
On Bounded Nondeterminism and Alternation

Mathias Hauptmann∗

May 4, 2016

Abstract

We continue our work on the combination of variants of McCreight and Meyer’s Union
Theorem with separation results along the line of Paul, Pippenger, Szemeredi, Trotter
and S.Gupta. Under assumption NP=PSPACE, we prove a union theorem for the class
PSPACE=AP with respect to a particular subfamily (S̃(i)) of alternating machines. This
yields a union function F which is nondeterministically computable in time F (n)C for some
constant C. We show that for each problem L ∈AP, there exists a polynomial time bounded
machine S̃(i) such that L = L(S̃(i)). Moreover, we prove a variant of Gupta’s result who
showed that DTIME(t) (Σ2(t) for time-constructible functions t(n). Our variant of this
result holds with respect to the subfamily (S̃(i)) of alternating machines. We show that these
two results contradict each other, whence our starting assumption cannot hold.
Keywords: Alternating Turing Machines, Nondeterministic versus Alternating Time Com-
plexity, Union Theorem, Bounded Nondeterminism.

1 Introduction

Let us first recall the two starting points for our previous paper [H16]. The Union Theorem of
McCreight and Meyer [McCM69] states that whenever (fi) is a family of functions fi : N→ N
such that λi, n.fi(n) is recursive, then there exists a single recursive function F such that
DTIME(F) =

⋃
i DTIME(fi). Indeed this does not only hold for deterministic time complexity

classes but for any Blum complexity measure.
The second starting point is the result of Paul, Pippenger, Szemeredi and Trotter [PPST83]

who proved that DLIN 6= NLIN. This proof is based on their remarkable result that deterministic
computations can be simulated by Σ4-computations with a small speedup. Namely, for every
time-constructible function t(n), DTIME(t log∗(t)) ⊆ Σ4(t). Gupta [G96] improved on this result
and showed that for each such t, DTIME(t log∗(t)) ⊆ Σ2(t). Moreover he proved that for every
time-constructible t, DTIME(t) (Σ2(t). See also the discussion at the end of [H16].

Our approach in [H16] was now the following. We assumed P = Σp
2. The idea was to

construct then a union function F such that P = DTIME(F) = Σ2(F) = Σp
2 such as to obtain a

contradiction to the result of Gupta. However, a direct construction of such a union function
F along the lines of McCreight and Meyer yields a function F which is recursive but not time-
constructible. The second idea was then that it might be possible to construct F such that F (n)
is computable in time polynomial in F (n), namely by making use of the assumption P = Σp

2. If
the function F is, say, deterministically computable in DTIME(FC), then one might try to use
Padding in order to show that DTIME(F) = Σ2(F) also implies DTIME(FC) = Σ2(FC), which
then yields the desired contradiction to Gupta’s result. However, for such a padding construction
to work, it is necessary that the function F satisfies an inequality of the kind F (n)C ≤ F (nh). In

∗Dept. of Computer Science, University of Bonn. e-mail: hauptman@cs.uni-bonn.de

1

[H16] we called this a Padding Inequality. Now again, if we construct a union function directly
along the lines of McCreight and Meyer, then the resulting function F would not satisfy such
a Padding Inequality. The third idea is then that a padding inequality might be reachable
provided the underlying machines satisfy some additional property. The construction of a union
function for polynomial time complexity classes is essentially a diagonalization against all the
machines whose running time is not polynomially bounded. Now suppose that all the machines
under consideration have the following additional property: Whenever a machine violates a
given polynomial time bound at some input length (and say both the polynomial and the input
length are sufficiently large), then the machine has already violated a similar but somewhat
smaller polynomial time bound at a number of smaller input lengths. It turns out in [H16] that
such a property can be formalized and the construction of the union function can be adjusted
that it will satisfy a Padding Inequality. But this means now that we have switched from a
standard enumeration of, say, all alternating machines to a subfamily, namely of machines which
actually satisfy this additional property. Then it is of course necessary to show that this does
not change the complexity classes under consideration.

We give now an outline how to apply the method from [H16] to the classes NP and AP =
PSPACE. We will assume NP = AP. Then we start from a standard enumeration (Si)
of alternating machines and construct a subfamily of machines, containing for each original
machine Si and every integer d a machine S̃i,d. These machines will satisfy the additional
property, which is the same as in [H16] and which we call Property [?]. We will show that
going from a general family (Si) of alternating machines to a subfamily (S̃i,d) will not change
the complexity classes under consideration. Then we construct a union function F such that
NP = NTIMẼ(F) = ATIMẼ(F) = AP. Here by NTIMẼ(F) and ATIMẼ(F) we denote the
classes with respect to our restricted family of machines. We show that this function F
satisfies a Padding Inequality. This yields that we also have NTIMẼ(FC) = ATIMẼ(FC).
The function FC is not time-constructible, but it can be computed nondeterministically and
co-nondeterministically in time F (n)C . Thus we will show an analogon of Gupta’s result,
namely that NTIMẼ(t) (ATIMẼ(t) for every function t which is nondeterministically and
co-nondeterministically computable in time t(n)1−ε for some ε > 0. For such a result to work,
we also have to require that the nondeterministic machines in our subclass have bounded
nondeterminism. It suffices to restrict the number of nondeterministic steps to the squareroot of
the running time of the machine, and again this will not change the complexity class NP .

2 Implications from the Assumption NP=AP

We let (Si) be a standard enumeration of alternating machines. We let Check be the following
decision problem:

Check =
{

(i, n, a, b)| timeSi(n) > anb
}

Since AP=PSPACE is closed under complement, NP=AP implies NP=coNP. Via some stan-
dard padding argument, this yields that the decision problem Check can be solved by some
NTIME∩coNTIME-algorithm which has running time c0 · (i ·anb)c0 on inputs (i, n, a, b), for some
constant c0. This means that this algorithm is a guessing algorithm which has three possible
outputs 0, 1,”?”. For each input x, either there exists no computation path of the algorithm on
input x with output 0, or there exists no path with output 1, and furthermore, for each input x
there exists at least one path with output either 0 or 1. Since we are not aware of any existing
short notation for classes NTIME(t)∩coNTIME(t) from the literature, we will denote them as
ZNTIME(t) =NTIME(t)∩coNTIME(t), where ZNTIME stands for zero-error nondeterministic

2

time. Moreover, abusing notation, we write

Check ∈ ZNTIME(c0 · (i · anb)c0).

