Compressing information Optimal decompression algorithm

Almost everybody now is familiar with compressThe definition ofK, depends otJ. For the trivial
ing/decompressing programs such zip, gzip, decompression algorithbi(y) =y we haveK(x) =
compress, arj, etc. A compressing program cafx|. One can try to find better decompression algo-
be applied to any file and produces the “compressédhms, where “better” means “giving smaller com-
version” of that file. If we are lucky, the compresseplexities”. However, the number of short descrip-
version is much shorter than the original one. Houiens is limited: There is less thafi &trings of length
ever, no information is lost: the decompression priess thann. Therefore, for any fixed decompres-
gram can be applied to the compressed version to gein algorithm the number of words whose complex-
the original file. ity is less tham does not exceed"2- 1. One may
[Question: A software company advertises a coroenclude that there is no “optimal” decompression
pressing program and claims that this program calgorithm because we can assign short descriptions
compressany sufficiently long file to at most 90% ofto some string only taking them away from other
its original size. Would you buy this program?] strings. However, Kolmogorov made a simple but
How compression works? A compression prerucial observation: there igsymptotically optimal
gram tries to find some regularities in a file whicdecompression algorithm.
allow to give a description of the file which is shorter
than the file itself; the decompression program rBefinition 1 An algorithm U is asymptotically not
constructs the file using this description. worse than an algorithm V if |{(x) < K\, (x) +C for
come constant C and for all x.
Kolmogorov complexity
Theorem 1 There exists an decompression algo-

The Kolmogorov complexity may be roughly degithm U which is asymptotically not worse than any
scribed as “the compressed size”. However, there gifer algorithm V.

some differences. The technical difference is that in-

stead of files (which are usually byte sequences) weg,ch an algorithm is calleasymptotically optimal

consider bit strings (sequences of zeros and ongfle. The complexity,, with respect to an asymp-

The principal difference is that in the framework oftically optimalU is calledKolmogorov complexity

Kolmogorov complexity we have necompressioral-  The Kolmogorov complexity of a stringis denoted

gorithm and deal only with thedecompressioalgo- by K(X). (We assume that some asymptotically op-

rithm. timal decompression algorithm is fixed.) Of course,
Here is the definition. LeU be any algorithm Kolmogorov complexity is defined only up ©(1)

whose inputs and outputs are binary strings. Usiggitive term.

U as a decompression algorithm, we define the com-p,o complexityK(x) can be interpreted as the

plexity K (x) of a binary stringx with respect tdJ  gmaunt of information in or the “compressed size”
as follows: of x.

Ky (%) = min{]y| [U(y) = X}

(herely| denotes the length of a binary strigyy In
other words, the complexity of is defined as the
length of the shortest description wif each binary The idea of the construction is used in the so-called
stringy is considered as a descriptionlfy) “self-extracting archives”. Assume that we want to
Let us stress thafl (y) may be defined not for allsend a compressed version of some file to our friend,
y's and that there are no restrictions on time necds# we are not sure he has the decompression pro-
sary to computéJ (y). Let us mention also that forgram. What to do? Of course, we can send the pro-
someU andx the set in the definition d; may be gram together with the compressed file. Or we can
empty; we assume that niip) = +-oo. append the compressed file to the end of the program

The construction of optimal decompression
algorithm



and get an executable file which will be applied to its Proof. (a) The asymptotically optimal decompres-
own contents during the execution). sion algorithmU is not worse that the trivial decom-

The same simple trick is used to construct an umgression algorithnv (y) =y.
versal decompression algorithth Having an input  (b) The number of sucl’'s does not exceed the
string x, the algorithmU starts scanning from left number of their compressed versions, which is lim-
to right until it founds some program written in ited by the number of all binary strings of length not
a fixed programming language (say, Pascal) wheneceeding, which is bounded by2 1. On the other
programs are self-delimiting (so the end of the prband, the number ofs such thaK(x) < nis not less
gram can be determined uniquely). Then the resttbfin 2-¢ (herecis the constant from (a)), because all
xis used as an input fqu, andU (x) is defined as the words of lengtim — ¢ have complexity not exceeding
output ofp. n.

Why U is (asymptotically) optimal? Consider any (c) LetU be the optimal decompression algorithm
other decompression algorithvh Letv be a Pascal used in the definition oK. CompardJ with decom-
program which implementg. Then pression algorithnV : y— (U (y)):

Ky (X) < Ky (X) + V] Ky (F(9)) <Ky (f(¥) +0(1) <Ky (¥) +0(1)

for any stringx. Indeed, ify isV-compressed version(any U-compressed version ofis aV-compressed
of x (i.e.,V (y) = X), thenvyis U-compressed versionversion off (x)).
of x (i.e.,U (vy) = x) which is only|v| bits longer. (d) We allocate strings of length to be com-
pressed versions of strings \fy (when a new ele-
ment ofV,, appears during the enumeration, the first
unused string of lengtim is allocated). This pro-
(@) K(x) < |x/+0(2) cedure provides a decompression algorithhsuch
thatK, (x) < nfor anyx € V.

(b) The number ok's such thaK (x) <nisequalto  (e) According to (a), all the 100% of strings of
2" up to a bounded factor separated from zergength n have complexity not exceeding+ ¢ for
some c. It remains to mention that the number of
strings whose complexity is less thar- ¢ does not

exceed the number of all strings of length- c.
Therefore, forc = 7 the fraction of strings having
complexity less tham — c among all the strings of
lengthn does not exceed 1%.

Basic properties of Kolmogorov complexity

(c) For any computable functiofi there exists a
constant such that

K(f(x) <K(x)+c
(for anyx such thatf (x) is defined).

(d) Assume that for any natural a finite setV, Problems
containing not more than"Zlements is given.
Assume that the relatior € V, is enumerable,

i.e., there is an algorithm which produces th¥2Y thatKp
t optimal?

(possibly infinite) list of all pairgx, n) such tha o _

x € Vi, Then there is a constantsuch that all 2+ 1he same question Ky (x) is a power of 2 for

elements o, have complexity at most+c¢ &mW* , , _

(for anyn). 3. L_etD be the optimal dec_ompressmn glgonthm.
Does it guarantee th&t(D(x)) is also an optimal de-

(e) The “typical” binary string of length has com- compression algorithm?

plexity close ton: there exists a constantsuch 4. LetD,,D,,... be a computable sequence of de-

that for anyn more than 99% of all strings ofcompression algorithms. Prove tfi&(x) < Kp (x) +

lengthn have complexity in between—c and 2logi+O(1) for alli andx (the constant if©(1) does

n+c. not depend o andi).

1. A decompression algorithid is chosen in such a
(x) is even for any stringt. CouldD be



5* Is it true thatK (xy) < K(x) 4+ K(y) +O(1) for Theorem 3 There exists a constant ¢ such that all
all xandy? the theorems of type “K) > n” have n< c.

Algorithmic properties of K Indeed, assume that it is not true. Consider the
following algorithm a: For a given integek, gen-

Theorem 2 The complexity function K is not cOMgate 4l the theorems and look for a theorem of type

pu_table; moreover, any computable lower bound er(X) > sfor somex and some greater thak. When
K'is bounded from above. such a theorem is founa,becomes the outpuat(s)

Proof. Assume thdtis a computable lower boundOf the algorithm. By our assumptiony(s) is defined

for K which is not bounded from above. Then for anfy" &' S

mwe can effectively find a stringsuch thak (x) > Al theorems are supposed to be true, therefore
m (indeed, we should computex) for all stringsx o (s) is a bit string whose complexity is bigger then

until we find a stringx such thatk(x) > m). Now ASWe have seen, this isimpossible, sifide (s)) <
consider the function K(s) fO(l) <9 +O(;) where|g is the length of
the binary representation ef (End of proof.)
f(m) = the first stringx such thak(x) > m (We may also use the statement of the preceding

theorem instead of repeating the proof.)

Such a constant can be found explicitly if we fix
a formal theory and the optimal decompression algo-
rithm and for most natural choices does not exceed

Here “first” means “first discovered” andis a natu-
ral number written in binary notation. By definition
K(f(m)) > m; on the other handf is a computable

function and therefor((f(m)) < K(m)+O(1). But _ to give a rough estimate — 10T00. It leads to
K(m) < |m +0O(1), so we get tham < |m| +O(1) a paradoxical situation: Toss a coin®lfimes and

which is impqssible (the_ left-hand side is a na_tura}rite down the bit string of length,000,000. Then
number, the right-hand side—the length of its blnaWith overwhelming probability its complexity will

regrﬁ.se”ta“f.”)' o version of the well kg2 PI9GET than 10000 but this claim will be un-
IS proot IS a formal version ot the Well-known, ., aple in formal arithmetic or set theory. (The ex-

paradox about "the smallest natural number Whl'Qtence of true unprovable statement constitutes the

cannot be defined by twellve English words _(th\?/ell—known Godel incompleteness theorem.)
guoted sentence defines this number and contains ex-

actly twelve words).
Algorithmic properties of K (continued)

Complexity and incompleteness Theorem 4 The function Kx) is “enumerable from

The argument used in the proof of the last theoré?ROVe", i-€., KX) can be represented asm k(x,n)
may be used to obtain an interesting version of Godehere Kx, n) is a total computable function with in-
incompleteness theorem. This application of corteger values and
plexity theory was advertised by Chaitin.

Consider a formal theory (like formal arithmetic or K(x,0) > Kk(x, 1) > k(x,2) > ...
formal set theory). It may be represented as a (non-
terminating) algorithm which generates statementsNote that all values are integers, so for artjere
of some fixed formal language; generated statemeexést someN such thak(x, n) = K(x) for anyn > N.
are calledtheorems Assume that the language is Proof. Letk(x,n) be the complexity ok if we re-
rich enough to contain statements like “complexitstrict bynthe computation time used for decompres-
of 010100010 is bigger than 765" (for any bit stringion. In other words, let) be the optimal decom-
and any natural number). The language of formpatession algorithm used in the definitionkf Then
arithmetic satisfies this condition as well as the lakfx, n) is the minimally| for all y such that) (y) = x
guage of formal set theory. Let us assume also tlaaid the computation time fdJ (y) does not exceed
all theorems are true. n. (End of proof.)



