s.t. x

i

2 f0; 1g 8i

e

i

� �n � r

i

(x) � e

i

� �n 8i (5)

(Recall that each r

i

(x) is a linear function of x, so the given constraints are linear

constraints.)

We claim that the optimum solution z to this integer linear program is near-

optimum for MAX-CUT. This can be seen as follows:

X

z

i

r

i

(z) �

X

z

i

(e

i

� �n) By the constraints (5)

�

X

z

i

e

i

� �n

2

�

X

a

i

e

i

� �n

2

Since z is integer optimum

�

X

a

i

(�

i

� �n)� �n

2

from (4)

�

X

a

i

�

i

� 2�n

2

= MAX-CUT� 2�n

2

In other words, the optimum of the integer program is a near-optimum solu-

tion to MAX-CUT.

2.3 Approximating the Linear Integer Program

Of course, we cannot exactly solve the integer linear program just derived. But we

can compute an approximate solution to it as follows. We relax the integrality

constraints, allowing 0 � x

i

� 1. We use linear programming to obtain the

fractional optimum, say y 2 [0; 1]

n

, and then use randomized rounding to convert

the fractional solution to an integral one of roughly the same value. The key

lemma is the following:
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Lemma 2.2 (Randomized Rounding). If c and f are positive integers and

0 < � < 1, then the following is true for any integers n � 0. Let y = (y

i

) be a

vector of n variables, 0 � y

i

� 1, that satis�es a certain linear constraint a

T

y = b,

where each ja

i

j � c. Construct a vector z = (z

i

) randomly by setting z

i

= 1 with

probability y

i

and 0 with probability 1�y

i

. Then with probability at least 1�n

�f

,

we have

a

T

z 2 b� c

p

fn ln n

We can apply this lemma to our problem as follows. Give our fractional

solution y, let us apply randomized rounding as in the lemma to yield an integral

solution z. We claim that with high probability,

r

i

(z) 2 r

i

(y)�O(

p

n lnn) (6)

X

z

i

r

i

(y) 2

X

y

i

r

i

(y)�O(n

3=2

lnn) (7)

Speci�cally, to derive Equations (6) and (7) from Lemma 2.2, note that each

r

i

(x) is a linear function with 0{1 coe�cients and that each r

i

(y) is at most n.

We use these equations as follows. The analysis of the previous section showed

that the integral optimum of our derived linear program was near the maximum

cut value, so the fractional optimum y can only be better. That is,

X

y

i

r

i

(y) � MAX-CUT� 2�n

2

:

We now use our randomized rounding lemma. We have that

X

z

i

r

i

(z) �

X

z

i

(r

i

(y)�O(

p

n lnn)) From (6)

�

X

z

i

r

i

(y)�O(n

3=2

lnn)

�

X

y

i

r

i

(y)�O(n

3=2

lnn) From (7)

� MAX-CUT� (2�+ o(1))n

2

This �nishes the overview of our algorithm for MAX-CUT.

3 Approximating Smooth Integer Programs

We now generalize the results of the previous section to handle arbitrary poly-

nomial integer programs (PIPs). We describe an algorithm that computes ap-

15



proximate solutions to smooth PIPs of low degree, thus proving Theorem 1.10.

We use the fact that smooth PIPs can be recursively decomposed into smooth

lower-degree PIPs. This lets us apply ideas similar to those described in Section 2

for MAX-CUT. In a PIP the objective function and constraints are low degree

polynomials (degree 2 in the case of MAX-CUT). We use exhaustive sampling to

convert such polynomial integer programs into linear integer programs. Then we

use the Raghavan-Thompson technique to approximately solve the linear integer

program.

We will see shortly that we can assume without loss of generality that we are

dealing with the feasibility version of a PIP|that is, we are given a feasible PIP

and out goal is to �nd an approximately feasible integer solution. Our general

algorithm has the same three elements as the one for MAX-CUT:

1. We show in Section 3.2 that we can relax the integrality conditions, since we

can use randomized rounding to convert every feasible fractional solution

of a PIP into a feasible integral solution.

2. In Section 3.3, we generalize the sampling theorem, which applies only to

sums, to let us estimate the values of polynomials.

3. We show in Section 3.4 that we can use our estimates to convert degree d

constraints into linear constraints without a�ecting feasibility.

We begin in Section 3.1 with some basic observations.

3.1 Basic Observations

We begin with a few basic observations that we will use at various times in the

proof.

3.1.1 A Polynomial Decomposition

Our PIP algorithms are basically recursive generalizations of the approach for

MAX-CUT. They rely on the following key observation that lets us decompose

any polynomial into simpler polynomials:

16



Lemma 3.1. A c-smooth polynomial p of degree d can be written as

p(x) = t+

X

x

i

p

i

(x)

where t is a constant and each p

i

is a c-smooth polynomial of degree d � 1.

Proof. From each monomial term in the expansion of p, pull out one variable x

i

.

Group all monomials from which x

i

was extracted into p

i

. Every degree d

0

term

in p

i

corresponds to a degree d

0

+ 1 term in p, and thus has coe�cient at most

cn

d�(d

0

+1)

= cn

(d�1)�d

0

. Thus, since p

i

has degree (at most) d�1, it is a c-smooth

degree d� 1 polynomial.

Remark. The above analysis also shows that we can express p uniquely as a sum

p(x) = t+

X

x

i

p

i

(x

i

; : : : ; x

n

);

that is, where each p

i

depends only on variables with index i or greater.

The decomposition of a degree d polynomial into degree d � 1 polynomials

gives us a natural recursion through which we can generalize our quadratic pro-

gramming techniques. By computing an estimate �

i

of the value of p

i

(x) at the

optimum solution, we replace the degree-d constraint p with a single constraint on

P

x

i

�

i

together with a family of constraints on the values p

i

(x). We then recur-

sively expand these degree d�1 constraints, continuing until all of our constraints

are linear.

To estimate the values p

i

(x), we again rely on the expansion above: we expand

p

i

in terms of degree d � 2 polynomials, writing p

i

(x) =

P

x

j

p

ij

(x), recursively

estimate the p

ij

values, and then use exhaustive sampling to estimate p based on

the values of the p

ij

.