In this case, ZNTIME(c0 · (i · anb)c0) does not denote a complexity class but just the fact that
the problem Check can be solved by such a zero-error nondeterministic algorithm within the
time bound c0 · (i · anb)c0) for inputs of the form (i, n, a, b).

3 A New Programming System for AP

We start from a standard programming system (also called Gödel numbering) (Si) of alternating
machines. Without loss of generality we assume that this numbering has the following additional
property: Whenever Si is a nondeterministic machine, meaning that it does not have any
universal states, then the number of guesses made by machine Si is already bounded by the
squareroot of its running time. As we have described in [H16], in order to ensure that the union
function F satisfies the Padding Inequality F (n)c ≤ F (nh), we want to work with a new family
of alternating machines such that if t(n) is a running time function of some machine from this
family, then t(n) satisfies the following condition which we called Property [?].

Definition 3.1. [H16] We say function t(n) satisfies Property [?] with parameters c, d, p if for

every n ≥ 2c
2

and all pairs of integers a, b with c ≤ a ≤ b ≤ log(n)
c , if t(n) > anb, then there exist

d log log(n)c e pairwise distinct integers m1, . . . ,md log logn
c
e in the interval

In,d =

(
n1/h, n1/h ·

(
1 +

log(n)

n1/(h·d)

)d)
such that ml is not an h-power and t(ml) > (a− p)mb−p

l , l = 1, . . . , d log lognc e.

Starting from the family (Si) of alternating machine, we will construct a new family (S̃i,d)
of alternating machines which contains for each machine Si and every integer d a machine S̃i,d.
This new family of machines will have the following properties:

• For every machine index i and every integer d, the machine S̃i,d satisfies Property [?] with
some parameters ci,d, d, pi.

• For every i and d, the running time of the machine S̃i,d will be bounded by twice the
running time of machine Si.

• If Si is a nondeterministic machine, then for each integer d, the machine S̃i,d is also
a nondeterministic machine for which the number guessS̃i,d

(n) of guesses made by S̃i,d

satisfies guessS̃i,d
(n) ≤ ci,d ·

√
timeS̃i,d

(n).

• If the running time function timeSi(n) already satisfies Property [?] with parameters
ci,d
2 , d,

pi
2 , then L(S̃i,d) = L(Si).

We shall work with the associated nondeterministic and alternating time complexity classes
NTIMẼ√ (t) and ATIMẼ(t), which are defined as follows:

• L is in ATIMẼ(t) if there exists some alternating machine S̃i,d such that L = L(S̃i,d) and
timeS̃i,d

(n) = O(t(n)).

• L is in NTIMẼ√ (t) if there exists some nondeterministic machine S̃i,d such that L = L(S̃i,d)

and timeS̃i,d
(n) = O(t(n)). Especially, since S̃i,d is a nondeterministic machine, we have

guessi,d(n) ≤ ci,d ·
√

timei,d(n) = O(
√
t(n)).

3

3.1 Construction of Machines S̃i,d

Before we describe the construction of the new family (S̃i,d) of alternating machines, let us give
a characterization of Property [?] which we have already used in [H16]. This will be useful in the
construction of the machines S̃i,d. Intuitively, the machine S̃i,d will just perform a step-by-step
simulation of the machine Si, but at the same time it will check if it is allowed to continue this
simulation, such as to satisfy Property [?]. In the following we just give a name to the property
which machine S̃i,d has to check.

Here we give first the general formulation for functions t : N→ N.

Definition 3.2.
The predicate P ⊆ (N→ N)× N6 is defined as follows. P (t, c, d, p, n, a, b) holds if

• n < 2c
2

or a < c or b > log(n)
c or

• n ≥ 2c
2

and there exist pairwise distinct integers m1, . . . ,md log log(n)
c

e ∈ In,d which are not h-

powers and such that t(ml) > (a−p)mb−p
l and P (t, c, d,ml, a−p, b−p), l = 1, . . . , d log log(n)c e.

We observe that t : N→ N satisfies Property [?] with parameters c, d, p iff for all n ≥ 2c
2

and

c ≤ a ≤ b ≤ log(n)
c , t(n) > anb implies P (t, c, d, p, n, a, b)

Now we can describe the construction of the machines S̃i,d. In the case of P versus Σp
2 in

[H16], the machines S̃i,d just performed a simulation of the machines Si and in parallel checked
(deterministically) if the property P () was satisfied such as to continue the simulation. Here the
situation is slightly different. Since we work under the assumption NP=AP, this especially means
that we do not have a deterministic algorithm at hand to check the predicate P (). Instead, we
are given now an NTIME∩coNTIME-algorithm for the predicate P (), and the machine S̃i,d is
supposed to simulate machine Si, which may now be any alternating machine. This means that
checking the predicate P () will cause the machine S̃i,d to perform some additional alternations.

We construct the machine S̃i,d as follows: Given an input x of length n, consider two

consecutive pairs of integers (a′, b′), (a, b) with ci,d ≤ a′ ≤ b′ ≤ log(n)
ci,d

and ci,d ≤ a ≤ b ≤ log(n)
ci,d

(consecutive with respect to the order b′ < b or (b′ = b and a′ < a)). Within the time interval(
a′nb

′
, anb

]
the machine S̃i,d uses the first half of the time in this interval to check if the

predicate P () holds, i.e. if it is allowed to continue the computation for more than anb steps.
The remaining half of the time within this interval is used to simulate computation steps of the
machine Si on input x.

Thus, as long as the machine S̃i,d is allowed to continue its computation, it will make twice
as many computation steps as Si on the same input x. We are now ready to give the definition
of the predicate P for machines S̃i,d.

Definition 3.3. (Predicate P for machines S̃i,d)

P (i, d, n, a, b) holds if (n ≥ 2c
2
i,d and ci,d ≤ a ≤ b ≤ logn

ci,d
) implies that there exist pairwise

distinct non-h-power integers m1, . . . ,md log log(n)
ci,d

e ∈ In,d such that for l = 1, . . . , d log log(n)ci,d
e,

timeSi(ml) >
1
2(a−pi)mb−pi

l and for all pairs of integers (α, β) ≤lex (a−pi, b−pi), P (i, d,ml, α, β)
holds.

On input x of length n, if n ≤ 2c
2
i,d , then S̃i,d just simulates Si on input x and makes in

total twice as many computation steps as Si. On the other hand, if n > 2c
2
i,d , then S̃i,d does the

following: Let L = Li,d(n) denote the number of pairs of integers (a, b) with ci,d ≤ a ≤ b ≤ log(n)
ci,d

,

4

and let (al, bl), l = 1, . . . , L be these pairs in the lexicographic order described above. The
associated intervals are T0 =

(
0, a1n

b1
]
, Tl =

(
aln

bl , al+1n
bl+1
]
, l < L and TL =

(
aLn

bL ,∞
)
.