(Technical correction: it can happen (for sm@ll to a bounded term). The following list shows one of
that our definition give&(x,n) = . In this case we the possibilities.
let k(x,n) = |x| + ¢ wherec is chosen in such a way

thatK (x) < [x| +cfor anyx) _ _Al. (Conservation of information) For any com-
Therefore, any optimal decompression algorithm putable (partial) functiorf there exists a con-

U is not everywhere defined (otherwisg, would stantc such thatk (f(x)) < K(x) +c for all x
be computable). It sounds like a paradox:Ulfx) such thatf (x) is defined.

is undefined for som& we can extend) on x and
let U(x) =y for somey; after thatK (y) becomes 5o
smaller. However, it can be done for oreor for
finite number ofx's but we cannot mak¥ defined
everywhere and kedp optimal at the same time. A3,

(Enumerability from above) Functidf is enu-
merable from above.

(Units of measure) There are constantndC

. o . such that the cardinality of sdi | K(x) < n}
An encodings-free definition of complexity lies in betweerc- 2" andC - 2",

The following theorem provides an “encodings-free”

definition of Kolmogorov complexity as a minimalTheorem 6 Any functionK that satisfies A1-A3 dif-
functionK such thaK is enumerable from above anders from K only by @1) additive term.

[{x| K(x) <n}|=0(2").

Theorem 5 Let K'(x) be any enumerable from Proof. Axioms A2 and A3 guarantee th&tx) <
above function such thafx | K'(x) < n}| < C2"for K(x)+0O(1) (hereK is any function satisfying the ax-
some constant C and for all n. Then there existsi@Ms, whileK is Kolmogorov complexity). We need
constant ¢ such that () < K’(x) + ¢ for all x. to prove tha(x) < K(x) +O(1).
First, we prove thaK(x) < |x| +O(1).
SinceK is enumerable from above, we can gener-
ate strings< such that<(x) < n. Axiom A3 guaran-
tees that we have at least? strings with this prop-
‘erty for somed (which we assume to be integer).
Let us stop generating them when we have already
2"-d stringsx such thaK(x) < n; let S, be the set of
strings generated in this way. The list of all elements
in S, can be obtained by an algorithm that haas
input; |S,| = 29 andK (x) < nfor anyx € S,.

We may assume th& C S, C S; C ... (if not,
replace some elements§foy elements of_, etc.).
LetT, be equal t&§_;\ S. ThenT; has 29 elements

Proof. This theorem is a reformulation of one
of the statements above. L¥} be the set of all
strings such thaK’(x) < n. The binary relation
X € V, (betweenx andn) is enumerable. Indeed
K'(x) = limk (x;m) wherek’ is a total computable
function that is decreasing as a functionnaf Com-
putek’(x,m) for all xandmin parallel. If it happens
that k(x,m) < n for somex andm, addx into the
enumeration o%,. (The monotonicity ok’ guaran-
tees that in this cad€’(x) < n.) Since limk/(x,m) =
K’(x), any element o¥/, will ultimately appear.

By our assumptionV,,| < C2". Therefore we can
allocate §tr|_ngs of length+ ¢ (wherec = [log,C]1) and allT are disjoint.
as descriptions of elements @f and will not run ! . )
out of descriptions. So we get a decompression al—l\IOW consider a computable functidnthat maps

gorithm D such thak, (x) < n-+ ¢ for x € V. Since _elements ofT, onto strings of lengtim —d. Ax-
K'(x) < nimpliesKy(x) < n-c for anyx andn, we iom A1l guarantees then thi§{x) = n+ O(1) for any
haveKo (x) < K'(X) + 14 ¢ andK (x) < K'(x) +c for string of lengthn — d. Therefore K(x) < |x| 4+ O(1)

some othec and anyx. (End of proof.) for all x. _ | |
Let D be the optimal decompression algorithm.

We apply Al to functionD. If pis a shortest de-
scription for x, then D(x) = p, thereforeK(x) =
It would be nice to have a list of “axioms” for Kol-K(D(p)) < K(p) + O(1) < |p| + O(1) = K(x) +
mogorov complexity that determine it uniquely (u®(1).

Axioms of complexity

4



Problems Proof. Byx we denote binary string with all bits

_ o doubled. LetD be the optimal decompression algo-
1. If f:N— Nis a computable bijection, thenjinm consider the following decompression algo-
K(f(x)) = K(x) +0O(1). Isittrue if f is a (com- rithm D,
putable) injection (i.e.f (x) # f(y) for x#y)? Is it
true if f is a surjection (for any there is arx such bin([p))01pq— [D(p),D(q)].
that f (x) =y)?

2. Prove thatk(x) is “continuous” in the fol- Note thatD, is well defined, because the input
lowing sense:K(x0) = K(x) + O(1) andK(x1) = string bin(|p|)01pg can be disassembled into parts
K(x)+0O(1). uniquely: we know where 01 is, so we can fijyl

3. Isittrue thaK (x) changes at most by a constar@tnd then separaggandd,.
if we change the first bit i? last bit inx? any bitin  If p is the shortest description forandq is the
X? shortest description foy, thenD(p) = x, D(q) =y

4. Prove thaK (xbin(K(x))) (a stringx is concate- andD,(bin(p)01pq) = [x,y]. Therefore
nated with the binary representation of its complexity

K (x)) equalsK (x) + O(1). Ko, ([%,Y]) < [pl +2log|p| +|q + O(1);
here|p| = K(x) and|g| = K(y) by our assumption.
Complexity of pairs (End of proof.)
Of course,p andg can be interchanged: we can
Let replace lod (p) by logK(q).
X7y = [X’ y]

nditional complexi
be any computable function which maps pairs g"o ditional complexity

strings into strings and is an injection (i.¢x,y] # We now want to define conditional complexity »f
X,y¥]if x#X ory#Yy). We define complexity wheny is known. Imagine that you want to send
K(x,y) of pair of strings a¥([x,y]). string x to your friend using as few bits as possible.

Note thatK(x,y) changes only byO(1)-term if If she already knows some strirygwhich is similar
we consider another computable “pairing functionto X, this can be used.

If [x,y]; and [x,y], are two pairing functions, then Here is the definition. Lefp,y) — D(p,y) be a
[x,y]; can be obtained frorfx,y], by an algorithm, computable function of two arguments. We define
soK([x,y];) < K([x,Y],) +O(1). conditional complexityK, (x|y) of x whenyis known

Note that as

Kp(xly) =min{|p| | D(p,y) =x}.
K(xy) =K and K(xy)>K(y) As usual, mifi@) = +o. The functionD is called
“conditional decompressing function” or “condi-
(indeed, there are computable functions that prodygghal description mode”p is the description (com-
x andy from [x, y]). pressed version) ofwheny is known. (To gek from
For similar reasons, K(x,y) = K(y,x) and pthe decompressing algorithtneedsy.)
K(x,x) = K(X).

We can defin&K(x,y,2), K(x,y,zt) etc. in a sim- Theorem 8 There exists an optimal conditional de-
ilar way: K(x,y,2) = K([x,[y,Z]) (or K(x,y,2) = compressing function D such that for any other con-
K([[x,Y],2]), the difference i©(1)). ditional decompressing function’Dhere exists a

constant c such that

Theorem 7
Ko (Xly) < Ky (X]y) +¢

K(x,y) < K(x) +2logK(x) + K(y) + O(1). for any strings x and y.



Proof is similar to the proof of unconditionalPair complexity and conditional complexity
theorem. Consider some programming langu
. prog . 9 g a“eﬁeorem 10
where programs allow two input strings and are self-

delimiting. Then let K (%) = K(xly) +K(y) +O(logK (x) + logK (y)).
D(uv,y) = the output of program applied tov,y. Proof. Let us prove first that

Algorithm D finds a (self-delimiting) programas a K (x,y) < K(x]y) + K(y) + O(logK (x) + logK (y)).
prefix of its first argument and then appliego the
rest of the first argument and the second argumen¥Ve do it as before: ID is an optimal decompressing
Let D’ be any other conditional decompressingnction (for unconditional complexity) arid, is an
function. Being computable, it has some program optimal conditional decompressing function, let
Then _
Ko (XlY) < Kg, (Xy) + [ul. D' (bin(p)01pa) = [D,(p,D(a)),D(a)]-

Indeed, letp be the shortest string such thaf? Other terms, to get the description of pajy we

D'(p,y) = x (therefore, |p| = Ky (xly)). Then concatenate the shortest descriptioty (denoted by

D(up,y) = X, thereforeK(xly) < |up| = |p|+ |u| = g) with the shortest description &fwheny is known

Kg (Xly) + |u]. (End of proof.) (denoted byp). (Special precautions are used to
We fix some optimal conditional decompressinguarantee the unique decomposition.) Indeed, in this

function D and omit indexD in Kp(xly). Beware €@s€D(a)=yandD,(p,D(q)) =D,(p.y) =x, there-

thatK (x|y) is defined only “up ta(1)-term”. fore

Theorem 9 (a) K(xly) < K(x) +O(1) Ko (X, Y1) < [Pl +2log|p| + |g| + O(1) <
(b) For any fixed y there exists some constant ¢ < K(X|y) +K(y) +O(logK(x) +logK(y)).

such that . - . .
The reverse inequality is much more interesting.

Let us explain the idea of the proof. This inequality

. . . Is a translation of a simple combinatorial statement.
This theorem says that conditional complexity Sat A be a finite set of pairs of strings. By we

smaller than unconditional one but for any fixed con;

" ) o enote the cardinality ok. For any stringy we con-
qmon the dlffere_n_ce is limited by a constant (depen(gider the sefy defined as
ing on the condition).

Proof. (a) IfD, is an (unconditional) decompress- A, = {X|(x,y) € A}.
ing algorithm, we can consider a conditional decom-
pressing algorithm The cardinality|Ay| depends oty (and is equal to O
for all y outside some finite set). Evidently,

S A= 1A
y

KO —K(y)| <c.

