
Compressing information

Almost everybody now is familiar with compress-
ing/decompressing programs such aszip, gzip,
ompress, arj, etc. A compressing program can
be applied to any file and produces the “compressed
version” of that file. If we are lucky, the compressed
version is much shorter than the original one. How-
ever, no information is lost: the decompression pro-
gram can be applied to the compressed version to get
the original file.

[Question: A software company advertises a com-
pressing program and claims that this program can
compressany sufficiently long file to at most 90% of
its original size. Would you buy this program?]

How compression works? A compression pro-
gram tries to find some regularities in a file which
allow to give a description of the file which is shorter
than the file itself; the decompression program re-
constructs the file using this description.

Kolmogorov complexity

The Kolmogorov complexity may be roughly de-
scribed as “the compressed size”. However, there are
some differences. The technical difference is that in-
stead of files (which are usually byte sequences) we
consider bit strings (sequences of zeros and ones).
The principal difference is that in the framework of
Kolmogorov complexity we have nocompressional-
gorithm and deal only with thedecompressionalgo-
rithm.

Here is the definition. LetU be any algorithm
whose inputs and outputs are binary strings. Using
U as a decompression algorithm, we define the com-
plexity KU(x) of a binary stringx with respect toU
as follows:

KU(x) = minfjyj jU(y) = xg
(herejyj denotes the length of a binary stringy). In
other words, the complexity ofx is defined as the
length of the shortest description ofx if each binary
stringy is considered as a description ofU(y)

Let us stress thatU(y) may be defined not for all
y’s and that there are no restrictions on time neces-
sary to computeU(y). Let us mention also that for
someU andx the set in the definition ofKU may be
empty; we assume that min(/0) = +∞.

Optimal decompression algorithm

The definition ofKU depends onU . For the trivial
decompression algorithmU(y) = y we haveKU(x) =jxj. One can try to find better decompression algo-
rithms, where “better” means “giving smaller com-
plexities”. However, the number of short descrip-
tions is limited: There is less than 2n strings of length
less thann. Therefore, for any fixed decompres-
sion algorithm the number of words whose complex-
ity is less thann does not exceed 2n�1. One may
conclude that there is no “optimal” decompression
algorithm because we can assign short descriptions
to some string only taking them away from other
strings. However, Kolmogorov made a simple but
crucial observation: there isasymptotically optimal
decompression algorithm.

Definition 1 An algorithm U is asymptotically not
worse than an algorithm V if KU(x)6 KV(x)+C for
come constant C and for all x.

Theorem 1 There exists an decompression algo-
rithm U which is asymptotically not worse than any
other algorithm V.

Such an algorithm is calledasymptotically optimal
one. The complexityKU with respect to an asymp-
totically optimalU is calledKolmogorov complexity.
The Kolmogorov complexity of a stringx is denoted
by K(x). (We assume that some asymptotically op-
timal decompression algorithm is fixed.) Of course,
Kolmogorov complexity is defined only up toO(1)
additive term.

The complexityK(x) can be interpreted as the
amount of information inx or the “compressed size”
of x.

The construction of optimal decompression
algorithm

The idea of the construction is used in the so-called
“self-extracting archives”. Assume that we want to
send a compressed version of some file to our friend,
but we are not sure he has the decompression pro-
gram. What to do? Of course, we can send the pro-
gram together with the compressed file. Or we can
append the compressed file to the end of the program

1

and get an executable file which will be applied to its
own contents during the execution).

The same simple trick is used to construct an uni-
versal decompression algorithmU . Having an input
string x, the algorithmU starts scanningx from left
to right until it founds some programp written in
a fixed programming language (say, Pascal) where
programs are self-delimiting (so the end of the pro-
gram can be determined uniquely). Then the rest of
x is used as an input forp, andU(x) is defined as the
output ofp.

