Next: Acknowledgements
Up: A Compendium on Steiner
Previous: Min Power Symmetric Connectivity
- 1
-
A. Aazami, J. Cheriyan, and K. Jampani.
Approximation Algorithms and Hardness Results for Packing
Element-Disjoint Steiner Trees in Planar Graphs.
In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, volume 5687 of LNCS, pages 1-14. 2009.
- 2
-
A.K. Abu-Affash, P Carmi, and M.J. Katz.
Bottleneck Steiner Tree with Bounded Number of Steiner Vertices.
In CCCG, pages 39-42, 2011.
- 3
-
A. Agrawal, P. Klein, and R. Ravi.
When trees collide: An approximation algorithm for the generalized
Steiner problem on networks.
In Proceedings of the twenty-third Annual ACM Symposium on
Theory of Computing, pages 134-144. ACM, 1991.
- 4
-
N. Alon, B. Chor, F. Pardi, and A. Rapoport.
Approximate Maximum Parsimony and Ancestral Maximum Likelihood.
IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 7:183-187, 2010.
- 5
-
E. Althaus, G. Calinescu, I. Mandoiu, S. K. Prasad, N. Tchervenski, and
A. Zelikovsky.
Power Efficient Range Assignment for Symmetric Connectivity in
Static Ad Hoc Wireless Networks.
Wireless Networks, 12(3):287-299, 2006.
- 6
-
A. Archer, M.H. Bateni, M.T. Hajiaghayi, and H. Karloff.
Improved approximation algorithms for prize-collecting Steiner tree
and TSP.
SIAM Journal on Computing, 40(2):309-332, 2011.
- 7
-
S. Arora.
Polynomial Time Approximation Schemes for Euclidean TSP and other
Geometric Problems.
Journal of the ACM, 45(5):753-782, 1998.
- 8
-
S.W. Bae, C. Lee, and S. Choi.
On exact solutions to the Euclidean bottleneck Steiner tree
problem.
Information Processing Letters, 110(16):672-678, 2010.
- 9
-
M. H. Bateni, M. T. Hajiaghayi, and D. Marx.
Approximation Schemes for Steiner Forest on Planar Graphs and
Graphs of Bounded Treewidth.
CoRR, abs/0911.5143, also appeared in Journal of the
ACM, 58(5), 2011.
- 10
-
P. Berman, A. Bhattacharyya, K. Makarychev, S. Raskhodnikova, and
G. Yaroslavtsev.
Approximation Algorithms for Spanner Problems and Directed Steiner
Forest.
Information and Computation, 222:93 - 107, 2013.
- 11
-
P. Berman, M. Karpinski, and A. Zelikovsky.
1.25-Approximation Algorithm for Steiner Tree Problem with Distances
1 and 2.
Proc. of the 11th Workshop on Algorithms and Data Structures.
LNCS 5664, pages 86-97, 2009.
- 12
-
P. Berman, M.Karpinski, and A. Zelikovsky.
A Factor 3/2 Approximation for Generalized Steiner Tree Problem with
Distances One and Two.
CoRR, abs/0812.2137, 2008. Also appeared in Proc. of the
21st International Symposium on Algorithms and Computation, 6506:15-24,
2010.
- 13
-
M. Bern and P. Plassmann.
The Steiner problem with edge lengths 1 and 2.
Information Processing Letters, 32(4):171-176, 1989.
- 14
-
Ahmad Biniaz, Anil Maheshwari, and Michiel Smid.
An optimal algorithm for the Euclidean bottleneck full Steiner tree
problem.
Computational Geometry: Theory and Applications,
47(3):377-380, 2014.
- 15
-
Ahmad Biniaz, Anil Maheshwari, and Michiel Smid.
Approximating Full Steiner Tree in a Unit Disk Graph.
In Proceedings of the 26th Canadian Conference in Computational
Geometry (CCCG 2014), pages 113-117, 2014.
- 16
-
Ahmad Biniaz, Anil Maheshwari, and Michiel Smid.
On the Hardness of Full Steiner Tree Problems.