D(p,y) =Dy(p)

that ignores conditions. Thef, (X)y) = KDo(x).
(b) On the other hand, D is a conditional decom-rhgrefore, the number of such that/A| is big, is

pressing algorithm, for any fixegwe can consider |imited:

an (unconditional) decompressing algorittivg de- 1yl 1A > ¢} < JAl/c

fined as -

— for anyc.
D =D(p,y).
v(P) (Py) Now we return to complexities. Letandy be two

ThenKp, (X) = Kp(xly) for giveny and for allx. strings. The inequality< (x|y) + K(y) < K(x,y) +
AndK(x) < Kp, (X)+0(1) (whereO(1)-constant de- O(logK(x) +logK (y)) can be informally read as fol-
pends ory). (End of proof.) lows: if K(x,y) < m+ n, then eitheK(x]y) < mor



K(y) < n up to logarithmic terms. Why it is theApplications of conditional complexity

case? Consider a satof all pairs (x,y) such that _

K(x,y) < m+n. There is at most™™" pairs inA. Theorem 11 If x,y,z are strings of length at most n,
The given pair(x,y) belongs toA. Consider the setNen

Ay. Itis either “small” (contains at most&lements)
or big. If Ay is small (A/| < 2"), thenx can be de-
scribed (whery is known) by its ordinal number in
A,, which requiresm bits, andK (x]y) does not ex- Proof. The statement does not mention conditional
ceedm (p|us some administrative Overhead)_ Aj CompleXity; however, the prOOf uses it. Recall that
is big, theny belongs to a (rather small) sétof all (up toO(logn)-terms) we have

stringsy such thatA is big. The number of strings

y such that/Ay| > 2™ does not exceeff| /2™ = 2. KX y,2) —K(xy) =K(Zxy)

Therefore,y can be (unconditionally) described by

its ordinal number inY which requiresn bits (plus and

overhead of logarithmic size). K(x,y,2) — K(x,2) = K(y|X,2)

2K(x,y,2) < K(x,y) +K(x,2) +K(y,z) + O(logn)

Let us repeat this more formally. L&(x,Y) =& Therefore, our inequality can be rewritten as
Consider the seh of all pairs (x,y) that have com-

plexity at mosta. Letb = |log, |Ay||. To describex K(Zx,y) +K(yx 2) < K(y,2),

wheny is known we need to specify, b and the or-

dinal number ot in Ay (this set can be enumeratedg the right-hand side is (up ©(logn)) equal to
effectively if a andb are known sinc& is enumer- K(zly) + K(y). It remains to note thakK(zx,y) <
able from above). This ordinal number Has$ O(1) K(zly) (the more we know, the smaller is the com-
bits and, thereforeK (x]y) < b+ O(loga+ logb). plexity) andK (y[x,2) < K(y). (End of proof.)

On the other hand, the set of all such that
|A/| > 2° consists of at mosfA|/2° = O(2* ) el-
ements and can be enumerated wiaeand b are
known. Oury belongs to this set, thereforgcan be The stringx of length n is called incompressible
described by, b andy's ordinal number an&(y) < if K(xjn) > n. More liberal definition: x is c-
a—b+O(loga+logh). ThereforeK(y) + K(Xly) < incompressible, iK (x|n) > n—c.
a+ O(loga+ logb). (End of proof.)

Incompressible strings

Theorem 12 For each n there exist incompressible

strings of length n. For each n and each c the frac-

tion of c-incompressible strings (among all strings of
Problems length n) is greater tha — 2C.

1. DefineK(x,y,2) as K([[x,y],[x,Z]). Is this Proof. The number of descriptions of length less
definition equivalent to a standard one (upQgl)- thann—cis 1+2+4+...+2"1 <27 There-
term)? fore, the fraction ofc-compressible strings is less

—C /on _ 9—C
2. Prove thatK(x,y) < K(X) + logK(x) + than 2-¢/2" = 2-¢. (End of proof.)

2loglogK(x) + K(y) +O(1). (Hint: repeat the trick
with encoded length.) Computability and complexity of initial seg-

3. Let f be a computable function of two ar/Ments

guments. Prove tha(f(xy)ly) < K(Xly) + O(1)  Theorem 13 An infinite sequence x x,,... of
whereO(1)-constant depends drbut notonxandy. ,aros and ones is computable if and only if

4*, Prove thaK (x|K(x)) = K(x) + O(1). K(Xy...X|n) = O(1).



Proof. If x is computable, then the initial segble directions is closed, and chose another one. This
ment x;...X, is a computable function o, and algorithm works only above leveNl, but the initial
K(f(n)|n) = O(1) for any computable function af. segment can be a compiled-in constant. (Lemma is

Another direction is much more complicated. Weroved.)
provide this proof since is uses some methods typi-Application of Lemma 1 is made possible by the
cal for the general theory of computation (recursidallowing
theory). Lemma 2. LetG be a subtree of good strings.

Now assume tha (x, ... xy|n) < cfor somecand Then there exists a decidable subt@eC G that

all n. We have to prove that the sequenge,... contains all infinite branches @.

is computable. A string of length is called “sim-  Proof. For eachn let g(n) be the number of

ple” if K(x|n) < c. There is at most®simple strings good strings of lengtm. Consider an integeg =

of any given length. The set of all simple strings #msupg(n). In other words, there exist infinitely

enumerable (we can generate them trying all sherny n such thatg(n) = g but only finitely many

descriptions in parallel for ai). n such thatg(n) > g. We choose som& such
We call a string “good” if all its prefixes (in-thatg(n) < g for all n > N and consider only levels

cluding the string itself) are simple. The set of al,N+1,...

good strings is also enumerable. (Enumerating sim-A level n> N is called complete ifj(n) = g. By

ple strings, we can select strings whose prefixes &4 assumption there are infinitely many complete
found to be simple.) levels. On the other hand, the set of all complete

Good strings form a subtree in full binary tred€vels is enumerable. Therefore, we can construct

(Full binary tree is a set of all binary strings. A suk@ computable increasing sequemge< n, < ... of
setT of full binary tree is a subtree if all prefixes ofomplete levels. (To find,;, we enumerate com-
any stringt € T are elements of ) plete levels until we finay , >n.) _
The sequence,x, ... is an infinite branch of the There is an algorithm that for eactiinds the list
subtree of good strings. Note that this subtree ha®h@!l good strings of lengtim. (It waits until g
most Z infinite branches because each level has9g0ds strings of length appear) Letus call all those
most % vertices. strings (for alli) “selected”. The set of all selected
Imagine for a while that subtree of good string&'"gs is decidable. If a string of lengt) is se-
is decidable. (In fact, it is not the case, and we wiffcted: then its prefix of length; (for i < j) is se-

need additional construction.) Then we can apply tiffted It is easy to see now that selecte;\d strings
following and their prefixes form a decidable subti@ethat

Lemma 1. If a decidable subtree has only finif@Clucles any infinite branch 6.
Lemma 2 and theorem 13 are proved.

number of infinite branches, all these branches areF tabl h
computable. or computable sequence;X,... we have
K(X;...%|n) = O(1) and thereforeK(x,...xn) <

Proof. If two branches in a tree are different th%g n+O(1). One can prove that the inequalit
they diverge at some point and never meet againg ' P quairty

Consider a leveN where all infinite branches di_alsmmplles computability (see Problems). However,

verge. Itis enough to show that for each branch th%lgn:nig:g:;:yi?;l)‘(' -Xn) = O(logn) does not imply
is an algorithm that chooses the direction of branéh P Yo

(leftor right, i.e., 0 or 1) above levél. Since we are Theorem 14 Let A be any enumerable set of natu-
above leveN, the direction is determined uniquelya| numbers. Then for its characteristic sequence
if we choose a wrong direction, no infinite branchea%alaz_._ (a = 1ifi € A and a = 0 otherwise) we
are possible. Compactness argument says that in {lge

case a sgbtree rooted in the “wrong” vertex Wlll be K(aya, - -an) = O(logn)

finite. This fact can be discovered at some point (re-

call that subtree is assumed to be decidable). ThereProof. To specifya,...a, it is enough to specify
fore, at each level we can wait until one of two possiwo numbers. The first is and the second is the
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number of 1's ina,...ay, i.e., the cardinality of the Problems
setAn[0,n]. Indeed, for a given, we can enumerate
this set, and since we know its cardinality, we know

. 1. True or false: for any computable func-
where to stop the enumeration. Both of them u§%n ¢ there exists a constagtsuch thatk <
O(logn) bits. (End of proof.) . Xl u (Xy) <

. I K(x|f(y)) +cfor all x,y such thatf (y) is defined.
This theorem shows that initial segments of char 2. Prove thak (x, ... xq|n) < logn+O(1) for any

acteristic sequences of enumerable sets are far from -
o : characteristic sequence of an enumerable set.
being incompressible. . .
, , 3*. Prove that there exists a sequeRrgs, ... such
As we know that for each there exists an incom-
) o thatK(x; ...X)) > n—2logn— c for somec and for
pressible sequence of length it is natural to ask all n
whether there is an infinite sequenee, .. SUCh . proye gy iK (X, ... %) < logn+cfor somec
that its initial segment of any lengthis incompress- ,
. : ; and alln, then the sequenogx; ... is computable.
ible (or at least-incompressible for somethat does

not depend om). The following theorem shows that ibili dl bound
it is not the case. Incompressibility and lower bounds

We apply Kolmogorov complexity to obtain lower
Theorem 15 There exists ¢ such that for any sesound for the following problem. LeM be a Tur-
guence YX,X,... there are infinitely many n suching machine (with one tape) that duplicates its in-
that put: for any stringx on the tape (with blanks on
K(XX,... %) < n—logn+c the right ofx) it producesxx. We prove thaiM re-
quires timeQ(n?) if x is an incompressible string of
Proof. The main reason why it is the case is thigngthn. The idea is simple: the head of TM can
the Seriesz(]_/n) diverges_ It makes possib|e to secarry finite number of bits with limited Speed, there-
lect the set#\,, A, ... with following properties: fore the speed of information transfer (measured in

(1) eachA consists of strings of lengtiy bitxcell/step) is bounded and to mowvebits by n
) |A] < 2'/i; cells we need(n?) steps.