After constructing the required linear integer program, we solve its fractional

relaxation and use randomized rounding as before to transform the solution into

an integral solution. To prove that randomized rounding works, we again use the

decomposition|we show that each p

i

(x) is roughly preserved by rounding, and

deduce that

P

x

i

p

i

(x) is also preserved.

17



3.1.2 Reducing Optimization to Feasibility

We can reduce PIP optimization to the corresponding feasibility problem (\Is

there a feasible solution such that the objective exceeds a given value?") using

binary search in the usual way. This uses the fact that the optimum value of a

PIP is not too large, as shown in the following lemma (which will also be useful

later).

Lemma 3.2. If n > d, then the absolute value of a c-smooth polynomial at any

point in [0; 1]

n

is at most 2cen

d

(where ln e = 1).

Proof. For 0 � i � d the polynomial has at most

�

n+i

i

�

terms of degree i, and

each has a coe�cient in [�cn

d�i

; cn

d�i

]. Thus an upper bound on the absolute

value at any point in [0; 1]

n

is

d

X

i=0

cn

d�i

�

�

n+ i

i

�

�

d

X

i=0

cn

d�i

�

�

n+ d

i

�

� cn

d

d

X

i=0

(

n+ d

n

)

i

1

i !

� cn

d

e

1+d=n

which is at most cen

d

(1 + 2d=n) < 2cen

d

for n > 5d.

3.2 Rounding Fractional PIPs

We begin with the �nal step of our algorithm, rounding a fractional solution to an

integral one. We present this section �rst since it is more straightforward than the

following ones but conveys the same ideas. As we saw in Section 2.3, Raghavan

and Thompson [RT87] show that given a fractional solution to a linear program,

we can round it into an integer solution that is \almost as good." We rephrased

their result in Lemma 2.2. We now modify the Raghavan-Thompson technique

to show in Lemma 3.3 that a similar result is true for low degree polynomials.

In other words, we show that the value of a c-smooth polynomial at a point in

[0; 1]

n

is not too di�erent from its value at a nearby integral point obtained by

randomized rounding.

18



Lemma 3.3 (Randomized Rounding for degree d polynomials). Let p be

a c-smooth degree-d polynomial. Given fractional values (y

i

) such that

p(y

1

; : : : ; y

n

) = b, suppose randomized rounding is performed on the y

i

as in

Lemma 2.2 to yield a 0; 1 vector (z

i

). Then with probability at least 1� n

d�f

, we

have

p(z

1

; : : : ; z

n

) 2

h

b� gdn

d�

1

2

p

lnn

i

;

where g = 2ce

p

f .

Proof. We use induction on the degree. The case d = 1 follows from Lemma 2.2.

Now assume we have proved the Lemma for all integers less than d, and p is a

degree d polynomial. As argued in Section 3.1, we can express p as

p(x

1

; : : : ; x

n

) =

n

X

i=1

x

i

� p

i

(x

1

; : : : ; x

n

) + t; (8)

where t is a constant and p

i

is a c-smooth polynomial of degree at most d� 1.

Let �

i

denote the value p

i

(y

1

; : : : ; y

n

). Then

b = p(y

1

; : : : ; y

n

)

= t+

n

X

i=1

�

i

� y

i

:

Let (z

1

; : : : ; z

n

) 2 f0; 1g

n

be obtained by randomized rounding on

(y

1

; : : : ; y

n

). Our proof consists of noticing that with high probability, (z

i

) sat-

is�es both b �

P

i

�

i

z

i

(by Lemma 2.2) and 8i � n : �

i

� p

i

(z

1

; : : : ; z

n

) (by

induction for degree d � 1). Then we realize that any such (z

i

) also satis�es

b � p(z

1

; : : : ; z

n

).

Let us formalize this idea. Note that j�

i

j � 2cen

d�1

by Lemma 3.2. So we

can apply Lemma 2.2 (replacing c by 2cen

d�1

). We �nd that with probability

at least 1 � n

�f

(recalling that the notation a � b is shorthand for the interval

[a� b; a+ b]),

n

X

i=1

�

i

� z

i

2 b� gn

d�1

p

n ln n: (9)
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Furthermore, the inductive hypothesis implies that for each i � n, the prob-

ability is at least 1 � n

d�f�1

that

p

i

(z

i

; : : : ; z

n

) 2 �

i

� g(d� 1)n

d�1�

1

2

p

lnn (10)

Hence we conclude that with probability at least 1� n

d�f

� n

�f

� 1� n

d�f

, the

event mentioned in Condition (10) happens for each i � n, and so does the event

mentioned in Condition (9). Of course, when all these events happen, we have:

p(z

1

; : : : ; z

n

) = t+

n

X

i=1

z

i

� p

i

(z

1

; : : : ; z

n

)

2 t+

X

z

i

(�

i

� g(d� 1)n

d�1�1=2

p

lnn) by (10)

� t+

X

z

i

�

i

� g(d � 1)n

d�1=2

p

lnn

= b� gn

d�1

p

n ln n� g(d� 1)n

d�1=2

p

lnn by (9)

= [b� gdn

d�

1

2

p

lnn]

Hence we have shown that p(z

1

; : : : ; z

n

) 2 [b� gdn

d�

1

2

p

lnn] with probability at

least 1 � n

d�f

.

3.3 Estimating the Value of a Polynomial

Having shown how to round a fractional solution to an integral one, we now

show how to �nd an approximately optimal fractional solution by solving a linear

program. As discussed above, our procedure for replacing the constraint on p(x)

by linear constraints requires estimating the values at the optimum a of the

coe�cients p

i

(a) in the expansion p(a) =

P

a

i

p

i

(a). In this section, we show

how this estimation can be accomplished by exhaustive sampling. We describe

a procedure Eval in Figure 3.3 that can approximate the value of a c-smooth

degree d polynomial p(x

1

; : : : ; x

n

) on any unknown 0=1 vector (a

1

; : : : ; a

n

), given

only partial information about (a

1

; : : : ; a

n

). The algorithm is given the values a

i

for O(log n) randomly-chosen indices i, and outputs an estimate that, with high

probability, lies in p(a

1

; : : : ; a

n

)� �n

d

.