Technical report, Carleton University, 2014.
- 17
-
K.D. Boese and A.B. Kahng.
Zero-skew clock routing trees with minimum wirelength.
In ASIC Conference and Exhibit, 1992., Proceedings of Fifth
Annual IEEE International, pages 17-21. IEEE, 1992.
- 18
-
I. Bomze, M. Chimani, M. Junger, I. Ljubi, P. Mutzel, and B. Zey.
Solving Two-Stage Stochastic Steiner Tree Problems by Two-Stage
Branch-and-Cut.
Algorithms and Computation, pages 427-439, 2010.
- 19
-
B. Borradaile, N. Klein, and C. Mathieu.
An (n log n ) approximation scheme for Steiner
tree in planar graphs.
ACM Transactions on Algorithms, 5(3), 2009.
- 20
-
G. Borradaile, P. N. Klein, and C. Mathieu.
A Polynomial-time Approximation Scheme for Euclidean Steiner
Forest.
CoRR, abs/1302.7270, 2013.
- 21
-
J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità.
An improved LP-based Approximation for Steiner Tree.
In Proceedings of the 42nd ACM Symposium on Theory of
Computing, pages 583-592, 2010.
- 22
-
M. agalj, J.P. Hubaux, and C.C. Enz.
Energy-efficient broadcasting in all-wireless networks.
Wireless Networks, 11(1):177-188, 2005.
- 23
-
G. Calinescu.
Approximate Min-Power Strong Connectivity.
SIAM Journal on Discrete Mathematics, 27(3):1527-1543, 2013.
- 24
-
G. Calinescu and A. Zelikovsky.
The polymatroid steiner problems.
Journal of Combinatorial Optimization, 9(3):281-294, 2005.
- 25
-
J. Cardinal, M. Karpinski, R. Schmied, and C. Viehmann.
Approximating subdense instances of covering problems.
In Proceedings of the 6th Latin-American Algorithms, Graphs and
Optimization Symposium, pages 59-65, 2011.
- 26
-
T.H. Chao, J.M. Ho, and Y.C. Hsu.
Zero skew clock net routing.
In Proceedings of the 29th ACM/IEEE Design Automation
Conference, pages 518-523. IEEE Computer Society Press, 1992.
- 27
-
M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li.
Approximation algorithms for directed Steiner problems.
In Proceedings of the ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 192-200. Society for Industrial and Applied
Mathematics, 1998.
- 28
-
M. Charikar, J. Kleinberg, R. Kumar, S. Rajagopalan, A. Sahai, and A. Tomkins.
Minimizing wirelength in zero and bounded skew clock trees.
In Proceedings of the tenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 177-184. Society for Industrial and Applied
Mathematics, 1999.
- 29
-
C. Chekuri, A. Ene, and N. Korula.
Prize-Collecting Steiner Tree and Forest in Planar Graphs.
CoRR, abs/1006.4357, 2010.
- 30
-
C. Chekuri, A. Ene, and A. Vakilian.
Node-Weighted Network Design in Planar and Minor-closed Families of
Graphs.
In Proc. 39th International Colloquium Conference on Automata,
Languages, and Programming, pages 206-217, 2012.
- 31
-
C. Chekuri, A. Ene, and A. Vakilian.
Prize-collecting Survivable Network Design in Node-weighted Graphs.
In Proc. 15th International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems, pages 98-109, 2012.
- 32
-
C. Chekuri, G. Even, and G. Kortsarz.
A combinatorial approximation algorithm for the group Steiner
problem.
Discrete Applied Mathematics, 154(1):15-34, 2006.
- 33
-
Y. Chen.
An Improved Approximation Algorithm for the Terminal Steiner Tree
Problem.
In Computational Science and Its Applications - ICCSA 2011,
volume 6784 of LNCS, pages 141-151. 2011.
- 34
-
J. Cheriyan and M.R. Salavatipour.
Hardness and approximation results for packing Steiner trees.
Algorithmica, 45(1):21-43, 2006.