WhyU is (asymptotically) optimal? Consider any
other decompression algorithmV. Let v be a Pascal
program which implementsV. Then

KU(x)6 KV(x)+ jvj
for any stringx. Indeed, ify isV-compressed version
of x (i.e.,V(y) = x), thenvy isU -compressed version
of x (i.e.,U(vy) = x) which is onlyjvj bits longer.

Basic properties of Kolmogorov complexity

(a) K(x)6 jxj+O(1)
(b) The number ofx’s such thatK(x)6 n is equal to

2n up to a bounded factor separated from zero.

(c) For any computable functionf there exists a
constantc such that

K(f (x)) 6 K(x)+c

(for anyx such thatf (x) is defined).

(d) Assume that for any naturaln a finite setVn

containing not more than 2n elements is given.
Assume that the relationx 2Vn is enumerable,
i.e., there is an algorithm which produces the
(possibly infinite) list of all pairshx;ni such that
x2Vn. Then there is a constantc such that all
elements ofVn have complexity at mostn+ c
(for anyn).

(e) The “typical” binary string of lengthn has com-
plexity close ton: there exists a constantc such
that for anyn more than 99% of all strings of
lengthn have complexity in betweenn� c and
n+c.

Proof. (a) The asymptotically optimal decompres-
sion algorithmU is not worse that the trivial decom-
pression algorithmV(y) = y.

(b) The number of suchx’s does not exceed the
number of their compressed versions, which is lim-
ited by the number of all binary strings of length not
exceedingn, which is bounded by 2n+1. On the other
hand, the number ofx’s such thatK(x)6 n is not less
than 2n�c (herec is the constant from (a)), because all
words of lengthn�c have complexity not exceeding
n.

(c) LetU be the optimal decompression algorithm
used in the definition ofK. CompareU with decom-
pression algorithmV : y 7! f (U(y)):

KU(f (x)) 6 KV(f (x))+O(1)6 KU(x)+O(1)
(anyU -compressed version ofx is aV-compressed
version of f (x)).

(d) We allocate strings of lengthn to be com-
pressed versions of strings inVn (when a new ele-
ment ofVn appears during the enumeration, the first
unused string of lengthn is allocated). This pro-
cedure provides a decompression algorithmW such
thatKW(x) 6 n for anyx2Vn.

(e) According to (a), all the 100% of strings of
length n have complexity not exceedingn+ c for
some c. It remains to mention that the number of
strings whose complexity is less thann� c does not
exceed the number of all strings of lengthn� c.
Therefore, forc = 7 the fraction of strings having
complexity less thann� c among all the strings of
lengthn does not exceed 1%.

Problems

1. A decompression algorithmD is chosen in such a
way thatKD(x) is even for any stringx. CouldD be
optimal?

2. The same question ifKD(x) is a power of 2 for
anyx.

3. LetD be the optimal decompression algorithm.
Does it guarantee thatD(D(x)) is also an optimal de-
compression algorithm?

4. LetD1;D2; : : : be a computable sequence of de-
compression algorithms. Prove thatK(x)6KDi

(x)+
2logi+O(1) for all i andx (the constant inO(1) does
not depend onx andi).

2

5.� Is it true thatK(xy) 6 K(x)+K(y)+O(1) for
all x andy?

Algorithmic properties of K

Theorem 2 The complexity function K is not com-
putable; moreover, any computable lower bound for
K is bounded from above.

Proof. Assume thatk is a computable lower bound
for K which is not bounded from above. Then for any
mwe can effectively find a stringx such thatK(x)>
m (indeed, we should computek(x) for all stringsx
until we find a stringx such thatk(x) > m). Now
consider the function

f (m) = the first stringx such thatk(x)> m

Here “first” means “first discovered” andm is a natu-
ral number written in binary notation. By definition,
K(f (m)) > m; on the other hand,f is a computable
function and thereforeK(f (m))6K(m)+O(1). But
K(m) 6 jmj+O(1), so we get thatm6 jmj+O(1)
which is impossible (the left-hand side is a natural
number, the right-hand side—the length of its binary
representation).