To simplify our exposition later we describe the procedure more generally as

using a (multi)set of indices S � f1; : : : ; ng.
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Algorithm Eval(p; S; fa

i

: i 2 Sg)

Input: polynomial p of degree at most d,

set of variables indices S,

a

i

for i 2 S.

Output: estimate for p(a

1

; : : : ; a

n

).

if deg(p) = 0 (i.e., p is a constant) then

return p

else

write p(x

1

; : : : ; x

n

) = t+

P

x

i

p

i

(x

1

; : : : ; x

n

)

where t is a constant and each p

i

has degree at most d � 1

for each i 2 S

e

i

 Eval(p

i

; S; fa

i

: i 2 Sg)

return

t+

n

jSj

X

i2S

a

i

e

i

Figure 1: The approximate evaluation algorithm

21



Note that if S = f1; : : : ; ng then the procedure returns p(a

1

; : : : ; a

n

). We will

show that in order to get an additive approximation of the type we are interested

in, it su�ces to choose S randomly and of size O(log n). We use the Sampling

Lemma (2.1) as the base case in our inductive proof of the correctness of Eval.

Lemma 3.4. Let p be a c-smooth polynomial of degree d in n variables x

i

, and

let a

1

; : : : ; a

n

2 f0; 1g. Let S be a set of O(g log n) indices chosen randomly

(with replacement). Then with probability at least 1 � n

d�f

, set S is such that

Eval(p; S; fa

i

: i 2 Sg) returns a value in p(a

1

; : : : ; a

n

)� �n

d

, where

� = 4ce

s

f

g

:

Proof. The proof is by induction on d. The case d = 0 is clear. For the inductive

step let �

i

= p

i

(a

i

; : : : ; a

n

), so we have

p(a

1

; : : : ; a

n

) = t+

n

X

i=1

a

i

� �

i

(11)

The intuition for why Eval's output should approximate p(a

1

; : : : ; a

n

) is as

follows. Each p

i

has degree at most d � 1, so the inductive hypothesis implies

that e

i

� �

i

. Thus the output of eval is

t+

n

jSj

�

X

i2S

a

i

� e

i

� t+

n

jSj

�

X

i2S

a

i

� �

i

(by the inductive hypothesis)

� t+

X

i

a

i

� �

i

(by the Sampling Lemma)

It remains to �ll in the details, and to deal with the complication that the er-

rors in our recursive estimates of the �

i

accumulate into the error for our estimate

of p(a

1

; : : : ; a

n

).

Our sample has size g log n. By Lemma 3.2, each j�

i

j � 2cen

d�1

. Hence the

Sampling Lemma implies that with probability 1� n

�f

the set S is such that

n

jSj

X

i2S

a

i

�

i

2

X

i

a

i

�

i

�

 

2ce

s

f

g

!

n

d

(12)

Of course, we do not have the values �

i

. However, we do have the values

e

i

=Eval(p

i

; S; fa

i

: i 2 Sg). To see the impact of using them instead, let �

d
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denote the smallest number such that for every c-smooth degree d polynomial p

and point a 2 f0; 1g

n

Pr[Eval computes an estimate within p(a)� �

d

n

d

] � 1� n

d�f

We get an recurrence for �

d

as follows. By de�nition, Eval estimates any particu-

lar �

i

to within �

d�1

n

d�1

with probability 1�n

(d�1)�f

. Thus all n values �

i

are esti-

mated to within this bound with probability 1�n�n

(d�1)�f

= 1�n

d�f

. Combining

with (12), we conclude that with probability at least 1� n

d�f

� n

�f

� 1� n

d�f

,

set S is such that the returned value

t+

n

jSj

X

i2S

a

i

� e

i

2 t+

n

jSj

X

i2S

a

i

�

�

�

i

� �

d�1

n

d�1

�

� t+

 

n

jSj

X

i2S

a

i

� �

i

!

� �

d�1

n

d�1

n

jSj

� t+

 

X

i

a

i

� �

i

� 2ce

s

f

g

n

d

!

�

�

d�1

jSj

n

d

by (12)

� t+

X

i

a

i

� �

i

�

 

2ce

s

f

g

+

�

d�1

jSj

!

n

d

= p(a

1

; : : : ; a

n

)�

 

2ce

s

f

g

+

�

d�1

jSj

!

n

d

:

It follows that

�

d

� 2ce

s

f

g

+

�

d�1

jSj

� 2ce

s

f

g

(1 + jSj

�1

+ � � �+ jSj

�d

)

� 4ce

s

f

g

for jSj > 1.

Corollary 3.5. With probability 1�n

d�f

over the choice of S, the Eval procedure

accurately estimates the values of all the polynomials arising from the decompo-

sition of polynomial p (that is, estimates every degree-d

0

polynomial to within

�

d

0

n

d

0

).

23



Proof. This is implicit in the previous proof. Note that the decomposition of p is

determined solely by p, independent of the value of the optimum solution a that

we are estimating.

3.4 Transforming Degree d Constraints to Linear Con-

straints

Using the estimates produced by Procedure Eval of Section 3.3 we can transform

any polynomial constraint into a family of linear constraints, so that any feasible

solution to the linear constraints will approximately satisfy the polynomial con-

straint as well. We use algorithm Linearize in Figure 3.4. Just like Eval, the

inputs to this procedure contain partial information about some feasible solution

vector (a

1

; : : : ; a

n

) 2 f0; 1g

n

to the input constraint.

A simple induction shows that the Procedure in Figure 3.4, when given a

degree d constraint, outputs a set of at most 1 + n+ � � �+ n

d�1

= O(n

d�1

) linear

constraints. The next two lemmas prove the correctness of this (probabilistic)

reduction. The �rst shows that with high probability, the replacement equations

are jointly feasible. The second shows any feasible solution will be almost feasible

for the original constraint.

Lemma 3.6. Let f; g; c > 0 be any constants. Let Linearize be given an error

parameter � = 4ce

p

f=g and a constraint involving a c-smooth polynomial of de-

gree d. Let (a

1

; : : : ; a

n

) 2 f0; 1g

n

be a feasible solution to the constraint. If S is

a random sample of g log n variables (picked with replacement), then with proba-

bility at least 1 � dn

d�f

Procedure Linearize outputs a set of linear constraints

that are satis�ed by (a

1

; : : : ; a

n

).