- 35
-
R.H. Chitnis, H. Esfandiari, M.T. Hajiaghayi, R. Khandekar, G. Kortsarz, and
S. Seddighin.
A Tight Algorithm for Strongly Connected Steiner Subgraph on Two
Terminals with Demands.
In Proc. International Symposium on Parameterized and Exact
Computation, pages 159-171, 2014.
- 36
-
M. Chlebik and J. Chlebikova.
The Steiner tree problem on graphs: Inapproximability results.
Theoretical Computer Science, 406(3):207-214, 2008.
- 37
-
A.E.F. Clementi, P. Penna, and R. Silvestri.
On the power assignment problem in radio networks.
Electronic Colloquium on Computational Complexity (ECCC),
7(54), 2000.
- 38
-
N. Cohen and Z. Nutov.
A (1+ln 2)-Approximation Algorithm for Minimum-Cost
2-Edge-Connectivity Augmentation of Trees with Constant Radius.
Theoretical Computer Science, 489–490:67 - 74, 2013.
- 39
-
A.M. Costa, J.F. Cordeau, and G. Laporte.
Steiner tree problems with profits.
Information Systems and Operational Research, 44(2):99-116,
2006.
- 40
-
E. Demaine, M.T. Hajiaghayi, and P. Klein.
Node-weighted steiner tree and group steiner tree in planar graphs.
Automata, Languages and Programming, pages 328-340, 2009.
- 41
-
D. Du and X. Hu.
Steiner Tree Problems in Computer Communication Networks.
World Scientific Publishing, 2008.
- 42
-
C.W. Duin and A. Volgenant.
The partial sum criterion for Steiner trees in graphs and shortest
paths.
European Journal of Operations Research, 97:172-182, 1997.
- 43
-
M. Edahiro.
Minimum skew and minimum path length routing in VLSI layout design.
NEC research & development, 32(4):569-575, 1991.
- 44
-
Ö. Egecioglu, T.F. Gonzalez, and T.L.F. Gonzalez.
Minimum-energy broadcast in simple graphs with limited node power.
In in Proc. IASTED Int. Conf. on Parallel and Distributed
Computing and Systems, pages 334-338. Citeseer, 2001.
- 45
-
A. Ene and A. Vakilian.
Improved Approximation Algorithms for Degree-bounded Network Design
Problems with Node Connectivity Requirements.
In Proc. 46th ACM Symposium on Theory of Computing, pages
754-763, 2014.
- 46
-
R.E. Erickson, C.L. Monma, and A.F. Veinott Jr.
Send-and-split method for minimum-concave-cost network flows.
Math. Oper. Res., 12 (4):634-664, 1987.
- 47
-
M. Feldman, G. Kortsarz, and Z. Nutov.
Improved approximating algorithms for directed steiner forest.
In Proceedings of the twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 922-931. Society for Industrial and Applied
Mathematics, 2009.
- 48
-
D. Fernández-Baca and J. Lagergren.
On the approximability of the Steiner tree problem in phylogeny.
Algorithms and Computation, pages 65-74, 1996.
- 49
-
L. Fleischer, J. Konemann, S. Leonardi, and G. Schafer.
Simple cost sharing schemes for multicommodity rent-or-buy and
stochastic steiner tree.
In Proceedings of the thirty-eighth Annual ACM Symposium on
Theory of Computing, pages 663-670. ACM, 2006.
- 50
-
G. Frederickson and J. Jaja.
On the Relationship between the Biconnectivity Augmentation and
Travelling Salesman Problems.
Theoretical Computer Science, 19:189 - 201, 1982.
- 51
-
T. Fukunaga.
Spider covers for prize-collecting network activation problem.
To appear in Proc. ACM-SIAM Symposium on Discrete Algorithms,
2015.
- 52
-
M.R. Garey and D.S. Johnson.
Computers and Intractability: A Guide to the Theory of
NP-completeness.
WH Freeman & Co. New York, NY, USA, 1979.
- 53
-
N. Garg, G. Konjevod, and R. Ravi.
A polylogarithmic approximation algorithm for the group Steiner tree
problem.
