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Abstract

The bandwidth problem is the problem of enumerating the vertices of a given graph

G such that the maximum di�erence between the numbers of adjacent vertices is

minimal. The problem has a long history and a number of applications. There was

not much known though on approximation hardness of this problem, till recently.

Karpinski and Wirtgen [KW 97] showed that there are no polynomial time approx-

imation algorithms with an absolute error guarantee of n

1��

for any � > 0 unless

P = NP .

In this paper we show, that there is no PTAS for the bandwidth problem unless

P = NP , even for trees. More precisely we show that there are no polynomial time

approximation algorithms for general graphs with an approximation ratio better

than 1:5, and for the trees with an approximation ratio better than 4=3 � 1:332.
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1 Introduction

The bandwidth problem on graphs has a very long and interesting history cf.

[CCDG 82].

Formally the bandwidth minimization problem is de�ned as follows. Let G =

(V;E) be a simple graph on n vertices. A numbering ( or layout ) of G is a one-

to-one mapping f : V ! f1; :::; ng. The bandwidth B(f;G) of this numbering is

de�ned by

B(f;G) = maxfjf(v)� f(w)j : fv; wg 2 Eg;

the greatest distance between adjacent vertices in G corresponding to f . The

bandwidth B(G) is then

B(G) = min

f is a numbering of G

fB(f;G)g

Clearly the bandwidth of G is the greatest bandwidth of its components. Therefore,

we assume without loss of generality that the input graph is connected.

The problem of constructing the bandwidth of a graph is NP -hard [Pa 76], even

for trees with maximum degree 3 [GGJK 78]. There are only few cases for which we

can construct the optimal layout in polynomial time [GGJK 78], [Sa 80], [Ch 88],

[Sm 95].

To date there was not much known about approximating the bandwidth. Re-

cently Feige [Fe 97] constructed an approximation algorithm constructing a layout

within a polylogarithmic factor of the optimum. The algorithm (cf. [Fe 97]) is based

on volume respecting embeddings, which are natural extensions of small distortion

embeddings of Linial, London and Rabinovich [LLR 95].

Also for special graph classes, like caterpillars [HMM 91] found a polynomial

time log n-approximation algorithm. A caterpillar is a special kind of a tree con-

sisting of a simple chain, the body, with an arbitrary number of simple chains,

the hairs, attached to the body by coalescing an endpoint of the added chain with

a vertex of the body. For this special class of trees the bandwidth problem was

also shown to be NP -hard [Mo 86]. Karpinski, Wirtgen and Zelikovsky [KWZ 97]

constructed a 3-approximation algorithm for �-dense graphs. A graph G is �-dense,

if the minimum degree �(G) is at least �n. We call it everywhere dense, if it is

�-dense for some � > 0.

The design of approximation algorithms for NP -hard optimization problems

became an important �eld of research in the last decade. In the best of situations

we are able to �nd approximation algorithms which work in polynomial time and

approximate optimal solutions within an arbitrary given constant. Such meta-

algorithms are called polynomial time approximation schemes (PTASs), cf.eg.,

[Ho 97]. For the dense instances of MAX-SNP problems [PY 91], the existence of

PTAS has been proven by Arora, Karger and Karpinski [AKK 95].

Most of the above algorithms have one thing in common, namely their running

times are bounded by n

O(f(1=�))

where the approximation ratio is r = 1 + �. The

algorithms are becoming more practical if their running times are functions of a

kind g(1=�)n

O(1)

. These algorithms are called e�cient polynomial approximation

schemes (EPTASs). There has been recently some progress in this direction. Fer-

nandez de la Vega [Fe 96] designed a randomized algorithm for the MAX-CUT
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problem, which runs in 2

(1=�)

O(1)

n

O(1)

time (removing dependence on � in the expo-

nent of n). Frieze and Kannan [FK 96] obtained similar bounds for dense instances

of some MAX-SNP -hard problems using an algorithmic version of Szemeredi's

regularity lemma. Another improvement was given in Goldreich, Goldwasser and

Ron [GGR 96], and in Frieze and Kannan [FK 97].

In [KW 97] Karpinski and Wirtgen relate the parameterized complexity theory

[DF 92] to the notion of EPTASs to show, that there are no EPTASs for the

bandwidth problem, under certain natural conditions.