Now S̃i,d uses the first half of the computation steps within each interval Tl, l < L to simulate
computation steps of Si on input x. The second half of the time within interval Tl is used to
check if the predicate P (i, d, n, al+1, bl+1) holds. If within some interval Tl the computation of
Si on input x terminates, then S̃i,d terminates as well, with the same output (accept/reject).
If within some interval Tl, the computation of Si does not yet terminate but the predicate
P (i, d, n, al+1, bl+1) does not hold, S̃i,d also completes this interval and then terminates and
rejects. Otherwise, it continues within the next inerval Tl+1. If the computation reaches the
interval TL, then it just continues to simulate the computation of Si and does not check the
predicate P () anymore. The computation of S̃i,d is organized in such a way that while being in
an interval Tl, l < L, it always makes precisely twice as many computation steps as Si. This will
be particularly important when we show in Lemma 3.2 that for those machines Si which already
satisfy Property [?], the machine S̃i,d will compute the same as machine Si, i.e. L(S̃i,d) = L(Si).
We give a pseudo-code description of the machine S̃i,d.

Machine S̃i,d
Input: x of length n

If n < 2c
2
i,d , simulate the computation of machine Si on input x

and make in total twice as many computation steps as Si.

If n ≥ 2c
2
i,d

For l = 0, . . . L− 1 (where L = Li,d(n))
Use the first half of the interval Tl to continue
the simulation of computation of Si on input x
If the computation of Si terminates after t steps in Tl,
then S̃i,d performs t additional dummy steps
and then also terminates.
Otherwise, use the second half of the interval Tl to check
if P (i, d, n, al+1, bl+1) holds and fill
the rest of Tl with dummy steps.
If P (i, d, n, al+1, bl+1) does not hold, stop and reject.

/? Now we are in the interval TL =
(
aLn

bL ,∞
)
?/

Continue the simulation of computation of Si on input x.

We will now show that for each l < L, one half of the interval Tl suffices to check if the predicate
P (i, d, n, al+1, bl+1) holds.

Lemma 3.1. Predicate P (i, d, n, a, b) can be checked in NTIME(nb−pi), where pi = d i2e.

Proof. In order to check if P (i, d, n, a, b) holds, it suffices to solve the instances (i,m, a′, b′) of
the problem Check for a′ ≤ b′ ≤ b− pi and m ∈ Ri,d(n), where the set Ri,d(n) - which we call
the set of relevant input lengths for i, d, n - is defined as follows: Ri,d(n) =

⋃
lR

l
i,d(n) with

R1
i,d(n) = In,d =

(
n1/h, n1/h

(
1 + log(n)

n1/(dh)

)d)
Rl+1
i,d (n) =

⋃
m∈Rl

i,d(n),m≥2
c2
i,d
Im,d

We give a bound on the cardinality of the set Ri,d(n) as follows. We have Rli,d(n) ⊆ [Ll, Rl],

5

where Ll = n1/h
l

and

Rl = 2
1+ 1

h
+...+ 1

hl−1 · n1/hl = 2
1−1/hl

1−1/h · n1/hl

= 2
(1− 1

hl
)· h

h−1 · n1/hl ≤ 2
h

h−1 · n1/hl

Moreover, Rl < 2c
2
i,d implies that the level set Rl+1

i,d (n) is empty. Now the condition Rl < 2c
2
i,d

follows - by taking logarithms and combining it with the previous inequality - from

1

hl
· log(n) +

h

h− 1
< c2i,d

⇔ hl >
1

c2i,d −
h
h−1
· log(n)

⇔ l >
1

log(h)
(log log(n)− γi,d)

where γi,d is a constant that only depends on i, d and the global constant h. Thus we obtain

|Ri,d(n)| ≤ n1/h · log log(n)

Thus P (i, d, n, a, b) can be decided nondeterministically by solving at most n1/h ·log log(n) ≤ n2/h
instances of the problem Check of the form (i,m, a′, b′) with a′ ≤ a− pi, b′ ≤ b− pi,m ≤ 2 · n1/h,
which can be done nondeterministically in time n2/h · c · (i(a− pi)2n(1/h)·(b−pi))c ≤ nb−pi .

Remark. This lemma also yields P (i, d, n, a, b) ∈ ZNTIME(nb−pi). Moreover, if Si is a
nondeterministic machine, then for every d, the machine S̃i,d is nondeterministic as well.

Lemma 3.2. (Properties of the machines S̃i,d)
Machine S̃i,d satisfies Property [?] with parameters ci,d, d, pi. Furthermore, timeS̃i,d

(n) ≤ 2 ·
timeSi(n). If the machine Si already satisfies Property [?] with parameters

ci,d
2 , d,

pi
2 , then

L(S̃i,d) = L(Si).

Corollary 1. Under assumption NP = AP we have NP = NP̃√ = AP̃ = AP .

Proof. (of Lemma 3.2) In order to show that S̃i,d has Property [?] with parameters ci,d, d, pi, we
first prove the following

Auxiliary Claim: For every n, for all pairs (a, b) of integers with a ≤ b, (timeSi(n) > 1
2an

b

and ∀(α, β) ≤lex (a, b) P (i, d, n, α, β)) implies that timeS̃i,d
(n) > anb.

Proof of the Auxiliary Claim. For n < 2c
2
i,d , we have timeS̃i,d

(n) = 2timeSi(n), and thus the claim

holds. On the other hand, for n ≥ 2c
2
i,d , it follows directly from the construction of the machine

S̃i,d that if timeSi(n) > 1
2an

b and the property P (i, d, n, α, β) holds for all (α, β) ≤lex (a, b), then
this implies timeS̃i,d

> anb.

Now we use the Auxiliary Claim in order to show that S̃i,d satisfies Property [?] with

parameters ci,d, d, pi. Thus suppose that timeS̃i,d
(n) > anb and ci,d ≤ a ≤ b ≤ log(n)

ci,d
. Since

timeSi,d
(n) ≤ 2·timeSi(n), this implies that timeSi(n) > 1

2an
b, and moreover, P (i, d, n, a, b) holds.