In Proceedings of the ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 253-259. Society for Industrial and Applied
Mathematics, 1998.
- 54
-
S. Guha and S. Khuller.
Improved Methods for Approximating Node Weighted Steiner Trees and
Connected Dominating Sets.
Information and Computation, 150(1):57-74, 1999.
- 55
-
A. Gupta and A. Kumar.
A constant-factor approximation for stochastic Steiner forest.
In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC '09, pages 659-668, New York, NY, USA, 2009. ACM.
- 56
-
A. Gupta, M. Pál, R. Ravi, and A. Sinha.
Boosted Sampling: Approximation Algorithms for Stochastic
Optimization.
In Proc. of the thirty-sixth Annual ACM Symposium on Theory of
Computing, pages 417-426, 2004.
- 57
-
M.T. Hajiaghayi and Kamal Jain.
The prize-collecting generalized steiner tree problem via a new
approach of primal-dual schema.
In Proceedings of the seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithm, pages 631-640, 2006.
- 58
-
M.T. Hajiaghayi, G. Kortsarz, and M. Salavatipour.
Approximating Buy-at-Bulk and Shallow-light k-Steiner trees.
Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 152-163, 2006.
- 59
-
M.T. Hajiaghayi, V. Liaghat, and D. Panigrahi.
Near-Optimal Online Algorithms for Prize-Collecting Steiner
Problems.
In Proc. 41th International Colloquium Conference on Automata,
Languages, and Programming, pages 576-587, 2014.
- 60
-
E. Halperin, G. Kortsarz, R. Krauthgamer, A. Srinivasan, and N. Wang.
Integrality ratio for group Steiner trees and directed Steiner
trees.
In Proceedings of the fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 275-284. Society for Industrial and Applied
Mathematics, 2003.
- 61
-
E. Halperin and R. Krauthgamer.
Polylogarithmic inapproximability.
In Proceedings of the thirty-fifth Annual ACM Symposium on
Theory of Computing, pages 585-594. ACM, 2003.
- 62
-
F. Hargesheimer.
A Note on the Prize Collecting Bottleneck TSP and Related Problems.
CS Report 85336, University of Bonn, 2013.
- 63
-
F. Hargesheimer.
Prize Collecting Bottleneck Steiner Problems: A Combinatorial
Approach.
CS Report 85345, University of Bonn, 2013.
- 64
-
M. Hauptmann.
On the Approximability of Dense Steiner Problems.
Journal of Discrete Algorithms, 21:41-51, 2013.
- 65
-
M. Hauptmann and M Lamp.
Approximability of Selected Phylogenetic Tree Problems.
CS Report 85299, University of Bonn, 2008. Also submitted to
the Journal of Discrete Algorithms.
- 66
-
S. Held and N. Kaemmerling.
Two-Level Rectilinear Steiner Trees.
CoRR, abs/1501.00933v1, 2015.
- 67
-
D. Hoshika and E. Miyano.
Approximation Algorithms for Packing Element-Disjoint Steiner Trees
on Bounded Terminal Nodes.
In Algorithmic Aspects in Information and Management, volume
8546 of LNCS, pages 100-111. 2014.
- 68
-
S. Hougardy, J. Silvanus, and J. Vygen.
Dijkstra meets Steiner: a fast exact goal-oriented Steiner tree
algorithm.
CoRR, abs/1406.0492v2, 2014.
- 69
-
S. Hsieh, H. Gao, and S. Yang.
On the Internal Steiner Tree Problem.
In Theory and Applications of Models of Computation, volume
4484 of LNCS, pages 274-283. Springer-Verlag Berlin Heidelberg, 2007.
- 70
-
C. Huang, C. Lee, H. Gao, and S. Hsieh.
The internal Steiner tree problem: Hardness and approximations.
Journal of Complexity, 29:27-43, 2013.
- 71
-
D.S. Johnson, M. Minkoff, and S. Phillips.
The prize collecting steiner tree problem: theory and practice.
In Proceedings of the eleventh Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 760-769. Society for Industrial and Applied
Mathematics, 2000.