Proof. Calling linearize with polynomial p results in numerous recursive call,

each of which (besides making other recursive calls) outputs a constraint on

some degree d

0

polynomial p

0

. The boundaries l

i

and u

i

for this constraint are

determined by a call to Eval involving polynomial p

0

. Vector a satis�es this

constraint so long as l

i

and u

i

satisfy l

i

� p(a) � u, and this happens so long as

e

i

2 p

0

(a)��n

d

0

. So Linearize does the right thing so long as every polynomial p

0

arising in the recursions is estimated accurately. But these polynomials are just
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Algorithm Linearize(\L� p(x

1

; : : : ; x

n

) � U", S, fa

i

: i 2 Sg, �)

Input: constraint involving polynomial p of degree d,

lower bound L and upper bound U

multiset of variable indices S

a

i

2 f0; 1g for each i 2 S.

Error parameter � > 0.

Output: A set of linear constraints

if p is linear then

output the input constraint \L � p(x) � U"

else

write p(x

1

; : : : ; x

n

) = t+

P

x

i

p

i

(x

1

; : : : ; x

n

)

where t is a constant and each p

i

has degree at most d � 1

for i = 1 to n

e

i

 Eval(p

i

; S; fa

i

: i 2 Sg)

l

i

 e

i

� �n

d�1

u

i

 e

i

+ �n

d�1

Linearize(\l

i

� p

i

(x

1

; : : : ; x

n

) � u

i

", S, fa

i

: i 2 Sg, �)

output the constraint

\L � �n

d

� t+

P

x

i

e

i

� U + �n

d

"

Figure 2: Linearizing a Polynomial Constraint
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the polynomials arising in the recursive decomposition of the original polynomial

p, and are all encountered during a call to Eval(p). Corollary 3.5 says that all

of these polynomials are estimated to within the desired bounds with probability

1� n

d�f

.

Now we show that in the linear system output by Linearize, every feasi-

ble solution is an approximate solution to the input constraint (note that this

statement involves no probabilities).

The next lemma uses [x; y]� a, where x < y and a � 0, as a shorthand for

the interval [x� a; y + a].

Lemma 3.7. Every feasible solution (y

i

) 2 [0; 1]

n

to the set of linear constraints

output by Linearize satis�es the following (irrespective of what the set S is)

p(y) 2 [L;U ]� 2d�n

d

Proof. By induction on d. The case d = 1 is clear, so consider the inductive step.

Since by assumption y is feasible for the entire set of output constraints, it is

feasible for the constraints output by each recursive call involving a polynomial

p

i

. It follows by the inductive hypothesis that for each i,

p

i

(y

i

; : : : ; y

n

) 2 [l

i

; u

i

]� 2(d � 1)�n

d�1

:

Substituting the values of l

i

and u

i

we get

p

i

(y) 2 e

i

� (2d � 1)�n

d�1

Therefore,

p(y) = t+

X

y

i

p

i

(y

i

; : : : ; y

n

)

2 t+

X

y

i

(e

i

� (2d � 1)�n

d�1

)

� t+

�

X

y

i

e

i

�

� (2d� 1)�n

d

� [L;U ]� �n

d

� (2d � 1)�n

d

(13)

� [L;U ]� 2d�n

d

where Equation (13) follows from the fact that y is feasible for the constraint

that was output before recursion, namely

t+

X

x

i

e

i

2 [L;U ]� �n

d

:

Thus the inductive step is complete.
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3.5 Proof of the main theorem

The proof of Theorem 1.10 now follows easily. We have a feasible degree d PIP

with K constraints, where K = poly(n). Suppose (a

1

; : : : ; a

n

) is some (unknown)

feasible 0=1 solution and � > 0 is some tolerance parameter. We describe a

probabilistic procedure that produces a 0=1 solution z that is approximately

feasible. That is, if L � p(x) � U was a degree d

0

constraint in the input, then

with high probability z satis�es it within an additive error �n

d

0

, that is, L��n

d

0

�

p(z) � U + �n

d

0

. (We indicate below how to derandomize the procedure.)

Let f > 0 be such that n

f

� 2dKn

d

. We let �

0

= �=2d, and g = 16c

2

e

2

fd

2

=�

2

=

O(=�

2

). We pick a random multiset S of O(g log n) variables and guess (by ex-

haustive enumeration in 2

g logn

time) the values of a

i

for each i 2 S. Then we use

Procedure Linearizewith error parameter �

0

to replace each degree d

0

constraint

with O(n

d

0

�1

) linear constraints, thus obtaining a linear system with O(Kn

d�1

)

constraints. Since (a

1

; : : : ; a

n

) is a feasible solution to the PIP, Lemma 3.6 implies

that the probability that the new system is feasible is at least 1� dn

d�f

K > 1=2

. We solve the linear system using a polynomial-time algorithm for linear pro-

gramming in O((Kn

d�1

)

3

) time [K84]. Lemma 3.7 implies that the (fractional)

solution thus obtained is also a feasible solution for the original PIP, except for

an additive error 2d�

0

n

d

. Then we randomly round this fractional solution to a

0=1 solution; Lemma 3.3 implies that this increases the additive error by at most

O(n

d�1=2

lnn) = o(n

d

).

Hence we have described a probabilistic procedure that, with probability at

least 1=2, produces a 0=1 solution that is feasible for the PIP except for an

additive error of 2�

0

dn

d

= �n

d

.

The procedure explores 2

g logn

exhaustive sampling possibilities and for each

spends at most O((Kn

d

)

3

) time in generating the linear constraints and solving

them for each guess. The randomized rounding can be done in nearly linear time.