This means that there exist pairwise distinct non-h-power integers m1, . . . ,md log logn
ci,d

e ∈ In,d

such that timeSi(ml) >
1
2(a − pi)mb−pi

l and ∀(α, β) ≤lex (a − pi, b − pi) P (i, d,ml, α, β) holds

for l = 1, . . . , d log lognci,d
e. Now the Auxiliary Claim yields that timeS̃i,d

(ml) > (a− pi)mb−pi
l for

l = 1, . . . , log lognci,d
, which means that S̃i,d satisfies Property [?] with parameters ci,d, d, pi.

6

Now suppose that Si satisfies Property [?] with parameters
ci,d
2 , d,

pi
2 . We want to show that

L(S̃i,d) = L(Si), i.e. that for every input x, S̃i,d(x) completely simulates Si(x). This holds in

case when |x| < 2c
2
i,d . Now suppose n = |x| ≥ 2c

2
i,d . If S̃i,d(x) 6= Si(x), then there exists some

l ∈ {0, . . . , Li,d(n)} such that timeSi(x) > 1
2al+1n

bl+1 , P (i, d, n, al+1, bl+1) does not hold and

P (i, d, n, al′ , bl′) holds for all 0 ≤ l′ < l. Since n ≥ 2c
2
i,d > 2(

1
2
ci,d)

2
and

ci,d
2 ≤

al+1

2 ≤ bl+1 ≤ log(n)
ci,d/2

,

we obtain that there exist pairwise distinct integers m1, . . . ,m log logn
ci,d/2

in In,d which are not

h-powers and such that timeSi(ml) > (
al+1

2 −
pi
2)m

bi−pi/2
l . If we assume n to be minimal with

this property, then we have timeS̃i,d
(ml) > (al+1 − pi)m

bi−pi/2
l ≥ (al+1 − pi)mbi−pi

l . Now the

construction of S̃i,d implies that P (i, d,ml, α, β) holds for all (α, β) ≤lex (a − pi, b − pi), and,
using the Auxiliary Claim, this yields that S̃i,d(x) will continue and go to the (l + 1)st iteration
of the for loop, a contradiction. Altogether we have shown that L(S̃i,d) = L(Si).

4 The Union Function F (n)

Now we will briefly describe the construction of the union function. The construction is the
same as in [H16]. The function F is constructed in stages. In stage n, the function value F (n) is
defined. The whole construction is a diagonalization against all those machines S̃i,d which violate
a pre-defined polynomial upper bound for the running time of the machine, namely a variant of
the original construction from [McCM69]. The construction is based on the notion of guesses. A
guess is just a pair (S̃i,d, b), where S̃i,d is a machine from our family of alternating machines and
b is a positive integer. The guess holds in stage n if timeS̃i,d

(n) ≤ b · nb, otherwise the guess is

violated in stage n. Our union function F is supposed to have the following property.

NP̃√ = NTIMẼ√ (F) = ATIMẼ(F) = AP (1)

Moreover, the function F (n) will be computable in ZNTIME(F (n)C) for some constant
C. Using Padding, we want to show then that NTIMẼ√ (F) = ATIMẼ(F) also implies

NTIMẼ√ (FC
2
) = ATIMẼ(FC

2
). As we shall see below, for such a padding construction

to work, we will also have to satisfy the following additional requirement:

NP̃√ = NTIMẼ√ (F (n+ 1)) = ATIMẼ(F (n+ 1)) = AP (2)

While (1) is the s property of a standard union function in this context, property (2) will be used
when we assign to each given problem L ∈ ATIMẼ(FC

2
) an associated polynomially padded

version L′. While it turns out to be easy to guarantee that L′ ∈ ATIME(F), showing that we
also have L′ ∈ ATIMẼ(F) will require making use of property (2).

We arrange the machines S̃i,d in a list and let S̃(j) denote the jth machine in this order.

This is done in such a way that from j we can efficiently compute i, d such that S̃i,d = S̃(j) and
furthermore, ci,d ≤ j. During the construction of the union function F , we maintain a list L
of guesses. In stage n of the construction, the function value F (n) will be determined. In the
stage n, guesses for the first log∗(n) machines from the list will be taken into account. The
overall strategy is to select a lexicographically smallest violated guess, to diagonalize against the
associated machine and then to replace this guess by one with a higher value bj . In order to
satisfy both (1) and (2), we will maintain for each machine S̃(j) two guesses. In stage n, one
is used for diagonalizing against violations at input length n and one for input length n − 1.
We will denote these guesses as (S̃(j), bj,1, 1) and (S̃(j), bj,2, 2). In stage n, the first of the two

guesses, (S̃(j), bj,1, 1), will be checked for violation at length n (i.e. if timeS̃(j)
(n) ≤ bj,1n

bj,1 is

7

violated), and the second guess (S̃(j), bj,2, 2) will be checked for violation at length n− 1, i.e. it

will be checked if timeS̃(j)
(n− 1) ≤ bj,2nbj,2 holds.

We let Ln denote this list at the beginning of stage n of the construction. Thus the invariant
will be that Ln will contain guesses (S̃(j), bj,1, 1) and (S̃(j), bj,2, 2) for j = 1, . . . , log∗(n) with
bj ≤ log∗(n). The following notations turn out to be useful, cf. [H16]. We let log∗(n) =

min{t|22···2]t ≥ n}, the minimum height of a tower of 2’s which is ≥ n. For t ∈ N we let It
be the set of integers n ∈ N for which log∗(n) = t. This means that It = [δt−1 + 1, δt) with
δ0 = 0, δ1 = 2, δt+1 = 2δt , t ≥ 1.

In the construction of the union function, we consider two cases. If n is an h-power, i.e.
n = n′h for some integer n′, then from the list Ln the lexicographically smallest violated
guess (S̃(j), bj,l, l) is selected (first ordered by the value bj , then by l and then by j). If a

guess (S̃(j), bj,1, 1) is selected, then we define F (n) := nbj,1 , replace the guess (S̃(j), bj,1, 1) by

(S̃(j), log∗ n, 1) and continue. If a guess (S̃(j), bj,2, 2) is selected, then we define F (n) := (n−1)bj,2 ,

replace the guess (S̃(j), bj,2, 2) by (S̃(j), log∗ n, 2) and continue.
If n is not an h-power, we proceed slightly differently. We consider the following set of

guesses: all the guesses from Ln and additionally guesses of the form (S̃(j), bj,l − p(i), l), where

(S̃(j), bj,l, l) is a guess in Ln and within the interval It with log∗ n = t the guess (S̃(j), bj,l− p(i), l)
has not yet been selected. In order to keep track of this, we let σ = (σ1,1, . . . , σt,2) with σj,l = 0
iff the machine S̃(j) has not yet been selected within a guess of the form (S̃(j), bj,l− p(j), l) within
the interval It, and σj,l = 1 otherwise.