- 72
-
M. Karpinski, I. Mandoiu, A. Olshevsky, and A. Zelikovsky.
Improved Approximation Algorithms for the Quality of Service Steiner
Tree Problem.
Proc. of the 8th Workshop on Algorithms and Data Structures.
LNCS 2748, pages 401-411, 2003.
- 73
-
M. Karpinski and A. Zelikovsky.
New Approximation Algorithms for the Steiner Tree Problems.
Journal of Combinatorial Optimization, 1(1):47-65, 1997.
- 74
-
M. Karpinski and A. Zelikovsky.
Approximating dense cases of covering problems.
In Network Design: Connectivity and Facilities Location
(Princeton, NJ, 1997), volume 40 of DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., pages 169-178. 1998.
- 75
-
S. Khuller and A. Zhu.
The general Steiner tree-star problem.
Information Processing Letters, 84(4):215-220, 2002.
- 76
-
P.N. Klein and R. Ravi.
A Nearly Best-possible Approximation Algorithm for Node-Weighted
Steiner Trees.
J. Algorithms, 19(1):104-115, 1995.
- 77
-
J. Koenemann, S. Sadeghian, and L. Sanita.
An LMP O(log n)-Approximation Algorithm for Node Weighted Prize
Collecting Steiner Tree.
In Proc. 54th Annual IEEE Symposium on Foundations of Computer
Science, 2013.
- 78
-
G. Kortsarz and D. Peleg.
Approximation algorithms for minimum-time broadcast.
SIAM Journal on Discrete Mathematics, 8(3):401-427, 1995.
- 79
-
G. Kortsarz and D. Peleg.
Approximating the weight of shallow Steiner trees.
Discrete Applied Mathematics, 93(2-3):265-285, 1999.
- 80
-
Y. Lando and Z. Nutov.
Inapproximability of survivable networks.
Theoretical Computer Science, 410(21-23):2122-2125, 2009.
- 81
-
L.C. Lau.
Packing Steiner Forests.
Integer Programming and Combinatorial Optimization, pages
362-376, 2005.
- 82
-
L.C. Lau and H. Zhou.
A Unified Algorithm for Degree Bounded Survivable Network Design.
Integer Programming and Combinatorial Optimization, pages
369-380, 2014.
- 83
-
A. Levin.
A Better Approximation Algorithm for the Budget Prize Collecting
Tree Problem.
Operations Research Letters, 32(4):316 - 319, 2004.
- 84
-
X. Li, X.H. Xu, F. Zou, H. Du, P. Wan, Y. Wang, and W. Wu.
A PTAS for Node-Weighted Steiner Tree in Unit Disk Graphs.
Combinatorial Optimization and Applications, pages 36-48,
2009.
- 85
-
Z.M. Li, D.M. Zhu, and S.H. Ma.
Approximation algorithm for bottleneck Steiner tree problem in the
Euclidean plane.
Journal of Computer Science and Technology, 19(6):791-794,
2004.
- 86
-
W. Liang.
Constructing minimum-energy broadcast trees in wireless ad hoc
networks.
In Proceedings of the 3rd ACM International Symposium on Mobile
ad hoc Networking & Computing, pages 112-122, 2002.
- 87
-
C. Lung Lu, C. Yi Tang, and R. Chia-Tung Lee.
The Full Steiner Tree Problem.
Theoretical Computer Science, 306:55-67, 2003.
- 88
-
M.V. Marathe, R. Ravi, R. Sundaram, SS Ravi, D.J. Rosenkrantz, and H.B.
Hunt III.
Bicriteria network design problems.
Arxiv preprint cs/9809103, 1998.
- 89
-
P. Mirchandani.
The multi-tier tree problem.
INFORMS Journal on Computing, 8(3):202-218, 1996.
- 90
-
A. Moss and Y. Rabani.
Approximation algorithms for constrained node weighted steiner tree
problems.
SIAM J. Comput., 2(37):460-481, 2007.