Noting that

2

g logn

= n

g

= (n

f

)

4c

2

e

2

d

2

=�

2

� (2Kn

d

)

4c

2

e

2

d

2

=�

2

;

we conclude that this term dominates the running time.
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3.6 Derandomization

Derandomizing the algorithm in Theorem 1.10 involves derandomizing its com-

ponents, Procedures Eval and Linearize. Those depend upon two random-

ized procedures: Randomized Rounding (used in Lemma 3.3) and the Sam-

pling Lemma. Raghavan [Rag88] derandomized the former through the method

of conditional probabilities. Derandomizations of the Sampling Lemma appear

in [BR94] and [BGG93]. For example, instead of picking s = O(log n=�

2

) variables

independently, it su�ces to pick the variables whose indices are encountered on

a random walk of length O(log n=�

2

) on a constant degree expander [Gil93]. For

any �xed sampling experiment, the probably that such a walk works is 1=n

O(1)

.

Hence our algorithm can deterministically go through all such walks (the number

of such walks is n

O(1=�

2

)

since the expander has O(1) degree). One of the walks

is guaranteed to work correctly for all of the poly(n) sampling experiments that

our algorithms is interested in.

4 Applications

In this section we use our theorem on approximating constant-degree smooth inte-

ger programs to construct PTASs for (dense instances of) many problems. Most

applications require approximating quadratic programs. Approximating dense

MAX-k-SAT requires approximating degree-k integer programs. In later sections

we will obtain PTASs for graph bisection and minimum k-way cut. These will

require some additional ideas, speci�cally, a di�erent application of exhaustive

sampling.

4.1 MAX-CUT, MAX-DICUT, MAX-HYPERCUT

Note that a �-dense graph has at least �n

2

edges. Thus the capacity k of the

maximum cut exceeds �n

2

=2, since this is the expected size of a cut obtained by

randomly assigning each vertex to one side of the graph or the other with equal

probability. We already saw in Example 1.8 how to represent MAX-CUT using

c-smooth quadratic integer programs with c = O(1). Using the approximation
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scheme for quadratic programs in Theorem 1.10, we can in time n

O(1=�

2

�

2

)

�nd a

cut of value at least c� ��n

2

=2 � (1� �)k, in other words a (1� �) approximation

to the maximum cut.

MAX-DICUT has a similar PTAS. Again, an expectation argument shows

that the maximum cut in a �-dense graph exceeds �n

2

=4. The representation by

a quadratic program is also similar; in the quadratic program for MAX-CUT in

Example 1.8 just replace (x

i

(1 � x

j

) + x

j

(1 � x

i

)) in the objective function by

(1� x

i

)x

j

.

The PTAS for dense MAX-HYPERCUT(d) is similarly obtained by modeling

the problems as a smooth degree-d PIP. For a given edge (set of vertices) S, we

use the term 1 �

Q

i2S

x

i

�

Q

i2S

(1 � x

i

). This term is 1 if S is cut and zero

otherwise.

4.2 DENSE-k-SUBGRAPH

Let k � �n. If a graph is �-dense, then a graph induced by a random subset of k

vertices contains �

2

�n

2

=2 edges on average. Hence the densest subgraph contains

at least �

2

�n

2

=2 edges.

We can express the DENSEST-k-SUBGRAPH as the optimum of the follow-

ing quadratic program.

maximize

P

fi;jg2E

x

i

x

j

subject to x

i

2 f0; 1g

P

n

i=1

x

i

= k

Clearly this PIP is 1-smooth. From Theorem 1.10 we know how to �nd an

approximately optimal 0; 1 vector x satisfying

P

n

i=1

x

i

2 [k� g

p

n lnn]. Now we

move at most g

p

n lnn vertices in or out to get a subset of size k; this a�ects the

number of edges included in the subgraph by at most gn

p

n lnn = o(n

2

).

The reader may wonder if our algorithm for DENSEST-SUBGRAPH has

any application to the CLIQUE problem. We do not see any connection. In

fact, approximating CLIQUE in dense graphs is N P-hard (this follows from
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the fact that approximating INDEPENDENT SET in degree-5 graphs is N P-

hard [ALM

+

92]).

4.3 MAX-k-SAT

A standard \arithmetization" method can be used to represent MAX-k-SAT as

a degree-k smooth IP. Let y

1

; : : : ; y

n

be the variables and m be the number of

clauses. Introduce 0{1 valued variables x

1

; : : : ; x

n

. For each i, 1 � i � n, replace

each unnegated occurrence of variable y

i

by 1�x

i

, each negated occurrence by x

i

,

eachlogical _ by multiplication (over integers), and for each clause subtract the

resulting term from 1. This changes each clause into a degree-k polynomial. To

give an example, the clause y

1

_:y

2

_y

3

is replaced by the term 1�(1�x

1

)x

2

(1�

x

3

). Now associate, in the obvious way, 0; 1 assignments to the variables x

i

with

truth assignments to the boolean variables y

i

. Clearly, an assignment of values

to the x

i

makes the term 1 if the corresponding assignment to the y

i

makes the

clause true, and 0 otherwise.

Let t

j

be the term obtained in this way from the jth clause. The following

degree-k program represents the MAX-k-SAT instance, and is smooth.

maximize

P

j�m

t

j

(x

1

; : : : ; x

n

)

subject to x

i

2 f0; 1g 8i

Now suppose the number of clauses is m � �n

k

. Let OPT be the maximum

number of clauses that any assignment can satisfy. Since the number of clauses

of size k is m � O(n

k�1

), and a random assignment satis�es each of them with

probability 1 � 2

�k

, we have

OPT � (1� 2

�k

)(m�O(n

k�1

)):

By approximating our PIP we can in time O(n

2

4k

=�

2

) �nd an assignment that

satis�es OPT�

�

2

k

n

k

� (1 � �)OPT clauses.

4.4 Dense MAX-SNP

As pointed out in [PY91], problems such as MAX-CUT, MAX-k-SAT and MAX-

HYPERCUT(d) lie in a class called MAX-SNP, and actually in a subclass called
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MAX-SNP

0

in [Pap94]. MAX-SNP

0

was de�ned using model theory, and it is

unclear how to de�ne denseness for MAX-SNP

0

problems. In fact, problems such

as vertex cover are in MAX-SNP only if the degree of the graph is bounded. In

this section we give a plausible de�nition of denseness and show that under this

de�nition, all dense MAX-SNP

0

problems have a PTAS.