Now in such a stage n we select the smallest violated guess from this set with respect to
the following order: first ordered by the value bj,l, then by the second entry of the guess (bj,l
or bj,l − p(j)), then by l ∈ {1, 2} and then by j. If a guess (S̃(j), bj,1 − p(j), 1) is selected, we

set F (n) := nbj−p(j) and σj,1 := 1. If a guess (S̃(j), bj,2 − p(j), 2) is selected, we set F (n) :=

(n− 1)bj−p(j) and σj,2 := 1. If a guess (S̃(j), bj,1, 1) is selected, we set F (n) := nbj,1 . If a guess

(S̃(j), bj,2, 2) is selected, we set F (n) := (n − 1)bj,2 . In both cases, the guess (S̃(j), bj,l, l) being

selected is replaced by (S̃(j), log∗ n, l) in the list L.

Finally, if n = δt is the last stage within the interval It, then two new guesses (S̃(t+1), t +
1, l), l = 1, 2 are added to the list.

Initially, in stage 1, we set L = {(S̃(1), 1, 1), (S̃(1), 1, 2)}, σ1,1 := 1 and F (1) := 1. Moreover,
at the beginning of every stage n = δt−1 +1, i.e. the first stage within the interval It, we initialize
the vector σ = (σ1,1, . . . , σt,2) as (0, . . . , 0) and then proceed with stage n as described above.

For more information about the construction as well as for proofs of the following results
(which are identical to those in the case of P versus Σp

2) we refer to [H16].

Lemma 4.1. We have NP = NP̃√ = NTIMẼ√ (F) = ATIMẼ(F) = AP̃ = AP and

NTIMẼ√ (F) = NTIMẼ√ (F (n+ 1)) = ATIMẼ(F (n+ 1)) = AP̃ = AP .

Proof. Since in the construction of the union function, guesses are added and replaced with
increasing b-value, F majorizes every polynomial. On the other hand, if the running time of
a machine S̃i,d violates every polynomial bound infinitely often, then in the construction of
the union function, machine S̃i,d will be selected infinitely often within a guess (S̃i,d, b, 1) and
infinitely often within a guess (S̃i,d, b, 2), both with increasing values of b. Thus in that case,
neither timeS̃i,d

(n) = O(F (n)) nor timeS̃i,d
(n) = O(F (n + 1)). For a more detailed version of

the proof we refer to [H16].

Lemma 4.2. There exists a constant C such that F (n) can be computed in ZNTIME(F (n)C).

Proof. We define the functions Fb(n) in the same way as in [H16]. Thus, Fb(n) is the function
which is computed when we replace all the guesses bj , bj − p(j) which occur in the computation

8

of F (n) by guesses min{bj , b + 1} and min{bj − p(j), b + 1} respectively. Functions F (n) and
Fb(n) are related as follows: If F (n) = na for some integer a, then Fb(n) = F (n) for all b ≥ 3a.

The only difference is that in the case of P versus Σp
2 in [H16], the functions Fb(n) could

be computed deterministically in time Fb(n)O(1). Since here we work under the assumption
NP = AP , the functions Fb(n) are now computable in time Fb(n)O(1) by what we called zero-
error nondeterministic machines, i.e. in ZNTIME(Fb(n)O(1)). This means that there exists a
nondeterministic algorithm which has running time Fb(n)O(1) on every computation path and
either returns ”?” or some output, which is then the function value Fb(n). For each n, there is
at least one computation path of this algorithm which returns the value Fb(n).

Now we can construct a nondeterministic algorithm for computing F (n) as follows: For
b = 1, 2, . . . this algorithm runs the algorithm for computing the function value Fb(n), until it
finds some b such that Fb(n) = na, b ≥ 3a. Then it returns na, which is then the correct function
value F (n). Whenever some of the computations of function values Fb(n) returns ”?”, the whole
algorithm stops and also returns ”?”.

Lemma 4.3. (Padding Inequality)
For every h-power n, F (n1/h)C ≤ F (n), where C is the constant from Lemma 4.2.

Sketch of Proof. Suppose that n is an h-power such that F (n1/h)C > F (n). Suppose in
stage n1/h of the construction of the union function F , some guess of the form (S̃(i), bi, li) or

(S̃(i), bi−p(i), li) is violated and selected, and in stage n a guess of the form (S̃(j), bj , lj) is violated
and selected. Note that since n is an h-power, in stage n none of the guesses from the extended
list of the form (S̃(j), bj − p(j)) is taken into account. Now it is straight forward to see that in

each of the possible cases, this implies that bi > bj . But then the guess (S̃(j), bj , lj) was already

contained in the list Ln1/h in stage n1/h of the construction. Since it is violated at input length
n, Property [?] yields that the guess (S̃(j), bj − pj , lj) is violated sufficiently often within the

stages in the interval In,d, i.e. in stages n1/h + 1, . . . such that eventually this guess would have
been selected earlier, a contradiction. For further details we refer to [H16]. 2

Lemma 4.4. (Padding Lemma)
NTIMẼ√ (F) = ATIMẼ(F) implies NTIMẼ√ (FC

2
) = ATIMẼ(FC

2
).

In order to prove the Padding Lemma, we will first show that the Property [?] satisfies
certain closure properties.

Lemma 4.5. (Closure Properties of Property [?])
Let t : N→ N be a function that satisfies Property [?] with parameters c, d, p.

(a) For every k ∈ N the function tk satisfies Property [?] with some parameters ck, dk, pk.

(b) Let the function T (n) be defined as

T (nh
2 − 1) = t(n) for all n,

T (m) =mγ for some constant γ otherwise

Then the function T (n) satisfies Property [?] with some parameters cT , dT , pT

Proof. Both the proof of (a) and (b) are technical yet straight forward. In this extended abstract
we only give the proof of (b). Suppose that we have already chosen the parameters cT , dT , pT .