~(3) for any infinite sequence,x ... there are in- rpa4rem 16 Let M be any Turing machine. Then

finitely manyi such thak, ...x; € 4. there exists some constant ¢ with the following prop-
(4) the se’h = U;A is decidable. erty: for any k, any I> k and any t, if cells ¢
Indeed, starting with somé;, we cover about ith j > k are initially empty, then the complexity

(1/i)-fraction of the whole spac@ of all infinite se- ¢ the string £.1Gy,,- . after t steps is bounded by
quences. Then we can choo&g , to cover other ct/(I — k) + O(logl + logt).

part of Q, and so on until we cover af (it happens

because i +1/(i+1)+...+1/] goes to infinity). ~ Roughly speaking, if we have to move informa-

Then we can start again, providing a second layertisin at least byt —k cells, then we can bring at most

covering, etc. ct/(l —Kk) bits into the area where there was no infor-
It is easy to see thaA,| + |A,| + ...+ |A| = mation at the beginning.

O(2'/i): Each term is almost twice as big as the One technical detail: string,,c,,... denotes

preceding one, therefore, the sumQglast tern). the visited part of the tape.

Therefore, if we write down in lexicographic order- This theorem can be used to get a lower bound

ing all the elements ok, A,, ..., any elemenkof A, for duplication. Letx be an incompressible string

will have numberO(2'/i). This number determinesOf lengthn. We apply duplicating machine to the

x uniquely and therefore for anyc A, we have string 0'x (with n zeros before). After the machine
terminates irt steps, the tape is'"®0"x. Letk = 2n
K(x) < log(0O(2')/i) =i —logi + O(1). andl = 3n. We can apply our theorem and ge&
K(x) < ct/n+O(logn+logt). Thereforet = Q(n?)
. (End of proof.) (note that log < 2logn unlesst > n?).



Proof. Letu be any point on the tape betwekn logN for anyi, so the total number of bits needed
andl. A police officer records what TM carries igo describeN is O(nloglogN). But integerN corre-
its head while crossing pointfrom left to right (but sponds to a string of length Id¢§ so we get a contra-
not the time of crossing). The recorded sequeRcediction if this string is incompressible.
of TM-states is calledrace at pointu. Each state
occupiesO(1) bits since the set of states is finitencompressible matrices
This trace together withy, k, | and the number of
steps after the last crossing (at mostis enough Consider an incompressiple Boolean mgtrix of size
to reconstruct the contents gf ;G ,,... at the mo- N N Let us prove that its rank (over fielf, =
mentt. (Indeed, we can simulate the behaviour ¢f:1}) is greater tham/2. _

M on the right ofu.) Therefore,K(c, G ,,--.) < Indeed, imagine that its rank is at ma_>§(12. Then
cN, + O(logl) + O(logt) whereN, is the length of We can selech/2 columns of the matrix such that

T,, i.e., the number of crossingsat any other column is a linear combination of se-
Now we add these inequalities for all= k k+ lected ones. Lekj,...,k, , be the numbers of these
1,...,1. The sum ofNy is bounded by (since only columns. . . .
one crossing is possible at any given time). So Then instead of specifying all bits of the matrix we
can specify:
(1= KK(G 4G g---) < (1) the numberk, ... .k, (O(nlogn) bits)

(2) bits in the selected columne®(/2 bits)
(3) n?/4 bits that are coefficients in linear com-
binations of selected columns needed to get any

and theorem is proved. lected col > bits f /2
The original result (one of the first lower bound2°n-Selected co umnn(2 bits for any ofn/2 non-
elected columns).

for time complexity) was not for duplication but 5 o
for palindrome recognition: Any TM that checkszEereered’ ;/ve.get.OSn +%(Inlogr;)_b|ts instead
whether its input is a palindrome (likebadaba) orn™ heeded forincompressibie matrix.

needsQ(n?) steps for some inputs of length We ‘ .Offcft:lrse’ I:[ IS tnw:l tt%.fmd en? n I?oolgan m]?'l,)
can prove it by incompressibility method. rix ot fulf rank, so why this construction 1S usetu:

Proof sketch: Consider a palindroms® of length ln fath’ th? sameflcgga shcl)(ws thalf\llr}cogptre_lssmle ma-
2n. Let u be any position in the first half atx®: rix has minors of big rank (see or details).

x =yz and length ofy is u. Then the tracd, de- )
terminesy uniquely if we record states of TM whilelncompressible graphs

crossing checkpoint in both directions. Indeed, if Apy graph withn vertices can be represented by a bit
strings with differenty have the same trace, we CaEtring of lengthn(n — 1) /2. We call a graplincom-

mix the left part of one computation With the righbressibleif this string is incompressible.
part of another one and get a contradiction. Taklngl_et us show that incompressible graph is con-
all u between|x|/4 and|x|/2, we get the requirednacted.  Indeed, imagine that it can be divided

<t+ (1 —k)[O(logl) + O(logt)]

bound. into two connected components, and one of them
(smaller) ha vertices k < n/2). Then the graph
Incompressibility and prime numbers can be described by

(1) numbers ok vertices in this componenklogn
s)
(2)k(k—1)/2 and(n—k)(n—k—1)/2 bits needed
to describe both components.

N — pkl pkz oo In (2) (compared to the full description of the

12 e graph) we savé(n — k) bits for edges that go from

where allk; do not exceed lod. Therefore, eachone component to another one, akth — k) >
N can be described hyintegersk,,...,k, andk < O(klogn) for big enough (recall thatk < n/2).

Let us prove that there are infinitely many primBit
numbers. Imagine that there are onlyprime num-
bersp,,..., pn. Then each integed can be factored
as

10



Incompressible tournaments Problems

Let M be a tournament, i.e., a complete directed
graph withn vertices (for any two different vertices 1. Letx be an incompressible string of length
and | there exists either edde— j or j — i but not and lety be a longest substring &that contains only
both). zeros. Prove thgy| = O(logn)
A tournament igransitive if vertices are linearly 2+, pProve thaty| = Q(logn).
ordered by the relation— j. 3. (LV, 6.3.1) Letw(n) be the largest integer such
Lemma. Each tournament of sizZ€-21 has a tran- that for each tournamefi on N = {1,...,n} there
sitive sub-tournament of size exist disjoint set# andB, each of cardinalityv(n),
Proof. (Induction byn) Let x be any vertex. such thatAx B C T. Prove thatw(n) < 2[logn].
Then ¥ — 2 remaining vertices are divided intqHint: add 2v(n)[logn] bit to describe nodes, and
two groups: “smaller” tharx and “greater” tharx. savew(n)? bits on edges. Source: P. Erdos and
At least one of the groups hag 2 — 1 elements J. Spencer, Probabilistic methods in combinatorics,
and contains transitive sub-tournament of izel. Academic Press, 1974.)
Adding x to it, we get a transitive sub-tournament of
sizek.
This lemma gives a lower bound on the size

graph that does not include transitikdournament. A k-head finite automaton has(numbered) heads

The incompressibility method provides an upp@hat scan from left to right an input string (which is
bound: an incompressible tournament witvertices he same for all heads). Automaton has a finite num-
may have transitive sub-tournamentsgfogn) size pey of states. Transition table specifies an action for
only. each state and eagktuple of input symbols. Action

A tournament withn vertices is represented byncludes new state and the set of heads to be moved.
n(n—1)/2 bits. If a tournamenR with n vertices (We may assume that at least one head should be
has transitive sub-tournameRtof sizek, thenRcan moved:; otherwise we can precompute the transition.)
be described by: One of the states is called amitial state. Some

(1) numbers of vertices iR listed according to states ar@cceptingstates. An automatof accepts
linear R-ordering klogn bits) stringx if A comes to an accepting state after reading

(2) remaining bits in the description & (except x starting from the initial state. (Readings finished
for bits that describe relations insifRe) when all heads leave We require that this happens

In (2) we savek(k —1)/2 bits, and in (1) we usefor any stringx.)
klogn additional bits. Since we have to lose more Fork = 1 we get the standard notion of finite au-
than we wink = O(logn). tomaton.

Example: A 2-head automaton can recognize

] ) strings of formx#x (wherex is a binary string). The

Discussion first head moves to #-symbol and then both heads

. . move and check whether they see the same symbols.
All these results can be considered as direct refor- .
It is well known that this language cannot be rec-

mulation of counting (or probabilistic arguments). 4 by 1-head finit ¢ A >-head
Moreover, counting gives us better bounds withog'2¢d by 1-head tinité automaton, S0 2-head au-

O()-notation. tomata are more powerful that. 1-head ones.

But complexity arguments provide an important Our goal is to prove separation for bigger
heuristics: We want to prove that random obj&ct
has some property and note thax dloes not have it, Theorem 17 For any k there exists a language that
thenx has some regularities that can be used to givan be recognized bik+ 1)-head automaton but not
a short description fox. by k-head one.

gf and k+ 1-head automata
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The language is similar to the language consideratlall during the computation. We show that condi-
above. For example, fdk = 2 we consider a lan-tional complexity ofx, when all otherx, are known

guage consisting of strings does not excee@(logl). (The constant here depends
on N and A, but not onl.) This contradicts to the
XHYHZHZIYHX incompressibility ofx, ...xy (we can replacem, by

self-delimiting description ok, when otherx, are
Using three heads, we can easily recognize this lamown and get a shorter description of incompress-
guage. Indeed, the first head moves from left to rigipfe string).
and ignores the left part of the input string. While The pound for the conditional complexity af,
it reaches (rightly, another head is used to checkan pe obtained in the following way. During the ac-
whethery on the left coincides witly on the right. centing computation we take special care of the pe-
(The first head waits till the second one crossasd (jods when one of the heads is insixg (any of two
reachesy.) When the first head then reachesthe cgpjes). We call there periods critical sections. Note
third head is used to cheok After that the first head that each critical section is either L-critical (some

is of no use, but second and third heads can be uggdds are inside left copy &) or R-critical but not
to checkz. both (no pair of heads coverg,). Critical section
The same approach shows that an automaton Wthts when one of the heads moves insigdother
k heads can recognize languagg that consists of heads can also move in during the section) and ends
strings when all heads leave,,. Therefore, the number of
XXt XX K critical sections during the computation is at mdst 2
for N=(k—1) + (k—2) +... +1=k(k—1)/2 (and Let us record the positiong of all heads and the
state of automaton at the beginning and at the end of
each critical section. This requir€xlogl) bits (note
that we do not record time and may assume without
loss of generality that heads do not move more than
one cell out of the input string).
We claim that this information (callelacein the
sequel) determines, if all other x; are known. To
X = X HXH. . Xy X . A see why, let us consider two compytations with dif-
ferentxy, andx, but the same; for i # m and the

where allx,_have the same lengthand the string Same traces.
X,X, ... Xy iS an incompressible string (of lengith). Equal traces allow us to “cut and paste” these two
Stringxis accepted byA. In our argument the follow- computations on the boundaries of critical sections.
ing notion is crucial: We say that (unordered) pair ¢Putside the critical sections computations are the
heads “coverskn if at some point one head is insidéame, because the strings are identical except,for
the left instance ok, while another head is insideand state and positions after each critical section are
the right instance. included in a trace.) Now we take L-critical sections

After that the right head can visit only stringdrom one computation and R-critical sections from
X 1,---,% and left head cannot visit left counteranother one. We get a mixed computation that is an
parts of those strings (they are on the left of itRccepting run of\ on a string that hagy on the left
Therefore, only ona, can be covered by any giverfndxm, on the right. Thereforeh accepts string that
pair of heads. it should not accept. (End of proof.)