Let MAX-k-FUNCTION-SAT be the problem in which the input consists

of m boolean functions f

1

; f

2

; : : : ; f

m

in n variables, and each f

i

depends only

upon k variables. The objective is to assign values to the variables so as to

satisfy as many f

i

as possible. As is well-known (see [Pap94], Theorem 13.8),

a MAX-SNP

0

problem can be viewed as a MAX-k-FUNCTION-SAT problem

for some �xed integer k. (An alternative name for MAX-k-FUNCTION-SAT is

\constraint satisfaction problems" [KSW97].)

We call an instance of a MAX-SNP

0

problem dense if the instance of MAX-

k-FUNCTION-SAT produced using it has 
(n

k

) functions. It is easily checked

that our earlier de�nitions of denseness were sub-cases of this de�nition. Also, not

all MAX-SNP problems have a dense version under this de�nition; for example

vertex cover is excluded.

A slight modi�cation of the k-SAT technique of Section 4.3 shows that MAX-

k-FUNCTION-SAT can be represented by a smooth degree-k integer program,

so it follows that dense MAX-k-FUNCTION-SAT has a PTAS.

5 BISECTION and SEPARATOR

In this section we describe a PTAS for BISECTION. Small modi�cations de-

scribed at the end give a PTAS for SEPARATOR. Consider a graph with min-

imum degree �n for some � > 0 and let k denote the capacity of the minimum

bisection. The PTAS consists of two di�erent algorithms, one of which is a PTAS

when k � �n

2

, and the other when k < �n

2

, where � is a certain small constant.

For k � �n

2

, we use our PIP approximation algorithm to achieve an additive

error at most ��n

2

, so that the capacity of the �nal bisection is at most (1+ �)k.

When k � �n

2

, such additive approximations do not su�ce, and we give a di�er-

ent algorithm. The algorithm uses exhaustive sampling to identify vertices that

have \many" neighbors on one side of the bisection, and places them on that
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side. We show that this leaves only a small number of unplaced neighbors, whose

placement can be done greedily without signi�cantly disturbing the value of our

solution.

5.1 Large Bisections

The algorithm for k � �n

2

is essentially our algorithm for approximating

smooth quadratic integer programs. We formulate graph bisection using the

same quadratic program as for MAX-CUT (see Example 1.8), except we change

\maximize" to \minimize," and add the constraint

P

x

i

= n=2. Applying our

main theorem gives us an assignment to the x

i

that makes the objective function

less than k + �n

2

� k(1 + �=�).

There is one small problem: this 0; 1 assignment might not induce a bisec-

tion, since it only approximately satis�es the constraint

P

x

i

= n=2. However,

randomized rounding does guarantee there will be n=2 � (

p

n log n) vertices on

each side of the solution. Hence we need to move only O(

p

n log n) vertices from

one side to another in order to balance the cut. This a�ects the bisection value

by at most O(n

1:5

log n) = o(n

2

).

5.2 Small Bisections

The case k � �n

2

is more di�cult. We need the following lemma.

Lemma 5.1. In a minimum bisection, there is one side whose every degree-d

vertex has at most d=2 + 1 of its neighbors on the other side.

Proof. If not, then we can reduce the bisection value by picking from each side a

vertex that has more than the allowed neighbors on the other side, and switching

them.

Let L

opt

and R

opt

denote the sets of vertices on the two sides of a particular

minimum bisection. Without loss of generality, we will assume that L

opt

is the

side referred to in Lemma 5.1.
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We now give a bisection algorithm in Figure 5.2. For simplicity, we describe

it as a randomized algorithm, although we can easily derandomize it using the

techniques mentioned earlier. Recall that � is the denseness of the problem.

1. Pick a set S of O((log n)=�) vertices at random.

2. For each possible partition of S into two sets (S

L

; S

R

), construct a partition

(L;R) as follows.

(a) Let T be the set of vertices that have more than 5=8 of their sampled

neighbors in S

R

.

(b) Put T in R.

(c) For each vertex v 62 T , de�ne bias(v) as

#(neighbors of v not in T ) � #(neighbors of v in T ):

(d) Put the n=2 � jT j vertices with the smallest bias into R.

3. Of all bisections found in the previous step, output the one with the small-

est value.

Figure 3: The Bisection Algorithm

Now we prove the correctness of the algorithm. Since it exhaustively tries

all possible partitions of the vertices in the sample S, it also tries the \correct"

partition, which labels each of the vertices of S according to a minimumbisection

(L

opt

; R

opt

) of the entire graph. From now on we call this partition (S

L

; S

R

) of S

special. We will show that with high probability (over the choice of S) the special

partition leads the algorithm to a near-optimum graph bisection.

Let T be the set constructed by the �rst step of the algorithm using the special

partition. The next lemma describes some useful properties of T . Call a vertex

radical-right if at least 3=4 of its neighbors are in R

opt

. Note (from Lemma 5.1)

that every radical-right vertex must be in R

opt

:

Lemma 5.2. With high probability (over the choice of S), T is a subset of R

opt

and contains every radical right vertex.
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Proof. Let v be any vertex. Since its degree exceeds �n, the Sampling Lemma

implies that with high probability a random sample of size O((log n)=�) contains

�(log n) neighbors of v. Conditioning on the number of neighbors in the sample,

these neighbors form an unbiased sample of that many neighbors of v.

Suppose v 2 L

opt

, and so has fewer than 1=2 of its neighbors in R

opt

. Then an

application of the Sampling Lemma shows that in a random sample of �(log n)

neighbors of v, the probability that more than 5=8 of them are in R

opt

is n

�
(1)

.

Hence the probability that v 2 T is n

�
(1)

.

Now suppose v 2 R

opt

has more than 3=4 of its neighbors in R

opt

. An ap-

plication of the Sampling Lemma shows that in a random sample of O(log n)

neighbors of v, the probability that less than 5=8 of them are in R

opt

is n

�
(1)

.

Hence the probability that v 2 T is 1� n

�
(1)

.

The next lemma says that with high probability, T has size close to n=2 and

thus contains almost all of R

opt

.

Lemma 5.3. If T satis�es the two conditions in Lemma 5.2 then jT j �

n

2

�

4k

�n

.

Proof. Every vertex in R

opt

� T must have 1=4 of its neighbors in L

opt

. Let

s = jR

opt

� T j = n=2 � jT j. Then the value of the minimum bisection is at least

s�n=4, which by assumption is at most k. Hence s � 4k=(�n).