Suppose that T (N) > aN b, where cT ≤ a ≤ b ≤ log(N)
cT

. If we choose cT sufficiently large

compared to the constant γ, we can conclude that this implies that N is of the form N = nh
2 − 1

9

and T (N) = T (nh
2 − 1) = t(n) > a(nh

2 − 1)b ≥ anh2(b−1). We want to assure that this implies

ct ≤ a ≤ h2 · (b− 1) ≤ log(n)
ct

. Since

h2(b− 1) ≤ h2b ≤ h2 log(N)

cT
= h2

log(nh
2 − 1)

cT
≤ h2 · h

2 · log(n)

cT
,

it is sufficient to require that

ct ≤ cT ,
h4 · log(n)

cT
≤ log(n)

ct
≡ h4 · ct ≤ cT (3)

Moreover, in order to apply Property [?] for the function t, we have to assure that N ≥ 2c
2
T

implies n ≥ 2c
2
t . We have 2c

2
T ≤ N = nh

2 − 1 ≤ nh2 , thus it suffices to require that

cT ≥
ct
h

(4)

It is clear that (3) implies (4). We assume now that (3) holds. Then Property [?] for the function
t yields that there exist non h-power integers

m1, . . .md log logn
ct

e ∈ In,d with t(ml) > (a− pt)mh2(b−1)−pt
l , l = 1, . . . d log log n

ct
e,

which means

T (mh2

l − 1) > (a− pt)mh2(b−1)−pt
l , l = 1, . . . d log log n

ct
e

Thus we want to assure that (a− pt)mh2(b−1)−pt
l ≥ (a− pT)(mh2

l − 1)b−pT . For this purpose, it
is sufficient to require that

h2(b− 1)− pt ≥ h2(b− pT), which is equivalent to h2 + pt ≤ h2pT . (5)

We can satisfy (5) by choosing pT ≥ pt. Moreover we have to assure that sufficiently many integers
Ml = mh2

l − 1 are within the interval IN,dT . Since the implication ml ∈ In,dt ⇒ Ml ∈ IN,dT
does not hold, we take the following approach. We require the number of integers ml ∈ In,dt be
sufficiently large compared to the required number of integers Ml ∈ IN,dT . By definition, we
have

IN,dT =

(
N1/h, N1/h ·

(
1 +

log(N)

N1/(dT ·h)

)dT)
=: (LN,dT , RN,dT)

and

In,dt =

(
n1/h, n1/h ·

(
1 +

log(n)

n1/(dt·h)

)dt)
=: (Ln,dt , Rn,dt)

We require now that ⌈
log log(n)

ct

⌉
≥ 3 ·

⌈
log log(N)

cT

⌉
(6)

Then it is sufficient to replace the requirement {mh2 − 1|m ∈ In,dt} ⊆ IN,dT (which we cannot
satisfy) by the following weaker version:

Ln,dt + 1 < m < Rn,dt −
log log(n)

ct
⇒ M = mh2 − 1 ∈ IN,dT (7)

We observe that the first part of the implication in (7) is satisfied. Namely, if m > n1/h + 1, then

M = mh2 − 1 > (n1/h + 1)h
2 − 1 > N1/h = (nh

2 − 1)1/h ≡ ((n1/h + 1)h
2 − 1)h > nh

2 − 1

10

and this last inequality holds. For the second part, suppose that

m < n1/h
(

1 +
log(n)

n1/(dt·h)

)dt
− log log(n)

ct
(8)

We want to show that this implies

mh2 − 1 < (nh
2 − 1)1/h

(
1 +

log(nh
2 − 1)

(nh2 − 1)1/(dT ·h)

)dT
(9)

For such m satisfying (8) we have

(mh2 − 1)h <

(n1/h(1 +
log(n)

n1/(dt·h)

)dt
− log log(n)

ct

)h2
− 1

h

(10)

We require cT to be sufficiently large such that N ≥ 2c
2
T implies that log log(n)

ct
> (1 + log(n)

n1/(dt·h))dt

(note that since N = nh
2 − 1, we have that n is monotone increasing in N). Then the right hand

side in (10) is upper bounded by((n1/h − 1) ·
(

1 +
log(n)

n1/(dt·h)

)dt)h2
− 1

h

≤ (nh
2 − 1) ·

(
1 +

log(n)

n1/(dt·h)

)dt·h3
− 1

Thus in order to show (9), it suffices to show that

(nh
2 − 1) ·

(
1 +

log(n)

n1/(dt·h)

)dt·h3
− 1 ≤ (nh

2 − 1) ·

(
1 +

log(nh
2 − 1)

(nh2 − 1)1/(dT ·h)

)dT ·h
(11)

Finally, in order to satisfy (11), we can just choose dT sufficiently large such that the inequalities
dt · h3 ≤ dT · h, log(n) ≤ log(nh

2 − 1) and n1/(dt·h) ≥ (nh
2 − 1)1/(dT ·h) hold separately. This

concludes the proof of the lemma.

Lemma 4.6. (Powers of F satisfy Property [?])
For each q ∈ N, there exist integers cq, dq, pq such that the function F q(n) satisfies Property [?]
with parameters cq, dq, pq.

Proof. First we prove that F satisfies Property [?]. The rest of the Lemma then follows from
Lemma 4.5. Suppose we have already fixed integers c1, d1, p1. Now suppose that n ≥ 2c

2
1 and

c1 ≤ a ≤ b ≤ log(n)
c1

are such that F (n) > anb. Say in stage n of the construction of the union

function F , a guess (S̃(i), bi, li) or (S̃(i), bi − p(i), li) has been selected. By definition, in any

of the resulting cases we have F (n) ≤ nlog
∗(n). Now it is easy to check that the associated

interval In,d1 is contained in Ilog∗(n) ∪ Ilog∗(n)−1, so one of the two intervals Ilog∗(n), Ilog∗(n)−1
contains at least half of the integers in In,d1 . Suppose that Ilog∗(n)−1 contains at least half of the
integers in In,d1 , the other case is treated analogously. The size of the interval In,d1 is at least

logd1(n). Thus in In,d1 ∩ Ilog∗(n)−1 there are at least logd1 (n)
2 −O(log∗(n)) integers m for which

F (m) > (m− 1)log
∗(n)−1 > mlog∗(n)−2. Thus for a given d1, it suffices to choose p1 ≥ 2. Hence

F satisfies Property [?]. For further details we refer to [H16].

11

Proof of the Padding Lemma 4.4. Suppose L ∈ ATIMẼ(FC
2
). Consider

L′ = {x10|x|
h2−|x|−2|x ∈ L}

Then we have L′ ∈ ATIME(FC
2
((n+ 1)1/h

2
)). Now since F satisfies Property [?], it follows

from the Closure Lemma 4.5 (a) that the function FC
2

satisfies Property [?]. Then it follows

from the Closure Lemma 4.5 (b) that also the function t(n) := FC
l
((n+ 1)1/h

l
) satisfies Property

[?]. Moreover, the function t(n) is computable in ZNTIME(t1−ε) for ε = 1− C−1. Therefore

we also have L′ ∈ ATIMẼ(FC
2
((n + 1)1/h

l
)) ⊆ ATIMẼ(F (n + 1)), where the last inclusion

follows from the inequality FC
l
(n1/h

l
) ≤ F (n). Thus we have L′ ∈ NTIMẼ√ (F (n+ 1)) = NP̃√ .