In our example we had three heads (and, therefore,
three pairs of heads) and each strixygx,, X;
covered by one pair.

The number of pairs i&(k — 1)/2 for k heads. (This section assumes that you know what heapsort
Therefore there exists somg that was not coveredis.)

for all smallerN).

Let us prove now that-head automatoA cannot
recognizel, if N is bigger thark(k—1)/2. In par-
ticular, no automaton with 2 heads recognizgsind
evenL,)

Let us fix a string

Was Heap sort: time analysis
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Let us assume that we sort number®,1.. /N. we need. If the final position id, levels above the
We haveN! possible permutations. Therefore, tteaves level, we need Id¢— d, exchanges, and the
specify any permutation we need about Migoits. total number of exchangeshslogN — ¥ dj.

Stirling formula says thal! ~= (N/e)N, therefore the  We claim thaty d, = O(N) for incompressible

number of bits needed to specify one permutationgermutation, and, therefore, the total number of ex-
NlogN + O(N). As usual, most of the permutationghanges iNlogN + O(N). (There are different im-

are incompressible in the sense that they have cqmtementation of heapsort. A careful one first looks
plexity at leastO(NlogN) — O(N). We estimate the for the possible path for the new element, then
number of operations for heap sort in case of incohwoks for its position (starting from the leaves) and
pressible permutation. then actually moves new element, thus making only

Heap sort consists of who phases. First phase dogN + O(N) assignments andNAogN + O(N)
ates a heap out of array. (The indexes in agfdy.N] comparisons. See LV for details.)
form a tree wherei2and 2+ 1 are sons of. Heap =~ So whyy dn is O(N)? Let us record the direction
property says that ancestor has bigger value that &hynovements while elements fall down through the
of its descendants.) heap (using 0 and 1 for left and right). We don't use

Transforming array into a heap goes as followdelimiters to separate strings that correspond to dif-
for eachi = N,N —1,...,1 we make the heap ouferentnand useNlogN — 5 d; bits altogether. Sepa-
of subtree rooted at Doing this for node, we need ately we write down ald, in self-delimiting way.
O(K) steps wheriis the distance between nodend This requiresy (2logd; +0(1)) bits. All this in-
the leaves of the tree. Therefoke= 0 for about half formation allows us to reconstruct all moves dur-
of nodesk = 1 for about ¥4 of nodes etc., the averiNg the second phase, and therefore to reconstruct
age number of steps per nodedsy k2) = O(1), initial state of the heap before the second phase.
and the total number of operationsG$N). Therefore, the .conjplexity of heap before the sec-

Important observation: after the heap is creatd!d Phase (which idllogN —O(N)) does not ex-
the complexity of arraya[1..N] is still NlogN + C€€dNIOGN =35 dn+ 5 (2logdn) + O(N), therefore,
O(N), if the initial permutation was incompressible.z(Oln —2logdn) = O(N). Since 2logi, < 0.5d, for
Indeed, heapifying means composition of initial pefn > 16 (and all smalled, have sumO(N) anyway),
mutation with some other permutation (which is d&/e conclude thay d, = O(N).
termined by results of comparisons between array
elements). Since total time for heapifying@N), Problems

there are at mogD(N) comparisons and their results 1%, Prove that for most pairs of binary stringsy

form a bit string of lengttO(N) that determines the lengthn any common subsequencexoéndy has
heapifying permutation. The initial (incompressibl%ngth at most ®n (for large enoughn).
permutation is a composition of the heap &N )-

permutation, therefore heap has complexity at le
NlogN — O(N).

The second phase transforms heap into sorted Hnere is some intuitive feeling saying that a fair coin
ray. At any stage array is divided into pargg1..n] tossing cannot produce sequence
is still a heap, buajn+ 1..N] is the end of the sorted
array. One step of transformation (it decreasdsy 000000000000000000000Q0
1) goes as follows: the maximal heap elemajif
is taken out of th_e heap and exchanged véfh|. 01010101010101010101010
Therefore,a[n..N] is now sorted, and heap property ’
is almost true: ascendant has bigger value that deerefore, infinite sequences of zeros of ones can be
scendant unless ascendardlig (that is now in root divided in two categories. Random sequences are se-
position). To restore heap property, we maja] quences that can appear as the result of infinite coin
down the heap. The question is how many steps tasing; non-random sequences (like two sequences

St .
?n}lnlte random sequences
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above) cannot appear. It is more difficult to providis a null set.
an example of a random sequence (it somehow beProof sketch: it is enough to show that for every
comes non-random after the example is provided),> 0 the setN; of sequences that have frequency

S0 our intuition is not very reliable here. greater than A2+ ¢ for infinitely many prefixes, has
measure 0. (After that we use that a countable union
Classical probability theory of null sets is a null set.) For eaghconsider the

probability p(n,d) of the event “random string of

Let Q be the set of all infinite sequences of zeros ané%gthn has more thafil/2+ 5)n ones”. The crucial
ones. We define amniform Bernoulli measurenQ  jpsarvation is that

as follows. For each binary stringlet Q, be the set

of all sequences that have prefiXa subtree rooted Z p(n,d) < oo
atx). n

Consider a measur® such thatP(Q,) = 2.

Lebesgue theory allows us to extend this measurd@2any€ > 0. (Actually, p(n, ) is exponentially de-
all Borel sets (and even farther). creasing whem — oo; proof uses Stirling’s approxi-
A setX c Q is callednull set, if P(X) is defined mation for factorials.) If the series above has a finite

andP(X) = 0. Let us give a direct equivalent definiSum. for eveng > 0 one can find an integé¥ such

tion that is useful for constructive version: that
A setX c Qs a null set if for evenye > 0 there EN p(n,d) < e&.
exists a sequence of binary stringsx, ,... such that s
(D)X CQUOQU..; Consider all stringz of length greater thai that
2) sz\xl < €. have frequency of ones greater thafR¥# 5. The
sum ofP(Q,) is equal toy . P(N, ) < €, andN; is

|
Note that 2l is P(Qy ) according to our defini- .oyered by family,. (End of proof sketch.)
tion. In words: X is a null set if it can be covered by

a sequence of interval8, whose total measure is as _
small as we wish. Effectively null sets

Examples: Each singleton is a null set. A counfyg fo|iowing notion was introduced by Per Martin-
able union of null sets is a null set. A subset of a nLL%f A setX C Q is aneffectively nullset if there
setis a null set. The s& is not a null set (COM-ig 4 4ig0rithm that gets a rational numtses 0 as

pactness). The set of all sequences that have zerqﬁ&lit and enumerates a set of Strir{gs, x;, X }
positions with even numbers is a null set. Lt

such that
(1) X C QO UQ UQy U..;

Strong Law of Large Numbers @ 32K <e

. |
Informally, it says that random sequengg, ... has  The notion of effectively null set remains the same
limit frequency Y2, i.e., if we allow only £ of form 1/2%, or if we replace ”

X EX X, 1 by “<”in (2).

Ml, n o Any subset of an effectively null set is also an ef-

) y . fectively null set (evident observation).
However, the word “random” here is used only as'a : . e
A singleton {w} (containing some infinite se-

shortcut: the full meaning is that the set of all se—uence of zeros and ones) is a null sewifs com-
guences that do not satisfy the Strong Law of Largs

L . .putable (or non-random, see below).
Numbers (do not have limit frequency or have it dif- A . f o Hactivel Il sets i ff
ferent from 1/2) is a null set. n union of two effectively null sets is an effec-

In general, P(w) is true for randomew € Q" tlvgly nu}!l get. (Izn?eet()i,tvr\]/e c3n flndbgnumerable Cov-
means that the set erings of sizee/2 for both an combine .er.n.)
More general statement requires preliminary def-
{w|P(w) is falsg inition. By “covering algorithm” for an effectively
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null set we mean algorithm mentioned in the definihat the infinite suny 2-1%I can be equal te even if

tion (that getss and generates a covering sequenad finite sums are strictly less tham

of strings with sum of measures less ttgn But this is not important: we can apply the same
Lemma. LetX,,X;,X,,... be a sequence of ef-arguments (that were used to prove Lemma) to all al-

fectively null sets such that there exists an algorithgmrithms%,A'l, ... whereAy,A,, ... is a sequence of

that for any inputi produces (some) covering algoall algorithms (that get positive rational numbers as

rithm for X;. ThenuX; is an effectively null set. inputs and generate binary strings). (End of proof.)

Proof. To get are-covering forUX;, we put to-  pefinition. A sequencew of zeros and ones is
gether(e /2)-covering forX,, (&/4)-covering forX,, called (Martin-Lof)randomwith respect to uniform

etc. To generate this combined covering, we use Blrmoulli measure ito does not belong to maximal
gorithm that produces covering fo§ fromi. (End effectively null set.

of proof.)

“

(Reformulation: “...ifw does not belong to any
effectively null set.” )

Maximal effectively null set Therefore, to prove that some sequence is non-
random, it is enough to show that it belongs to some

Up to now the theory of effectively null sets just reéffectively null set.

peats classical theory of null sets. The crucial differ- i i )
Note also that a seX is an effectively null set if

ence is in the following theorem (proved by Martin- .
Lof): g (P y and only if all elements oKX are non-random.