We can now show that with high probability the algorithm produces a bisec-

tion close to optimum.

Theorem 5.4. Assuming k < �n

2

, with high probability (over the choice of S)

the bisection produced by the special partition has value at most k(1 + �), where

� = 16�

2

=�

2

.

Proof. We measure the cost of extending T to a particular set of half the vertices.

For any set U � T , let d

in

(U) be twice the number of edges with both endpoints

in U , and let d

out

(T ) be the number of edges with exactly one endpoint in T .

Further, let bias(U) be the sum of the biases of vertices in U . We claim that the

capacity of the bisection whose one side is T [ U is

d

out

(T ) + bias(U)� d

in

(U): (14)
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To see this, note that the expression starts by counting all edges leaving T . The

bias term then subtracts the edges crossing from U to T while adding the edges

crossing from U to the other side of the cut. The bias term also incorrectly adds

(twice, once for each endpoint) the number of edges with both endpoints in U ,

which do not cross the cut; however, this quantity is subtracted by the d

in

(U)

term, resulting in the correct quantity.

With high probability, the set T produced in the �rst phase satis�es the

conditions in Lemma 5.2. Hence T � R

opt

, and s = n=2 � jT j � 4k=(�n). Let

U

opt

= R

opt

� T be the optimum set of s vertices extending T to R

opt

and let

U

actual

be the set of s vertices that the algorithm actually picks to extend R.

Since U

opt

minimizes Equation (14), we know k = d

out

(T ) + bias(U

opt

) �

d

in

(U

opt

). On the other hand, U

actual

(since it includes the s vertices with the

smallest bias) minimizes bias(U), and thus also the expression d

out

(T )+bias(U).

Thus the capacity of the bisection whose one side is T [ U

actual

is at most k +

d

in

(U

opt

)� d

in

(U

actual

), which is at most k + s

2

� k + (4k=(�n))

2

. Since k < �n

2

the capacity is at most k(1 + 16�

2

=�

2

).

Corollary 5.5. If a dense graph has bisection value O(n), the optimum bisection

can be found in polynomial time.

Proof. From Lemma 5.3, there are O(1) vertices in R

opt

�T . These can be found

by exhaustive search.

Corollary 5.6. There is a PTAS for the optimum separator of a dense graph.

Proof. Guess the number k of vertices on the left side of the separator (by trying

all n=3 possibilities) and replace n=2 by k in the previous discussion of bisection.

If the minimum degree is not constrained, but the average degree is 
(n),

our PIP approach still works for large bisection values, but our other algorithm

for small bisection values fails. In fact, as shown in Section 7, approximating

the minimum bisection for �-dense graphs is no easier than approximating it on

general graphs.
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6 Algorithms without PIPs

Occasionally, exhaustive sampling is su�cient to solve or approximately solve

a dense problem without recourse to PIPs. This was shown for MAX-CUT by

Fernandez de la Vega [FdlV94]. We have also seen this for the case of (small)

bisections. Here we describe two other problems, multiway cuts and 3-coloring.

(The latter was already solved by Edwards [Edw86].)

6.1 MIN-k-CUT

First we consider the k-terminal cut problem. Let �n denote the minimumdegree.

Let OPT be the capacity of the optimum cut. Note that OPT � kn, since

kn is an upperbound on the capacity of a cut in which k � 1 of the terminals

form singleton groups, while all other vertices form the remaining group. The

algorithm relies on the following lemma.

Lemma 6.1. When k = o(n), there is a k-cut of capacity (1 + o(1))OPT that

has a special form: at most 2=� groups of size 
(n), and all other groups of size

1 (containing only the terminals).

Proof. Suppose S

1

; S

2

; : : : ; S

k

(sorted in decreasing order by size) are the k groups

in the optimum cut. Let an ordinary vertex be one that in the optimum cut has

at most 1=4 of its � �n neighbors in groups di�erent from its own. Note that

there are at most 4k=� vertices that are not ordinary.

Let t be the number of groups with at least �n=2 vertices; note that t � 2=�.

Consider the modi�ed cut in which all nonterminals from S

t+1

; : : : ; S

k

are moved

to one of S

1

; S

2

; : : : ; S

t

. We show that the capacity of this cut is at most (1+o(1))

times the original capacity; this will prove the lemma.

Since each of S

t+1

; : : : ; S

k

has size less than �n=2, they can only contain

vertices that are not ordinary. Thus they together contain at most 4k=� vertices.

Furthermore, the capacity of the cut is at least

k

X

i=t+1

(jS

i

j

�n

2

�

�

jS

i

j

2

�

):
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Since jS

i

j = O(k) = o(n), the second term is o(�) of the �rst term. Now con-

sider moving all nonterminals from S

t+1

; : : : ; S

k

to S

1

; : : : ; S

t

; this increases the

capacity of the cut by at most

k

X

i=t+1

�

jS

i

j

2

�

;

which |as already noted| is o(�) of

P

k

i=t+1

(jS

i

j �n=2).

Now we describe the algorithm. Imagine �xing a k-cut of the type described

in Lemma 6.1 Let an ordinary vertex be one that has at most 1=4 of its � �n

neighbors in groups di�erent from its own. Let s be the number of nodes that

are not ordinary. Clearly, OPT (1 + o(1)) � s�n=4, thus implying

s � 4k(1 + o(1))=� = o(n):

First we exhaustively try all k

2=�

ways of picking terminals that will go into

non-singleton groups. One of these ways will be \correct." For each of the

placements, we try placing the nonterminals using exhaustive sampling. We pick

a random sample of O(log n) vertices and by exhaustively trying all partitions of

it (just as in the other algorithms), we can identify for each vertex the group (if

one exists) that contains more than 2=3 of its sampled neighbors, and assign it

to that group. The Sampling Lemma shows that this fails to place or misplaces

only vertices that are not ordinary, i.e., at most s vertices. Now place each of the

remaining vertices in the group that contains a plurality of its neighbors. This

gives almost the desired cut, except it may misplace s vertices. Furthermore, if

a misplaced vertex contributed x to the correct cut (i.e., x of its neighbors were

in another group) then it contributes at most x+ s� 1 to our cut. Thus the cost

of our cut is at most

OPT (1 + o(1)) +

�

s

2

�

:

Since OPT (1+o(1)) � s�n=4; and s = o(n), the cut has capacity OPT (1+o(1)).