Since L′ is a padded version of L, this implies

L ∈ NP = NP̃√ = NTIMẼ√ (F) ⊆ NTIMẼ√ (FC
2
) (12)

This concludes the proof of the Lemma. 2

5 A Separation Result

This section gives a proof of the following theorem, which is a variant of the separation result
from [G96] for classes NTIMẼ√ (t) and ATIMẼ(t).

Theorem 1. (Separation Theorem)
For every function t : N→ N such that t(n) is computable in ZNTIME(t(n)1−ε) for some ε > 0,

NTIME√ (t) (ATIME(t)

If additionally t(n) satisfies Property [?],

NTIME√ (t) (ATIMẼ(t)

The proof consists of adapting the methods from [PPST83] and [G96] to the case of bounded
nondeterministic versus alternating time complexity classes. In particular we will first provide
the Simulation Lemma 5.1 and the Hierarchy Lemma 5.2.

Lemma 5.1. (Simulation Lemma)
For every t(n) being computable in ZNTIME(t1−ε) for some ε > 0 ,

NTIME√ (t log∗ t) ⊆ ATIME(t)

If additionally t(n) satisfies Property [?], then

NTIME√ (t log∗ t) ⊆ ATIMẼ(t)

Proof. Let L ∈ NTIME√ (t log∗ t). We let b(n) = dt(n)1/3e and a(n) = dt(n)2/3 log∗ t(n)e.
According to [PPST83], a t(n) log∗ t(n)-time bounded machine S is called (a, b)-block preserving
if the following holds: For every input x of length n, we partition both the time interval
[1, c · t(n) · log∗ t(n)] and the tapes of the machine S into a(n) blocks of length b(n). Then
for every block in the time interval, the read/write-heads of the machine stay within a single
block on their working tapes (for different tapes, this block might be different). As it was
shown in [PPST83], for every c · t(n) log∗ t(n)-time bounded deterministic machine there exists a
3 · c · t(n) log∗ t(n)-time bounded (a, b)-block preserving machine S′ such that L(S′) = L(S). The

12

same holds for alternating machines, and in that case the number of guesses and the number of
alternations made by S′ are the same as for S.

Thus we may assume that L = L(S), where S is a c · t(n) log∗ t(n)-time bounded (a, b)-block
preserving nondeterministic machine with guessS(n) ≤ c ·

√
timeS(n). Following the lines of

[G96], we construct an O(t(n))-time bounded alternating machine S′ for L as follows:

Input: x of length n

(1) Use the ZNTIMẼ(t1−ε)-algorithm to compute t(n). If this algorithm returns ”?”, re-
ject. Otherwise, compute the block size b(n) = dt(n)2/3e and the number of blocks a(n) =
dt(n)1/3 log∗ t(n)e.

(2) Existentially guess a binary string g of length c ·
√
t(n) log∗ t(n) and a partition of g into

blocks g1, . . . ga(n). Note that some of the strings gj will be empty.

The string g contains the guesses made in the computation of machine S on input x. For
1 ≤ j ≤ a(n), gj contains the guesses made by S in the block j of the time interval
[1, c · t(n) log∗ t(n)].

(3) Perform phases 1 and 2 from the algorithm in [G96], where in step 3 of phase 1 and step 2 of
phase 2, the guess strings gj are used to simulate the blocks of the computation of machine S.
Whenever for some block to be simulated, the number of bits in the associated guess string gj is
too small, then the simulation stops and rejects.

We obtain that S′ is a O(t(n))-time bounded alternating machine with L(S′) = L(S). Moreover,
we may assume that timeS′(n) = c · t(n) for all n, for some constant c. Thus the function
timeS′(n) = c · t(n) satisfies Property [?]. Therefore, there exists a machine S̃j,d with L(S̃j,d) = L
and timeS̃j,d

(n) = O(t(n)), whence L ∈ ATIMẼ(t(n)). This concludes the proof of the Simulation

Lemma.

Lemma 5.2. (Hierarchy Lemma)
If g = o(f) and f is computable in ZNTIME(f), then ATIME(g) (ATIME(f). Moreover,
if f also satisfies Property [?], then ATIME(g) (ATIMẼ(f).

Proof. An O(f)-time bounded alternating machine can be constructed in the standard way
which diagonalizes against all ATIME(g)-machines. Moreover, if f also satisfies Property [?],
then the diagonalizing machine can be constructed in such a way that it makes precisely f(n)
steps on all inputs of length n, which implies that the running time function of this machine
satisfies Property [?].

Proof. (of the Theorem 1) First we note that if t(n) satisfies Property [?] and is computable in
ZNTIME(t(n)1−ε), then ATIME(t) = ATIMẼ(t).

Suppose now that t(n) is computable in ZNTIME(t(n)1−ε) and furthermore, NTIME√ (t) =
ATIME(t). We have

NTIME√ (t) ⊆ NTIME√ (t
√

log∗ t) ⊆ NTIME√ (t log∗ t) ⊆ ATIME(t)

Thus by assumption, we have equality in this chain of inclusions. However, due to the Simulation
Lemma 5.1,

NTIME√ (t
√

log∗ t) ⊆ ATIME

(
t√

log∗ t

)
,

which now yields

ATIME

(
t√

log∗ t

)
= ATIME(t),

13

a contradiction to the Hierarchy Lemma 5.2.

Corollary 2. NP 6= AP .

Proof. Suppose that NP = AP = PSPACE. Then this implies NP = NTIMẼ√ (F) =

ATIMẼ(F) = AP . Making use of padding we obtain NTIMẼ√ (FC
2
) = ATIMẼ(FC

2
). Since

F and therefore also FC
2

is computable in ZNTIME(FC), this is a contradiction to the
Separation Theorem (Thm. 1).

Discussion. We may ask if the methods presented here can be used to separate PH from
AP = PSPACE, or even to prove strictness of PH. We are currently not able to answer this
question. If we start from any assumption which does not directly imply NP = coNP , then
it is not clear how to guarantee that the union function F (n) is computable in time F (n)c for
some constant c. Recall that NP = coNP implies that the problem Check can be solved by a
ZTIME-algorithm. This means whenever we have to solve an instance of the Check problem
within the computation of F (n), we can run both the nondeterministic algorithm for the instance
of Check and for the instance of the complement. Thus there always exists a computation path
that yields an output, and every path which does not reject yields the correct answer. If we
cannot make use of the implication NP = coNP , this does not seem to work anymore.