This sounds like a paradox for people familiar
Theorem 18 There exists a maximal effectively nuHVith classical measure theory. Indeeq, we know that
set, i.e., an effectively null set N such that for mgasgre somehow reflgcts the “density” of set. _Each
any effectively null set X. point is a null set, but if we have too many points,
we get a non-null set. Here (in Martin-Lof theory)

. . : . if any element of a set forms an effectively null sin-
(Trivial) reformulation: the union of all effectively o .
gleton (i.e., is non-random), then the whole set in an

null sets is an effectively null set. effectively null one
We cannot prove this theorem by applying Lemma y '

above to all effectively null sets (there are uncount-

ably many of them, since any subset of an effectiv

null set is an effectively null set). elyroblems

But we don't need to consider all effectively null .
L : , 1. Prove that if sequencgx;x,... of zeros and
sets; it is enough to consider all covering algo- . L . :
: . : >, ones is (Martin-Lof) random with respect to uniform
rithms. For a given algorithm (that gets positive rg; : :
rnoulli measure, then the sequencexX®9... is

tional number as input and generates binary strin%ﬁzo random. Moreover, adding any finite prefix to
we cannot say (effectively) whether it is a cover- ' '

ing algorithm or not. But we may artificially en_random sequence, we get a random sequence, and

- . : . ing any finite prefix to non-random nce, w
force some restrictions: if algorithm (for givern> 0) adding any finite prefix to non-random sequence, we
get a non-random sequence.

generates stringg,,x,,..., we can check whether - ) ) )
2. Prove that any (finite) binary string appears in-

27l ... +27% < £ or not; if not, we deletes, _ ° : _
from generated sequence. Let us denoteAbthe finitely many times in any random sequence.

modified algorithm (ifA was an original one). Itis 3. Prove that any computable sequence is non-

easy to see that random. Give an example of a non-computable non-
(1) if Awas a covering algorithm for some effeciandom sequence.

tively null set, thend' is equivalent toA (the condi- 4. Prove that the set of all computable infinite se-

tion that we enforce is never violated). quences of zeros and ones is an effectively null set.
(2) For anyA algorithmA' is (almost) a covering 5*. Prove that ifxx, ... is not random, them —

algorithm for some null set (the only difference i&(x,...x, 1/n) — o asn — .
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Gambling and selection rules Selection rules and Martin-Lof randomness

Richard von Mises suggested (around 1910) the fgi€0rem 19 Applying admissible selection rule
lowing notion of a random sequence (he uses G&#ccording to Church definition) to Martindf ran-
man word Kollektiv) as basis for probability theorydoM sequence, we get either finite or Martigktan-

A sequencex,x, ... is called (Mises) random, if ~d0M sequence.

(1) The limit frequency of 1'sin 12, i.e., Proof. LetSbe a function that determines selec-

tion rule og.
im o Xt X 1 Let X, be the set of all finite of infinite sequences
n—co n 2’ that have prefix (herex is a finite binary string).

Consider the sety = g, }(2) of all (infinite) se-

(2) the same is true for any infinite subsequenaeencesv such that selected subsequence starts with
selected by an admissible selection rule. X. If x= A (empty string), theldy = Q.

Examples of admissible selection rules: (a) se-Lemma. The sef has measure at most?2.
lect terms with even indices; (b) select terms thatProof. What isA,? In other terms, what is the
follow zeros. The first rule gives 0100 when Set of all sequences such that the selected subse-
applied to ©100100... (selected terms are underduence (according to selection rufg) starts with 0?
lined). The second rule gives 0110 when applied Consider the seB of all stringsz such thai§(z) = 1
to 00101100. .. but S(Z) = 0 for any prefixZ of stringz These

Mises gave no exact definition of admissible Sé'grings are places where the first bet is made. There-

lection rule (at that time the theory of algorithms ngre,

not developed). Later Church suggested the follow- Ao =U{Qyp|z€ B}
ing formal definition of admissible selection rule. and
An admissible selection rule is a total computable A =U{Q, |ze B}

fun::non S”deflned OT finite strlngs”that has valueg, particular, the set#, andA, have the same mea-
1 (“select”) and 0 (“do not select”). To appl® sure and are disjoint, therefore
to a sequenceyx;X,... we select allx, such that

S(XgX%; ---%,_1) = 1. Selected terms form a subse-
guence (finite or infinite). Therefore, each selection
rule S determines a mappings : Q — %, whereX

is the set of all finite and infinite sequences of zerFrom the probability theory - viewpoint,P(Ay)

and ones flg(Al)] is the probability of the event “the first se-
' lected term will be 0 [resp. 1]", and both events have

For example, if(x) =1 for any stringx, thendsis (e same probability (that does not exceg@)tfor
an identity mapping. Therefore, the first requwemet‘glmost) evident reasons.

in Mises approach follows from the second one, andWe can prove in the same way thég, and A,
0 1

we come to the following definition: have the same measure. (See below for details.)
A sequencex = XyX,X, ... is Mises-Church ran- gince they are disjoint subsets &, both of them
dom if for any admissible selection rul& the have measure at mos}fz]_ The Setg\lo andAll also
sequencedg(x) is either finite or has limit fre- have equal measure and are subsets, ptherefore
quency 2. both have measure at most4l etc.
Church’s definition of admissible selection rules [Let us give an explicit description @,,. LetB,
has the following motivation. Imagine you come to ke the set of all stringasuch that
casino and watch the outcomes of coin tossing. Then(1) S(z) = 1;
you decide whether to participate in the next game(2) there exists exactly one proper prefixof z
or not, applyingS to the sequence of observed ousuch thatS(Z) = 1;
comes. (3) Z0O is a prefix ofz
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In other terms,B, corresponds to the positiondProbabilistic machines
where we are making our second bet while our first

bet produces 0. Then Consider a Turing machine that has access to source
of random bits. It has some special stads, ¢ with
Ago=U{Qy | z€ By} the following properties: after machine comesato
and it jumps to one of the statdsandc with probability
Ay =U{Q, | z€ By} 1/2 for each.

ThereforeA,, andA,, indeed have equal measures, ] Or cor_13|der a program in some language that al-
(Lemma in proved.) [ows assignments

It is also clear thafy is the union of interval€y,
that can be effectively generatedkifs known. (Here a:=random
we use the computability .

Let 0g(w) be an infinite non-random sequencévhererandomis a keyword anda is a variable that
Then {w} is effectively null singleton. Thereforedets value 0 or 1 (with probability /2; each new
for each e one can effectively generate intervalgandom bit is independent of others).

Qxl,sz, ... whose union coversg(w). The preim- For a deterministic machine output is a function of
ageso‘gl(Qxl),ggl(sz),___ coverw. Each of these input. Now it is not the case: for a given input ma-
preimages is an enumerable union of intervals, agline can produce different outputs, and each output
if we combine all these intervals we get a coverirfggs some probability. In other terms, for any given
for w that has measure less thanThus,w is non- input machine’s output is a random variable.

random (a contradiction). Our goal is to find out what distribution this ran-

Theorem is proved. dom variable may have. But let us consider a simpler
- question first. LeM be a machine that does not have
Theorem 20 Any Martin-Lof random sequence has . .
- input. (For exampleV can be a Turing machine that
limit frequencyl/2. )

is put to work on an empty tape, or a Pascal program

Proof. By definition this means that the s€8LLN that does not haveead statements.) Now consider
of all sequences that do not satisfy Strong Law pfobability of the eventM terminates”. What can
Large Numbers is an effectively null set. As we havge said about this number?
mentioned, this is a null set and the proof relies onMore formally, for each sequenee € Q we con-
an upper bound for binomial coefficients. This uppeider the behaviour oM if random bits are taken
bound is explicit, and the argument showing that tifiem w. For a givenw the machine either terminates
set—SLLNis a null set can be extended to show that not. Thenp is the measure of the sé&tof all w
—SLLNis an effectively null set. (End of proof.)  such thatVl terminates usingp. It is easy to see that

Combining these two results, we get the following is measurable. Indeed, is a union ofT,, where
Theorem 21 Any Martin-Lof random sequence is " s the S?t of alkw such.thaﬂ\/l §tops a.lfter at most

. n steps usingu. EachT, is a union of interval<),
also Mises—Church random. h .
for some string¢ of length at mosh (machine can
use at mosh random bits if it runs in timen) and
therefore is measurable.

1. The following selection rule isot admissi- A real numberp is calledenumerable from below
ble according to Mises definition: choose all ternfy semicomputable from beloifv p is a limit of in-

X, such thatx,, ., = 0. Show that (nevertheless) itreasing computable sequence of rational numbers:
gives (Martin-Lof) random sequence if applied to o= lim p;, wherep, < p; < p, <... and there is an
Martin-Lof random sequence. algorithm that computep, giveni.

2. Letxyx;X,... be a Mises—Church random se- Lemma. A real numbep is enumerable from be-
quence. Lety =[{n<N|a,=0,q,,, =1}|. Prove low if and only if the setX, = {r e Q| r < p} is
thatay /N — 1/4 asN — . enumerable.

Problems
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Proof. (1) Letp be the limit of computable in- Now we consider probabilities of different out-

creasing sequeng®. For any rational number puts. Here we need the following definition: A se-
_ guencepy, Py, P, ... of real numbers inumerable
r<pedir<p,. from below if there is a computable total functign

Let ro,r,,... be a computable sequence of rationgf two variables (that range over natural numbers)

numbers such that any rational number appears Y‘thhr;;“c;nal values (with special valuee added)
finitely often in this sequence. The following algo§UC a
_rithm enumerateX,: atith step, compare andp;; 0(i,0) < p(i,1) < p(i,2). ..
if r; < p;, outputr;.

(2) If Xp is enumerable, laty,ry,r,,... beits enu- gng

merat.ion. Thenp, = max(ro,rl,...,rn)_ is an in- p(i,0), p(i,1), p(i,2),... = p,
creasing computable sequence of rational numbers
that converges tp. (End of proof.) for anyi.

Lemma. A sequencpy, Py, Py, ... of reals is enu-
Theorem 22 (a) Let M be a probabilistic machinemerable from below if and only if the set of pairs
without input. Then M’s probability of termination is
enumerable from below. {{,ry[r<p}
(b) Let p be any real number i®, 1] enumerable
from below. Then there exists a probabilistic m
chine that terminates with probability p.