A similar PTAS can be designed for the problem without terminals, where

the goal is simply to �nd the best partition into k nonempty groups of vertices.
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6.2 3-COLORING

Random sampling also gives a scheme for 3-coloring dense 3-colorable graphs.

Since this result replicates that of Edwards [Edw86], details are omitted. Let the

colors be 0; 1; 2. Initially, make all vertices \uncolored." As before, we pick a

random sample of O((log n))=�

2

) vertices and guess their colors. Let us focus on

the correct guess. With high probability, at least one neighbor of every vertex is

sampled and colored. Now observe that if a vertex has colored neighbors of two

di�erent colors, its color is determined. So long as such a vertex exists, color it.

When we �nish, each remaining uncolored vertex v

i

has a neighbor with color c

i

and no neighbors of other colors. Now set up an instance of 2-SAT as follows.

Assign a variable x

i

to vertex v

i

that is true if v

i

has color c

i

+ 1 (mod 3) in the

optimal coloring, and false otherwise (i.e., v

i

has color c

i

� 1 (mod 3)). For each

edge (v

i

; v

j

), add constraints on the variables x

i

and x

j

that prevent v

i

and v

j

from having the same color. Solve the 2-SAT instance in polynomial time, and

extract an assignment of colors from the assignment to the variable x

i

.

Note that the algorithm can be derandomized easily.

7 NP-completeness results

Thus far, we have described PTASs for dense instances of many NP-hard prob-

lems. Now we show that computing optimal solutions in all these cases remains

NP-hard, justifying the search for approximation schemes.

For MAX-SNP type problems, it is usually easy to reduce non-dense in-

stances to �-dense instances. MAX-CUT provides a good example. Suppose

OPT is the optimum value of the MAX-CUT problem on a graph G = (V;E).

We add a (disjoint) complete graph on n vertices to G. The new graph has

E +

�

n

2

�

edges, and is 1=2-dense. Furthermore, the new optimum of MAX-CUT

is OPT +

�

n

2

�

=2. Thus exact optimization on the new instance is no easier than

exact optimization on the old instance. A similar idea works for MAX-k-SAT,

MAX-DICUT, etc.

Everywhere{dense BISECTION is alsoNP-hard. In fact, the standard reduc-

tion that shows the NP-completeness of BISECTION produces such instances.
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It starts from instances of MAX-50-50-CUT that have constant degree | this is

a known N P-hard restriction of MAX-50-50-CUT | and complements the graph

to turn it into an instance of BISECTION. The resulting instance is everywhere-

�-dense.

Now we indicate two problems for which denseness does not seem to help

in designing PTASs: dense instances of BISECTION and everywhere-dense in-

stances of MIN-VERTEX-COVER.We show that if the �rst problem has a PTAS

that then there is a PTAS for general instances of BISECTION (designing such

a PTAS is a famous open problem). This follows from the following reduction:

Given any instance of BISECTION with n vertices, add to it two disjoint cliques

of size 2n each. The resulting instance is 2=5-dense, but the capacity of the

minimum bisection is unchanged.

Now we show that if there is a PTAS on everywhere-1=2-dense instances

of MIN-VERTEX-COVER, then P = NP. We rely on the result of [PY91,

ALM

+

92] that P = NP if there is a PTAS for MIN-VERTEX-COVER on the

following simple family of graphs: each of the n vertices has degree at most 5,

and the smallest vertex cover has size at least n=2. Notice that given such a

simple graph we can add a clique on n vertices to the graph and put a complete

bipartite graph between the original vertices and the new vertices. This raises

the degree of every vertex to n (so the graph becomes everywhere-1=2-dense) and

raises the size of the minimum vertex cover by exactly n. Thus a PTAS on the

resulting instance is a PTAS on the original instance.

8 Conclusion

We suspect that our technique of approximately reducing quadratic programs to

linear programs might be useful in non-dense instances of problems. Of course,

the exhaustive random sampling that underlies our work no longer su�ces, since

an additive approximation is not good enough in that case. But some other ap-

proximation method could plausibly replace it. If such an approximation method

can be found, it would probably also improve performance on dense instances, by

removing the error due to the sampling lemma. Note that the error introduced

by the Raghavan-Thompson technique in our approximation algorithm is much
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smaller than that introduced by the sampling step (the former error is an additive

term of O(n

1:5

log n) in the case of quadratic programs; the latter error is 
(n

2

)).

Does a good approximation algorithm exist for general BISECTION? What

about an inapproximability result? Our results suggest how not to try to prove

inapproximability results. Recall that the standard way to prove the NP-

completeness of BISECTION uses the fact that 50-50 MAX-CUT is just BI-

SECTION on the complementary graph. Since 50-50 MAX-CUT on degree 5

graphs is MAX-SNP hard (and therefore has no PTAS), one is tempted to try

to use this connection to prove the MAX-SNP-hardness of BISECTION. This

naive idea does not work, since the complementary graph of a degree 5 graph is a

dense graph in which the minimum bisection has capacity 
(n

2

). This capacity

swamps the gap (in the capacity of the optimum cut) of �(n) present in the

instance of 50-50 MAX-CUT, so the the MAX-SNP-hardness of BISECTION

does not follow. Of course, now we know an inherent reason why such approaches

are unlikely to succeed: BISECTION has a PTAS on dense graphs.

To conclude, we mention some recent research that extends or improves our

work. Arora, Frieze, and Kaplan [AFK96] extend our exhaustive sampling idea

to design additive approximation schemes for problems in which feasible solu-

tions are permutations (such as the 0-1 Quadratic Assignment problem). Frieze

and Kannan [FK96] and independently, Goldreich, Goldwasser, and Ron [GGR96]

showed that our techniques apply because of certain regularity properties in dense

graphs, and used this observation to design linear time additive approximation

schemes for most of the problems we have considered here. Frieze and Kan-

nan also point out connections to constructive versions of Szemeredi's Regularity

Lemma.
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