Another open problem was the question whether there exist absolute approxi-

mation algorithms for the bandwidth problem. We say, a solution S is a absolute

r-approximation to the optimum OPT , if S � OPT + r (in the case of minimiza-

tion problems). For some graph parameters like the treewidth, or vertex separator,

it is known, that there are no absolute approximations [BGHK 95], [BJ 92]. In

[KW 97] the bandwidth was related to the treewidth. It was shown, that there are

no absolute n

1��

-approximations for the bandwidth problem, unless P = NP .

This paper is organized as follows. In Section 2 we prove, that it is NP -hard to

�nd a PTAS for trees. Section 2.1 shows that we get better hardness bounds for

general graphs.

2 NP -Hardness of Bandwidth Approximation

We show a reduction from the 3SAT problem to the bandwidth problem restricted

on trees. For simplicity, we can assume that each clause contains exactly 3 literals

(cf. [Pa 76]). Let be �(x) =

V

m

i=1

c

i

an instance of 3SAT on n variables. We will

construct in polynomial time a tree T = T

�

, such that � 2 3SAT i� B(T ) � b, b will

be speci�ed later. We use parameters p; s; o; o

S;U;V

1::3

which will be chosen suitable in

n

O(1)

. For simplicity reasons, we will de�ne d = 3 + n + 2m. Later we will deduce

all parameters from s and o. For the proof of NP -hardness of the decision problem,

the two may be chosen freely from n

O(1)

, as long as they satisfy

o + s � 3n+ 6m (1)

For the proof of the approximation hardness, we will set them explicitly.

The construction of T starts with a center vertex c. There are two subgraphs

S and U , one subgraph L

y

for each literal y and for each clause c

j

four subgraphs

graphs C

1

j

; : : : ; C

4

j

, which are all attached to c. At the outer ends of S and U are

another two subgraphs V

S

and V

U

attached ( see Figure 1 ).

The subgraphs L

x

i

and L

x

i

consist of a line of m + n components. Every

component has a line of 2d nodes and a star of size s attached to the node with

number d+3+ i. The d+1-th node of the m+ i-th component has a star of size s.

Moreover, the d+ 1-th node of every j-th component has a star of size s attached

through an intermediate node i� x

i

( or x

i

) satis�es the clause c

j

( Figure 2 ).

The four lines for every clause consist of m + n components as well. Every

component has a star attached to every node with number d+3+n+ j. The lines

C

1

j

and C

2

j

receive one star at the d+ 1-th node of the j-th component ( Figure 3

). The remaining lines C

3

j

and C

4

j

( Figure 4 ) are kept for consistency.
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Figure 1: Overview of the structure of T
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Figure 2: Line of x

i

, occurring in clause 1 and h

The component of the subgraphs S,U and V is a graph with a backbone of

length 2d. The �rst d nodes have stars of size p ( these are called barriers ), the

following 3 nodes have a star of size o

1

,o

2

and o

3

respectively ( called pockets ).

The remaining n nodes have a star of size o, the last 2m nodes a star of size o� 1

attached ( these are referred to as buckets ). When built into the subgraphs, the o

i

are replaced by o

S;U;V

i

respectively.

The two subgraphs S and U are constructed fromm components and are joined

directly with the center node c ( Figure 5 ). The subgraph V is made of n compo-

nents plus an additional barrier at the end ( Figure 6 ). Two copies are built into

the graph: one at the end of S ( subsequently called V

S

) and U ( called V

U

).

We de�ne b to be

b = n + 2m+ o+ s+ 1 (2)

The barriers should have space for exactly n+ 2m nodes, so that n+ 2m lines

may be layed through them. The three pockets of S, the �rst two of U and the

�rst of V

S

and V

U

will need extra space for s nodes. It is easy to see, that we can

choose our parameters such that in each of this parts the bandwidth will be b:
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Figure 3: Line C