Nevertheless, we can modify the construction presented here such as to obtain the following
refinement. We assume NP = Σp

2. Again this implies NP = NP√ = Σp
2. Now we start from a

standard family (Si) of Σ2-machines and construct an associated subfamily (S̃i,d) which contains
again for each machine Si and every integer d a machine S̃i,d whose running time function
satisfies Property [?]. The construction of the machines S̃i,d is structurally the same as before.
Namely, the computation on an input of length n is split into time intervals

T0 =
(

0, a1n
b1
]
, T1 =

(
a1n

b1 , a2n
b2
]
, . . . , TL−1 =

(
aL−1n

bL−1 , aLn
bL
]
, TL =

(
aLn

bL ,∞
)

For l < L, the first half of the time interval Tl is used to simulate the computation of the original
machine Si on the given input. The second half of the time interval is used to check if the
predicate P (i, d, n, al+1, bl+1) holds, i.e. if the machine is allowed to continue its computation in
the next time interval Tl+1. Now the difference to the previous construction is the following.
Suppose that the machine is in some interval Tl of its computation and has to use the second
half of this interval to decide if it is allowed to continue the computation in the next interval
Tl+1. For this purpose, the machine has to check if the associated instance of the predicate
P (i, d, n, al+1, bl+1) holds. Before, this was done nondeterministically, which might increase the
number of alternations made during the computation. Now we proceed differently such as to
avoid this. Namely, if at the beginning of the second halt of the interval Tl, the machine is in an
existential state, then it tests existentially (i.e. nondeterministically) if the predicate P () holds.
In all the branches which do not yield a decisive answer, the computation stops and the machine
rejects. We know that there is at least one computation path which yields an answer, and this
answer is then correct. However, if the machine is in a universal state at the beginning of the
interval Tl, it also runs the nondeterministic algorithm for the predicate P (), but now in every
computation path where this does not yield a decisive answer, the machine stops its computation
and accepts. Again, there is at least one path which yields an answer to the question if the
predicate P () holds, and this answer is correct. In any such computation path which yields the
correct answer, the machine stops and rejects or continues its computation, depending on whether
the answer is no or yes. Altogether we obtain that if Si is a nondeterministic machine, then S̃i,d is
also nondeterministic, and if Si is a Σ2-machine, then S̃i,d is also a Σ2-machine. Thus we obtain
in this way that the assumption NP = Σp

2 implies that NP = NP̃√ = Σ̃p
2. Now we construct

14

the union function F as before. We obtain NP̃√ = NTIMẼ√ (F) = Σ̃2(F) = Σ̃p
2. F is now still

computable in ZNTIME(FC), and a padding construction yields NTIMẼ√ (FC
2
) = Σ̃2(F

C2
).

This will then be a contradiction to the following version of Gupta’s result: For every function
t(n) such that t satisfies Property [?] and t is computable in ZNTIME(t1−ε) for some constant
ε > 0, NTIMẼ√ (t) (Σ̃2(t). Thus the assumption NP = Σp

2 cannot hold.

References

[BDG89] J.L. Balcazar, J. Diaz, J. Gabarro, Structural Complexity II, Springer, 1989.

[B67] M. Blum, A Machine-Independent Theory of the Complexity of Recursive Functions, J.
ACM, XIV, No. 2, 1967, pp. 322-336.

[BGW70] R.V. Book, S.A. Greibach, B. Wegbreit, Time and Tape Bounded Turing Acceptors
and AFL’s, J. Com. and Sys. Sci., 4 (1970), pp. 606-621.

[CKS81] A.K. Chandra, D.C. Kozen, L.J. Stockmeyer, Alternation, Journal of the ACM, 28
(1981), pp. 114-133.

[CS76] A.K. Chandra, L.J. Stockmeyer, Alternation, Proc. 17th Symp. on Foundations of
Computer Science, 1976, pp.98-108.

[G96] S. Gupta, Alternating Time Versus Deterministic Time: A Separation, Math. Systems
Theory 29, pp. 661-672 (1996).

[H16] M. Hauptmann, On Alternation and the Union Theorem, Preprint, submitted to Compu-
tational Complexity 11/2015, also available at Computing Research Repository (CoRR),
arXiv:1602.047816, 2016.

[K81] R. Kannan, Towards Separating Non-Deterministic Time from Deterministic Time,
FOCS, 22 (1981), pp. 335-343.

[K83] R. Kannan, Alternation and the Power of Non-Determinism, STOC, 15 (1983), pp.
344-346.

[K85] K. Kobayashi, On proving time constructibility of functions, Theoretical Computer
Science 35, pp. 215-225, 1985.

[K80] D. Kozen, Indexing of subrecursive classes, Theoretical Computer Science 11, pp. 277-301,
1980.

[McCM69] E.M. McCreight, A.R. Meyer, Classes of Computable Functions Defined by Bounds
on Computation: Preliminary Report, Proc. 1st Annual ACM Symposium on Theory of
Computing, pp. 79-88, 1969.

[PPST83] W.J. Paul, N. Pippenger, E. Szemeredi, W.T. Trotter, On Determinism versus
Non-Determinism and Related Problems, Proc. IEEE FOCS, pp. 429-438, 1983.

[PPR80] W.J. Paul, E.J. Prauss and R. Reischuk, On Alternation, Acta Informatica 14, pp.
243-255, 1980

[PR81a] W.J. Paul and R. Reischuk, On Alternation, II, Acta Informatica 14, pp. 391-403, 1980

15

[PR81b] W.J. Paul and R. Reischuk, On Time versus Space, II, J. Comp. and Sys. Sci. 22, pp.
312-327, 1981.

[S01] R. Santhanam, On Separators, Segregators and Time versus Space, Proceedings of the
16th Annual Conference on Computational Complexity pp. 286-294, 2001

[SFM78] J.I. Seiferas, M.J. Fischer and A.R. Meyer, Separating Nondeterministic Time Com-
plexity Classes, Journal of the ACM, Vo. 25, No. 1, pp. 146-167, 1978.

[S76] L.J. Stockmeyer, The polynomial-time hierarchy, Theoretical Computer Science, vol.3,
pp. 1-22, 1976.

16