Jis enumerable.

Proof. Letp,,p;,... be enumerable from below
andp, = lim, p(i,n). Then

Proof. (a) LetM be any probabilistic machine. Let _
pn be the probability thaM terminates after at most r<p < 3n[r <p(i,n)]
n steps. The numbep, is a rational number with . o
denominator 2that can be effectively computed forand we can check < p(l,_n) for ?” _palrs(l,r>_ and
any givenn. (Indeed, machind/ can use at mostfor all n. I.f r < p(i,n), pair (i,r) is included in the
n random bits duringn steps. For each of"2bi- enumeration. . o
nary strings we simulate behaviour ldfand see for On the other hand, if the set of pairs is enumerable,

how many of themM terminates.) The sequenciOr eachn we letp(i,n) be the maximum value af

Do, D1D,... iS an increasing computable sequen ar all pairs (i,r) (with giveni) that appear during
o?’ra%i,onzal numbers that convergesio n steps of the enumeration process. (If there are no

(b) Let p be any real number if0, 1] enumerable pairs, p(i, n) = —c.) Lemma is proved.

from below. Letp, < p; < p, < ... be anincreasin I .
W- L€ S Py S P2 ! SING Theorem 23 (@) Let M be a probabilistic machine
computable sequence that convergep.tConsider . )
without input that can produce natural numbers as

the following probabilistic machine. It treats random . )
bits by, b;, b, ... as binary digits of a real number outputs. Let pbe the probability of the event "M

terminates with output i”. Then sequencg, p;, ...
B =0.ybb,... is enumerable from below arg p, < 1.

(b) Let py, Py, P, - .. be asequence of non-negative
Wheni random bits are generated, we have lowe#al numbers that is enumerable from below, and
and upper bounds fg8 that differ by 2. If the up- 5, p, < 1. Then there exists a probabilistic machine
per boundp, turns out to be less thap, machine M that outputs i with probabilityfexactly p;.
terminates. It is easy to see that machine terminates
for given =0.byb, ... ifand only if B < p. Indeed,  Proof. Part (a) is similar to the previous argument:
if upper bound forB is less than lower bound fg, let p(i,n) be the probability thaM terminates with
thenf < p. On the other hand, B < p, thenf, < p; outputi after at mosh steps. Tham(i,0), p(i, 1),...
for somei (sincef, — B andp, —+ pasi —+ ). (End is a computable sequence of increasing rational num-
of proof.) bers that converges 1.
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(b) is more complicated. Recall the proof of thBrove that allp, are computable, i.e., for any given
previous theorem. There we had a “random rg&l”and for any rationak > 0 we can find (algorithmi-
and “termination region?0, p) wherep was the de- cally) an approximation tqg, with absolute error at
sired termination probability. (IB is in termination moste.
region, machine terminates.)

Now terminatiqn regio_n is divided into_ par_ts. FOA priori probability
each output valuethere is a part of termination re-
gion that corresponds toand has measung. Ma- A sequence of real numbepg, p;, p,,. .. is called an
chines terminates with outputif and only if 8 is enumerable from below semimeasifithere exists a
insideith part. probabilistic machine (without input) that produces

Let us consider first a special case when sequemaeith probability p;. (As we know, py, p;,... is a
p; is a computable sequence of rational numbeesjumerable from below semimeasure if and only if
Thenith part is a segment of lengty. These seg- p; is enumerable from below argip; < 1.)
ments are allocated from left to right according to The same definition can be used for real-valued
“requests”p,. One can say that each numlbeomes functions on strings instead of natural numbers
with requestp; for space allocation, and this requegprobabilistic machines produce strings; the sum
is granted. Since we can compute the endpoints op(x) is taken over all strings, etc.)
all segments, and have lower and upper boung3for
we are able to detect the point whBrwill for sure  Theorem 24 There exists a maximal enumerable
be insidei-th part. (And if 3 is insideith part, this from below semimeasure(for any enumerable from
will be detected at some step.) below semimeasure’rthere exists a constant ¢ such

In general case construction should be modifiefhat mi(i) < cm(i) for all i).

Now eachi come to space allocator many times with

increasing requests(i,0), p(i,1), p(i,2)... Each  proof. LetMy,M,,... be a sequence of all prob-
time the request is granted by allocating additionghjlistic machines without input. Le¥l be a ma-
segment of lengtp(i,n) — p(i,n—1). Note thatith chine that starts with choosing natural numbet
part is not contiguous: it consists of infinitely manysndom (so that any outcome has positive probabil-
segments separated by other parts. But for now i) and then emulateldl,. If p, is the probability that
not important. Machine terminates with inpwhen j js chosenmis the distribution on the outputs &
current lower and upper bounds fBrguarantee that andny is the distribution on the outputs ®., then

B is insideith part. The interior ofth part is a count- m(x) > pm (x) for anyx.

able union of intervals, and 8 is inside this open  The maximal enumerable from below semimea-
set, machine will terminate with outputTherefore, gre is callech priori probability. This name can be
termination probability is the measure of this set, i-%xplained as follows. Imagine that we have a black

equals lin p(i, n). box that can be turned on and prints a natural num-
Theorem is proved. ber. We have no information about what is inside.
Nevertheless we have an “a priori” upper bound for

Problems probability of the eventi“appears” (up to a constant

factor that depends on the box but notihin
1. Probabilistic machine without input terminates
for_ all possible coin tossr_es_(t.here is no s_mequenceF;)'IefiX decompression
coin tosses that leads to infinite computation). Prove
that the computation time is bounded by some cof-priory probability is related to a special complex-
stant (and machine can produce only finite numbigy measure called prefix complexity. The idea is that
of outputs). description is self-delimited; the decompression pro-
2. Let p, be the probability of termination withgram had to decide for itself where to stop reading
outputi for some probabilistic machine aryop;, = 1. input. There are different versions of machines with
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self-delimiting input; we choose one that is technRrefix complexity and length

cally convenient though may be not the most natural

oney g y Rs we know, K
A computable function whose inputs are bina

(X) < |x|+O(1) (consider identity
rmapping as decompression algorithm). But identity
r¥1apping is not a prefix one, so we cannot use this ar-

strings is called arefix function, if for any strin )
X alng it; refi aatpleaI:t zne Iof t’hle valuels%/x) alncgll gument to show thaP(x) < |x| + O(1), and in fact
pretixy this is not true, as the following theorem shows.

f(y) is undefined. (So a prefix function cannot be de-
fined both on a string and its prefix or continuationyheorem 26

Theorem 25 There exists a prefix decompressor D Z 2-KPX) < 1
that is optimal among prefix decompressors: for any X

computable prefix function’Dhere exists some con- proof. For any let py be the shortest description

stant ¢ such that for x (with respect to given prefix decompression al-
Ko (X) < Kpi(X) +c¢ gorithm). Then|py| = KP(x) and all stringspy are
incompatible. (We say that andqg are compatible if
for all x. pis a prefix ofq or vice versa.) Therefore, intervals

| Qp, are disjoint; they have measurel®! = 2-KPX),
so the sum does not exceed 1. (End of proof.)

If KP(x) < |x| +O(1) were true, theny, 2~
D(p0ly) = p(y) would be finite, but it is not the case (for each natural
numbem the sum over strings of lengthequals 1).

However, we can prove weaker lower bounds:

Proof. To prove similar theorem for plain Ko
mogorov complexity we used

wherep is a programp with doubled bits ang(y)
stands for the output of prograpwith inputy. This
D is a prefix function if and only if all programstheorem 27
compute prefix functions. We cannot algorithmically
distinguish between prefix and non-prefix programs ~ KP(X) < 2|x|+O(1);
(this is an undecidable problem). However, we may KP(x) < |x| + 2log|x| + O(1);
convert each program into a prefix one in such a way KP(x) < |X +log|x| + 2loglog|x| + O(1)
that prefix programs remain unchanged.
etc.
Let
D(p01y) = [p|(y) Proof. The first bound is obtained if we use

where[p](y) is computed as follows. We apply irP(X01) =x. (Itis easy to check thd? is prefix func-
parallel p to all inputs and get a sequence of paifn.) The second one uses
(y:,z) such thatp(yi) =1z. Select a “p_refix” SL_Jbse- D(bin([x)01X) = X
quence by deleting aly;, z) such thay; is a prefix of
y; ory; is a prefix ofy; for somej <i. This process where bir{|x|) is the binary representation of the
does not depend on To compute p](y), wait until length of stringx. Iterating this trick, we let
y appears in the selected subsequenceykey; for T
: D 1 =
a selected paify;,z), and then output,. (bin(| bin(jx)])01 bin(|x})x) = x
The functiony — [p](y) is a prefix function for any and get the third bound etc. (End of proof.)
p, and if programp computes a prefix function, then Let us note that prefix complexity does not in-

pI(y) = p(y). crease when we apply algorithmic transformation:
Therefore,D is an optimal prefix decompressiorkKP(A(x)) < KP(x) + O(1) for any algorithmA. Let
algorithm. Theorem is proved. us take optimal decompressor (for plain complexity)

Complexity with respect to an optimal prefix deasA. We conclude thakP(x) does not exceeldP(p)
compression algorithm is callegrefix complexity wherepis any description okx. Combining this with
and denoted bKP(x) [LV use K(x) while usingC(x) theorem above, we conclude thHaP(x) < 2K(x) +
for plain Kolmogorov complexity.] 0O(1), thatKP(x) < K(x) 4+ 2logK(x) +O(1), etc.
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A priory probability and prefix complexity Reformulation: . ..there is a computable sequence

of incompatible strings; such thatx,| = n,. (Indeed,

We have now t\.NO. measures for a string (or naturgh aligned segment of size2is I, for some stringk
number)x. A priori probability m(x) measures hOWfor lengthn.)

probable is to se& as an output of a probabilistic Corollary: .. KP(i) < n
machine. Prefix complexity measures how difficult (Indeed .cc.).n.sider ;dé.compressor that mage

is to specify a string in a seli-delimiting way. It turn.lc.l Since allx; are pairwise incompatible, it is a prefix
out that these two measures are closely related. function.) '

Now we return to the proof. Sinam is enumer-
able from above, there exists a functibh: (x,k) —
M(x,k) of two arguments with rational values that is
non-decreasing with respect to the second argument
such that limM(x, k) = m(x).