1

j

and C

2

j

p = o + s

o

S

1

= o� 2 o

S

2

= o� 1 o

S

3

= o

o

U

1

= o� 2 o

U

2

= o o

U

3

= o+ s

o

V

1

= o� 1 o

V

2

= o+ s o

V

3

= o+ s

This construction is polynomially bounded by n. There are one central node,

4d(n+m)+2d nodes of the backbone, 2(n+m) barriers of dp nodes, m(o

S

1

+o

S

2

+o

S

3

)

nodes in the pockets of S, m(o

U

1

+ o

U

2

+ o

U

3

) in those of U and n(o

V

1

+ o

V

2

+ o

V

3

) in

each of V

S

and V

U

. 2(m+n)n stars of size o and 2(m+n)2m stars of size o� 1 are

in the buckets of S,U ,V

S

and V

U

and d(b� 1) in the ending barriers. The 2n lines

for the literals each have 2d(m + n) nodes in the line, a star of size s connected

through an intermediate node and (m+ n)s in the stars for the buckets. Together

they contain 3m stars of size s ( since it is 3SAT ) plus the additional intermediate

node. The 4m lines for the clauses each consist of 2d(m + n) nodes and m + n

stars of size s plus the additional node, 2m of them have an additional star of size

s attached to an intermediate node. Adding these together and using the above

equations, it turns out that the tree has 1 + (4d(m+ n) + 2d)b nodes. Since the

diameter is 4d(m+ n) + 2d, b is a strict lower bound for the bandwidth of T .

Lemma 2.1 For every 3SAT -formula �, the tree T

�

has a minimum layout f

with B(f; T

�

) � b i� � is satis�able and a minimum layout g with B(g; T

�

) �

b �minf

3

2

; 1 +

�

s

3b

�

g, i� � is not satis�able.

Proof: Be � satis�able. Then there is an assignment a, such that at most two

literals of every clause are not satis�ed. The layout is given as follows: S, V

S

and
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and C
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j
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Figure 5: structure of S and U

the lines of the satis�ed literals are folded to the left and U , V

U

and the lines of the

unsatis�ed literals are folded to the right of c. C

j

1

and C

j

2

are folded to the left, if

two literals in c

j

are not satis�ed, one to the left and one to the right, if one literal

is not satis�ed and both to the right, if all are satis�ed. The other two are folded

to the opposite side. This layout has bandwidth b, because every pocket in S has

exactly 3 stars of size s, every pocket in U has exactly 2 stars of size s and every

pocket in both V

S

and V

U

has exactly one star of size s. And because n+2m lines

are folded to the same side, the buckets have n+ 2m stars of size s. The values of

o; o

S;U;V

1::3

were chosen, so that all these stars have enough room.

No suppose � is not satis�able. Then there are four possibilities to layout the

nodes:

1. Both S and U ( and with them V

S

and V

U

) are folded to the same side. Then

2p+ 2 is a lower bound for the bandwidth. To distinguish this case from the

satis�ed one, we required (1). Thus

s+ o � 3n+ 6m

4s+ 4o+ 4 > 3(n+ 2m+ o+ s + 1)

4p+ 4 > 3b
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Figure 6: structure of V

S

and V

U

2p+ 2 >

3

2

b

2. The assignment on which the layout is based, is not valid, i.e. 9i : x

i

= x

i

.

Then two stars of size s will need to be squeezed into the i-th pocket ( either

in V

S

or V

U

). The best way to do this is to spread the nodes of the star in

the three neighboring sections. So we have

B(T ) � b+

�

s

3

�

(3)

3. The layout is based on a valid assignment s, but at least one clause is not

satis�ed : 9j : c

j

(a) = 0. The pockets of the unsatis�ed clause have therefore

three stars of size s. But because there is only space for two stars, the third

one is spread over the three neighboring sections. So we have

B(T ) � b+

�

s

3

�

(4)

4. S and U are folded to di�erent sides ( wlog S to the left and U to the right

) and no pocket has more stars than it should, but the lines are stretched or

squeezed to achieve this. E.g. c

j

is not satis�ed, but the line of one literal

is stretched to place the super
uous star into the pocket for c

j+1

, where only

one unsatis�ed literal is placed. The line C

j+1

1

for the clause is folded to the

other side and squeezed, so that the star can be placed into the pocket for

clause c

j

in S.