- 91
-
J. Naor, D. Panigrahi, and M. Singh.
Online Node-weighted Steiner Tree and Related Problems.
In Proc. 52th Annual IEEE Symposium on Foundations of Computer
Science, pages 210-219, 2011.
- 92
-
Z. Nutov.
Approximating Steiner Network Activation Problems.
In Proc. 10th Latin American Symposium on Theoretical
Informatics, pages 594-605, 2012.
- 93
-
D. Panigrahi.
Survivable Network Design Problems in Wireless Networks.
In Proc. 22nd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1014-1027, 2011.
- 94
-
I. Papadimitriou and L. Georgiadis.
Minimum-energy broadcasting in multi-hop wireless networks using a
single broadcast tree.
Mobile Networks and Applications, 11(3):361-375, 2006.
- 95
-
H. J. Prömel and A. Steger.
A New Approximation Algorithm for the Steiner Tree Problem with
Performance Ratio 5/3.
J. Algorithms, 36(1):89-101, 2000.
- 96
-
R. Ravi.
Rapid rumor ramification: Approximating the minimum broadcast
time.
Proc. of the 35th Annual Symposium on Foundations of Computer
Science, pages 202-213, 1994.
- 97
-
G. Robins and A. Zelikovsky.
Improved Steiner Tree Approximation in Graphs.
In Proceedings of the eleventh Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 770-779. Society for Industrial and Applied
Mathematics, 2000.
- 98
-
G. Robins and A. Zelikovsky.
Tighter Bounds for Graph Steiner Tree Approximation.
SIAM J. Discrete Math., 1(19):122-134, 2006.
- 99
-
M. Sarrafzadeh and C.K. Wong.
Bottleneck Steiner trees in the plane.
IEEE Transactions on Computers, 41(3):370-374, 1992.
- 100
-
Y. Sharma, C. Swamy, and D.P. Williamson.
Approximation algorithms for prize collecting forest problems with
submodular penalty functions.
In Proceedings of the eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1275-1284, 2007.
- 101
-
C. Swamy and D.B. Shmoys.
Approximation algorithms for 2-stage stochastic optimization
problems.
ACM SIGACT News, 37(1):33-46, 2006.
- 102
-
L. Trevisan.
When Hamming meets Euclid: The Approximability of Geometric TSP and
MST.
SIAM J. on Computing, 2(30):475-485, 2001.
- 103
-
L. Wang and D.Z. Du.
Approximations for a bottleneck Steiner tree problem.
Algorithmica, 32(4):554-561, 2002.
- 104
-
L. Wang, T. Jiang, and E.L. Lawler.
Approximation algorithms for tree alignment with a given phylogeny.
Algorithmica, 16(3):302-315, 1996.
- 105
-
L. Wang and Z. Li.
An approximation algorithm for a bottleneck k-Steiner tree problem
in the Euclidean plane.
Information Processing Letters, 81(3):151-156, 2002.
- 106
-
D. Watel, M. A. Weisser, C. Bentz, and D. Barth.
Steiner Problems with Limited Number of Branching Nodes.
In Structural Information and Communication Complexity, volume
8179 of LNCS, pages 310-321. 2013.
- 107
-
B. Wu.
A simple approximation algorithm for the internal Steiner minimum
tree.
Computing Research Repository (CoRR), arXiv:1307.3822, 2013.
- 108
-
A. Zelikovsky.
An 11/6-Approximation Algorithm for the Network Steiner Problem.
Algorithmica, 9(5):463-470, 1993.
- 109
-
A. Zelikovsky.
A series of approximation algorithms for the acyclic directed
Steiner tree problem.
Algorithmica, 18(1):99-110, 1997.
- 110
-
A. Zelikovsky and I.I. Mndoiu.
Practical approximation algorithms for zero-and bounded-skew trees.
In Proc. of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 407-416. Society for Industrial and Applied Mathematics,
2001.
- 111
-
P. Zhang.
An approximation algorithm to the k-Steiner forest problem.
Theory and Applications of Models of Computation, pages
728-737, 2007.
2015-04-27 Revision: 288 PDF version