This proof is a formal version of the well-known
paradox about “the smallest natural number which
cannot be defined by twelve English words” (the
quoted sentence defines this number and contains ex-
actly twelve words).

Complexity and incompleteness

The argument used in the proof of the last theorem
may be used to obtain an interesting version of Gödel
incompleteness theorem. This application of com-
plexity theory was advertised by Chaitin.

Consider a formal theory (like formal arithmetic or
formal set theory). It may be represented as a (non-
terminating) algorithm which generates statements
of some fixed formal language; generated statements
are calledtheorems. Assume that the language is
rich enough to contain statements like “complexity
of 010100010 is bigger than 765” (for any bit string
and any natural number). The language of formal
arithmetic satisfies this condition as well as the lan-
guage of formal set theory. Let us assume also that
all theorems are true.

Theorem 3 There exists a constant c such that all
the theorems of type “K(x)> n” have n< c.

Indeed, assume that it is not true. Consider the
following algorithm α : For a given integerk, gen-
erate all the theorems and look for a theorem of type
K(x)> s for somex and somesgreater thank. When
such a theorem is found,x becomes the outputα(s)
of the algorithm. By our assumption,α(s) is defined
for all s.

All theorems are supposed to be true, therefore
α(s) is a bit string whose complexity is bigger thans.
As we have seen, this is impossible, sinceK(α(s))6
K(s) +O(1) 6 jsj+O(1) wherejsj is the length of
the binary representation ofs. (End of proof.)

(We may also use the statement of the preceding
theorem instead of repeating the proof.)

Such a constantc can be found explicitly if we fix
a formal theory and the optimal decompression algo-
rithm and for most natural choices does not exceed
— to give a rough estimate — 100;000. It leads to
a paradoxical situation: Toss a coin 106 times and
write down the bit string of length 1;000;000. Then
with overwhelming probability its complexity will
be bigger than 100;000 but this claim will be un-
provable in formal arithmetic or set theory. (The ex-
istence of true unprovable statement constitutes the
well-known Gödel incompleteness theorem.)

Algorithmic properties of K (continued)

Theorem 4 The function K(x) is “enumerable from
above”, i.e., K(x) can be represented aslim

n!∞
k(x;n)

where k(x;n) is a total computable function with in-
teger values and

k(x;0) > k(x;1) > k(x;2) > : : :
Note that all values are integers, so for anyx there

exist someN such thatk(x;n) = K(x) for anyn> N.
Proof. Letk(x;n) be the complexity ofx if we re-

strict byn the computation time used for decompres-
sion. In other words, letU be the optimal decom-
pression algorithm used in the definition ofK. Then
k(x;n) is the minimaljyj for all y such thatU(y) = x
and the computation time forU(y) does not exceed
n. (End of proof.)

3

(Technical correction: it can happen (for smalln)
that our definition givesk(x;n) = ∞. In this case we
let k(x;n) = jxj+ c wherec is chosen in such a way
thatK(x)6 jxj+c for anyx.)

Therefore, any optimal decompression algorithm
U is not everywhere defined (otherwiseKU would
be computable). It sounds like a paradox: IfU(x)
is undefined for somex we can extendU on x and
let U(x) = y for somey; after thatKU(y) becomes
smaller. However, it can be done for onex or for
finite number ofx’s but we cannot makeU defined
everywhere and keepU optimal at the same time.

An encodings-free definition of complexity

The following theorem provides an “encodings-free”
definition of Kolmogorov complexity as a minimal
functionK such thatK is enumerable from above andjfx j K(x)< ngj= O(2n).
Theorem 5 Let K0(x) be any enumerable from
above function such thatjfx j K0(x) < ngj 6C2n for
some constant C and for all n. Then there exists a
constant c such that K(x)6 K0(x)+c for all x.