There are two possibilities to stretch a line: either it is stretched less than

d positions, then the star for the bucket will be placed in the barrier and

increase the bandwidth by one third of its size:

B(T ) � b+

�

s

3

�

(5)
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Or the line is stretched so much that the star i is placed in the next pocket/

bucket i + 1. The previous star i � 1 is still in the bucket i � 1, and so the

line with 2d nodes has to be stretched over 3d positions, and therefore

B(T ) �

3

2

b (6)

If a line is squeezed, one star for a bucket is placed in an already occupied

area and so increases the bandwidth by a third of its size.

So in any case, the bandwidth of the layout of a tree made from an unsatis�ed

formula is either

3

2

b or b +

�

s

3

�

. We will now see how to exploit this to prove the

approximation hardness of the bandwidth problem on trees.

To show the approximation hardness, we have to assign s and o to suitable values

such that the gap between the bandwidth for satis�ed and unsatis�ed formulas to

be a constant multiple of the bandwidth.

� 2 3SAT ) B(T ) � b

� 62 3SAT ) B(T ) � cb

For the unsatis�ed case, we have

B(T ) � minf2p+ 2;

3

2

b; b+

�

s

3

�

g (7)

Choose o = 3(n+ 2m+ 1), s = 3l(n+ 2m+ 1), l � 1.

B(T ) � minf6(l+ 1)(n+ 2m+ 1) + 2;

3

2

(n + 2m+ 3(l+ 1)(n+ 2m+ 1) + 1);

n+ 2m+ 3(l+ 1)(n+ 2m+ 1) + 1 + l(n+ 2m+ 1)g

� minf6(l+ 1)(n+ 2m+ 1) + 2;

3

2

(3l+ 2)(n+ 2m+ 1);

4(l+ 1)(n+ 2m+ 1)g

� 4(l+ 1)(n+ 2m+ 1) (8)

So we have for our constant c :

c � b = 4(l+ 1)(n+ 2m+ 1)

c � (n+ 2m+ o+ s + 1) = 4(l+ 1)(n+ 2m+ 1)

c � (n+ 2m+ 3(l+ 1)(n+ 2m+ 1) + 1) = 4(l+ 1)(n+ 2m+ 1)

c � (3l+ 4)(n+ 2m+ 1) = 4(l+ 1)(n+ 2m+ 1)

c =

4l+ 4

3l+ 4

c >

4

3

� � (9)

Thereby we have proved that approximating the bandwidth problem on trees is

NP -hard for a factor of

4

3

� �.
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Theorem 2.2 There is no PTAS for the bandwidth problem on trees, unless P =

NP . In particular for any � > 0, there is no polynomial time approximation algo-

rithm with a approximation ratio 4=3� � � 1:332� �, unless P = NP .

2.1 Better Lower Bounds for the General Problem

The critical point in the above construction, that determines the gap of the band-

width, is the estimation of the space needed for a star in an already occupied pocket.

We can increase this space by replacing the stars on the lines by cliques connected

to the lines by new edges and thereby loosing the tree property. The nodes of a

clique can themselves be not more then b positions apart and are spread over only

two sections:

B(G) � b+

�

s

2

�

Be o = 2(n+ 2m+ 1), s = 2l(n+ 2m+ 1), l � 2. Similar transformations lead

to the following result for unsatis�ed formulas:

B(G) � 3(l+ 1)(n+ 2m+ 1) (10)

And so we have

c >

3

2

� � (11)

We can now conclude, that it is NP -hard to approximate the bandwidth of

general graphs with an approximation ratio of

3

2

� � or less.

Theorem 2.3 For any � > 0, there is no polynomial time approximation algorithm

with a approximation ratio 1:5� �, unless P = NP .

This construction can be generalized to work for any SAT -formula, even with

di�erent numbers of literals in di�erent clauses and multiple occurrences of the

same literal in one clause. It then becomes somewhat more complicated to describe

how many stars and nodes are at the di�erent positions.

3 Open problems

An important computational problem still remains open about the existence of a

PTAS for the bandwidth problem on dense graphs (cf. [KWZ 97]).

Another important question is to improve both upper and lower approximation

bounds on the general bandwidth problem, closing a large gap between O(1) and

log

O(1)

n (cf. [Fe 97]).
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