Up: tsp
Previous: Geometric TSP (arbitrary metric)
References-Update
-
- 1
- S. Arora. Polynomial Time Approximation Schemes for Euclidean TSP and other Geometric Problems,
Journal of the ACM, 45(5):753-782, 1998.
- 2
- A. Asadpour, M. Goemans, A. Madry, S. Gharan, A. Saberi. An O(log n / log log n)-Approximation Algorithm for the Asymmetric Traveling Salesman Problem,
Proc. 21st SODA, 379-389, 2010.
- 3
- P. Berman, M. Karpinski. 8/7-Approximation Algorithm for (1-2)-TSP,
Proc. 17th
SODA, 641-648, 2006.
- 4
- M. Bläser. A 3/4-Approximation Algorithm for Maximum ATSP
with Weights Zero and One, Proc. 8th APPROX-RANDOM, LNCS 3122:61-71, 2004.
- 5
- S. Boyd, R. Sitters, S. van der Ster, L. Stougie. The Traveling Salesman Problem on Cubic and Subcubic Graphs,
CoRR arXiv:abs/1107.1052, also appeared in Proc. 15th IPCO, LNCS 6655:65-77, 2011.
- 6
- N. Christofides. Worst-case Analysis of a New Heuristic for the Travelling Salesman Problem,
Technical Report CS-93-13. Carnegie Mellon University, 1976.
(See also on Wikipedia.)
- 7
- B. Csaba, M. Karpinski, P. Krysta. Approximability of Dense and Sparse Instances of Minimum 2-Connectivity, TSP and Path Problems,
Proc. of the 13th Annual ACM-SIAM Symposium on Discrete Algorithmics, 74-83, 2002.
- 8
- A. Golovnev. Approximation Algorithms for Metric TSP, Stackexchange.com, URL:
http://cstheory.stackexchange.com/questions/9241/approximation-algorithms-for-metric-tsp
- 9
- M. Karpinski, M. Lampis, R. Schmied. New Inapproximability Bounds for TSP,
CoRR arXiv:abs/1303.6437, 2013;
also appeared in Proc. 24th ISAAC, 568-578, 2013; to appear in J. Computer and System Sciences.
- 10
- M. Karpinski, R. Schmied. Approximation Hardness of Graphic TSP on Cubic Graphs,
CoRR arXiv:abs/1304.6800, 2013; journal version: RAIRO Operations Research 49 (2015), pages 651-668.
- 11
- M. Karpinski, R. Schmied. On Approximation Lower Bounds with Bounded Metrics,
CoRR arXiv:abs/1201.5821, 2012.
- 12
- J. Mitchell. Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems,
SIAM Journal on Computing, 28(4):1298-1309, 1999.
- 13
- T. Mömke, O. Svensson. Approximating Graphic TSP by Matchings,
CoRR arXiv:abs/1104.3090, also appeared in 52nd Annual Symposium on Foundations of Computer Science, 560-569, 2011.
- 14
- A. Sebö, J. Vygen. Shorter Tours by Nicer Ears,
CoRR arXiv:abs/1201.1870, 2012; To appear in Combinatorica.
- 15
- L. Trevisan. When Hamming Meets Euclid: The Approximability of Geometric TSP and Steiner Tree,
SIAM Journal on Computing, 30(2):475-485, 2000.
2015-04-14 Revision: 286 PDF version