Theorem 28
KP(x) = —logm(x) + O(1)

Herem(x) is a priori probability; log stands for .
birfary Ioggr(i)trllm)pl 'P s 109 Let M'(x,k) be the smallest number in the se-

Proof. FunctionKP is enumerable from above;quence 1/2,1/4, 1/_8"" ,0 that is great?r than or
therefore,x — 2-KP(9 is enumerable from below,S9Ua OMOXK). Itis easy to see thaW’(x k) <

Also we know thaty, 2~ XPX) < 1, therefore 2KPX) 2M(x,k) and thatvl’ is monotone.

H “ H ” g _ !
is an enumerable from below semimeasure. There,-We call pair(x,k) “essential” itk = 0 orM'(x k) >

fore, 2-KPX < cm(x) and KP(X) > —logm(x) + M _(x,kf 1)._ The sum ofM’(x, k_) for _aII essentia_ll
O(1). To prove thaP(x) < —logm(x) + O(1), we pairs with givenx is at most twice bigger than its

need the following lemma about memory allocatiorl?.iggeSt term (begause each term is gt least twicg big-
Let the memory space be represented [@y]. ger than preceding one), and its biggest term is at

Each memory request asks for segment of IengmwOSt twice bigger tham(xk) for somek. Since

1,1/2,1/4,1/8, etc. that is properly aligned. Align- (k) g, m(x) and 5 m(x) < L we conclude that
sum of M’(x,k) for all essential pairgx, k) does not

ment means that for segment of lengt/i24 only 44

2% positions are allowed@, 27X, [27%, 2. 2], etc.). €¥¢€€9

Allocated segments should be disjoint (common end—Let (%, 4) be a computable sequence of all essen-

) : tial pairs. (We enumerate all pairs and select es-
points are allowed). Memory is never freed. P ( P

sential ones.) Leh be an integer such that2 =
Lemma. For each computable sequence of rﬁ/l !

= 5
quests 2" such thaty 2" < 1 there is a computable 0, k) /4. Thenzz st . .

. Therefore, KP(i) < n,. Sincex; is obtained from
sequence of allocations that grant all requests. !

Proof. We keep a list of free space divided int} by an algorithm, we conclude thlP(x) < +

: : . 8(1) for all i. For a givenx one can findi such
segments of size . Invariant relation: all seg-that —iand 20 > m /4, i.e.n < —logm(x) + 2
ments are properly aligned and have different Siztﬁ'eréfo_reKP(x) < —/Icr)gm(’x).Jr.,Ol(I) '
Initially there is one free segment of length 1. When Theorem is p?oved '
a new request of lengttv comes, we pick up the '
smallest segment of length at leagt This strat-

egy is sometimes called “best fit” strategy. (No

that if the free list contains only segments of lengifiye can defin&P(x,y) as prefix complexity of some
W/2,w/4,..., then the total free space is less th@n code[x, y] of pair (x,y). Different computable encod-

so it cannot happen by our assumption.) If smallagys give complexities that differ at most i3(1).
free segment of length at leasthas lengthw, we

simple allocate it (and delete from the free list). [Fheorem 29
it has lengthw’ > w, then we dividew into parts of

. ' KP(x,y) < KP(X) + KP(y) + O(1).
sizew,w, 2w, 4w, ..., W /4,w /2 and allocate the left (ey) () ) @)
w-segment putting all others in the free list, so the Note that now we don’t nee®(logn) term that
invariant is maintained. Lemma is proved. was needed for plain complexity.

{grefix complexity of a pair
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Let us give two proofs of this theorem using prefiRrefix complexity and randomness

functions and a priori probability. : :
prior p Y Theorem 30 A sequence X;X,... is Martin-Lof
(1) LetD be the optimal prefix decompressor use . . i
. - . Lo random if and only if there exists some constant ¢
in the definition ofKP. Consider a functio®’ such

such that
that

D'(pg) = [D(p), D(e)] KP(XpXy %y 1) >N —C

for all stringsp andq such thaD(p) andD(q) are de- for all n.

fined. Let us prove that this definition makes sense,

i.e., that it does not lead to conflicts. Conflict hap- Proof. We have to prove that sequengg;x, ...
pens if pg= p'q and D(p),D(q),D(p'),D(q) are is notrandom if and only if for anyc there exista
defined. But therp and p’ are prefixes of the samesuch that

string and are compatible, $(p) andD(p’) can-

not be defined at the same time unlgss p’ (which KP(XpXy - - %,_1) <n—c.

impliesq = ). Proof. (if)y A string u is called c-defective if
! - - H " -
Let us check thaD' is a prefix function. Indeed, if KP(u) < |u] — c. We have to prove that the set of

it is defined forpgandp’d andpqis a prefix ofp'q/, . .
then (as we have seep)and pf are compatible an df';lll sequences that hawedefective prefix for any,

. , : o . is an effectively null set. It is enough to prove that
(sinceD(p) andD(p) are definedp = p'. Thenqis the set of all sequences that hawdefective prefix

: , . )
?hgrszxmzfgr’nzomq) andD(q’) cannot be defined atcan be covered by intervals with total measuré. 2
' Note that the set of alt-defective strings is enu-

i .
D_ IS computaple (for giverx we try all decom- merable (sinceKP is enumerable from above). It
positionsx = pq in parallel). So we have a pref'xremains to show that the su@Z““' over all c-

algorithm D" such thatkp ([x,Y]) < KP(X) +KP(Y) " yefactiveu does not exceed 2. Indeed, ifu is c-
andKP(x,y) < KP(x) +KP(y) +O(1). (End of the yofective, then by definition 2 < 22 KPW . On

first proof.) o - the other hand, the sum of 8P over allu (and
(2) In terms of a priori probability we have toperefore over defective) does not exceed 1.
prove that (only-if) Let N be the set of all non-random se-
m([x,y]) = em(x)m(y) quencesN is an effectively null set. For each integer

N _ c consider a sequence of intervals
for some positives and allx andy. Consider the

functionm’ determined by the equation Quc0) Quic ) Qe

m ([x,y]) = m(x)m(y) that coverN and have total measure at most’2
Definition of effectively null set guarantees that such
(m' is zero for inputs that do not encode pairs @ sequence exists (and its elements can be effectively

strings). We have generated for ang).
For each c,i consider the integem(c,i) =
Y M@ =Y m(xy) = |u(c,i)| —c. For a givenc the sumy;2"(¢!) does
7 & not exceed 2° (because the sup, 2-1U¢1l does not
= 3 mxmy) =3 mx) y my) <1-1=1, exceed 2%. Therefore the suny; 2" over all
bl X v c andi does not exceed 1.

Consider a semimeasuké such thaM (u(c,i)) =
Functionn' is enumerable from below, saf is a 2-"(¢). Correction: It may happen thatc,i) coin-
semimeasure. Therefore, it is bounded by maxinttle for different pairs,i. So the correct definition
semimeasure (up to a constant factor). (End of trse
second proof.) M) = $ {27 | u(c,i) = x}.
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M is enumerable from below since and n are whereH(p,q) is Shannon entropy for two-valued
computable functions. Therefore, i is uni- distribution with probabilitiep andq:
versal semimeasurem(x) > eM(x), so KP(x) <
—logM(x) + O(1), and KP(u(c,i)) < n(c,i) + H(p,q) = —plogp—qgloga.
O(1) = |u(c,i)| —c+ O(1).
If some sequencegXx; X, ... belongs to the sét of

non-random sequences, then it has prefixes of fo —H(p.1—D) = —plodb—(1— b loa(1—
u(c,i) for anyc, and for these prefixes the differencg?p) (p.1=p) plogp—(1-plog(1=p).

Sincep+ g =1, we have function of one variable:

between length andP is not bounded. This function has a maximum at/2; it is easy to
(End of proof.) check using derivatives thet(p) = 1 whenp = 1/2
andH(p) < 1 whenp #1/2.
Strong law of large numbers revisited Corollary. For anyp > 1/2 there exist a constant

. , o < 1 and a constart such that
Let p,q be positive rational numbers such that-

g = 1. Consider the following semimeasure: a string KP(x) < an+2logn+c

x of lengthn with k ones and zeros has probability
for any stringx where frequency of 1's is at leapt

u(x) = % p“q Therefore, any infinite sequence of zeros and ones
n that has infinitely many prefixes with frequency of

where constantt is chosen in such a way thaPnes atleaSD> 1/2, is not Martin-Lof random. This
ch/nz < 1. Itis indeed a semimeasure (sum ovéives us a proof of a constructive version of Strong
all stringsx is at most 1, because sum pfx) over Law of Large Numbers:
all stringsx of given lengthnis 1/r?; pq' is a prob-
ability to get stringx if coin is biased and has proba
bilities p andq).

Therefore, we conclude thai(x) is bounded by  XgbX %, 1
a priori probability (up to a constant) and we get an l =
upper bound

Theorem 31 For any Martin-Lof random sequence
XX, X, ... Of zeros and ones

n—o0 n 2

Probl
KP(x) < 2logn+ k(—logp) +I(—logq) + O(1) roblems

1. LetD be a prefix decompression algorithm.
for fixed p and g and for any stringx of lengthn Give a direct construction of a probabilistic machine
that hask ones and zeros. Ifp=q=1/2, we that outputs with probability at least 2o ().
get the boundKP(x) < n+2logn+ O(1) that we al-  2.* Prove thaKP(x) < K(x) + KP(K(x))
ready know. The new bound is biased:pif>1/2 3. Prove that there exists an infinite sequence
andg < 1/2, then—logp < 1 and—logq > 1, so XoX; - .. and a constartt such that
we count ones with less weight than zeros, and new
bound can be better for strings that have many ones K (XX, ... %, 1) = n—2logn+c
and few zeros.

Assume thap > 1/2 and the fraction of ones i
is greater thap. Then our bound implies

for all n.

KP(x) < 2logn+ np(—logp) + ng(—logq) + O(1)

(more ones make our bound only tighter). It can be
rewritten as

KP(x) < nH(p,q) +2logn+ O(1)
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