Proof. This theorem is a reformulation of one
of the statements above. LetVn be the set of all
strings such thatK0(x) < n. The binary relation
x 2 Vn (betweenx and n) is enumerable. Indeed,
K0(x) = lim k0(x;m) wherek0 is a total computable
function that is decreasing as a function ofm. Com-
putek0(x;m) for all x andm in parallel. If it happens
that k(x;m) < n for somex and m, add x into the
enumeration ofVn. (The monotonicity ofk0 guaran-
tees that in this caseK0(x)< n.) Since limk0(x;m) =
K0(x), any element ofVn will ultimately appear.

By our assumptionjVnj 6C2n. Therefore we can
allocate strings of lengthn+ c (wherec= dlog2Ce)
as descriptions of elements ofVn and will not run
out of descriptions. So we get a decompression al-
gorithmD such thatKD(x) 6 n+c for x2Vn. Since
K0(x) < n impliesKD(x) 6 n+c for anyx andn, we
haveKD(x)6K0(x)+1+c andK(x)6 K0(x)+c for
some otherc and anyx. (End of proof.)

Axioms of complexity

It would be nice to have a list of “axioms” for Kol-
mogorov complexity that determine it uniquely (up

to a bounded term). The following list shows one of
the possibilities.

A1. (Conservation of information) For any com-
putable (partial) functionf there exists a con-
stantc such thatK(f (x)) 6 K(x) + c for all x
such thatf (x) is defined.

A2. (Enumerability from above) FunctionK is enu-
merable from above.

A3. (Units of measure) There are constantsc andC
such that the cardinality of setfx j K(x) < ng
lies in betweenc �2n andC �2n.

Theorem 6 Any functionK that satisfies A1–A3 dif-
fers from K only by O(1) additive term.

Proof. Axioms A2 and A3 guarantee thatK(x) 6K(x)+O(1) (hereK is any function satisfying the ax-
ioms, whileK is Kolmogorov complexity). We need
to prove thatK(x) 6 K(x)+O(1).

First, we prove thatK(x) 6 jxj+O(1).
SinceK is enumerable from above, we can gener-

ate stringsx such thatK(x) < n. Axiom A3 guaran-
tees that we have at least 2n�d strings with this prop-
erty for somed (which we assume to be integer).
Let us stop generating them when we have already
2n�d stringsx such thatK(x) < n; let Sn be the set of
strings generated in this way. The list of all elements
in Sn can be obtained by an algorithm that hasn as
input; jSnj= 2n�d andK(x) < n for anyx2 Sn.

We may assume thatS1 � S2 � S3 � : : : (if not,
replace some elements ofSi by elements ofSi�1 etc.).
LetTi be equal toSi+1nSi . ThenTi has 2n�d elements
and allTi are disjoint.

Now consider a computable functionf that maps
elements ofTn onto strings of lengthn� d. Ax-
iom A1 guarantees then thatK(x) = n+O(1) for any
string of lengthn�d. Therefore,K(x) 6 jxj+O(1)
for all x.

Let D be the optimal decompression algorithm.
We apply A1 to functionD. If p is a shortest de-
scription for x, then D(x) = p, thereforeK(x) =K(D(p)) 6 K(p) + O(1) 6 jpj + O(1) = K(x) +
O(1):

4

Problems

1. If f : N ! N is a computable bijection, then
K(f (x)) = K(x) +O(1). Is it true if f is a (com-
putable) injection (i.e.,f (x) 6= f (y) for x 6= y)? Is it
true if f is a surjection (for anyy there is anx such
that f (x) = y)?

2. Prove thatK(x) is “continuous” in the fol-
lowing sense:K(x0) = K(x) + O(1) and K(x1) =
K(x)+O(1).

3. Is it true thatK(x) changes at most by a constant
if we change the first bit inx? last bit inx? any bit in
x?

4. Prove thatK(xbin(K(x))) (a stringx is concate-
nated with the binary representation of its complexity
K(x)) equalsK(x)+O(1).
Complexity of pairs

Let

x;y 7! [x;y℄
be any computable function which maps pairs of
strings into strings and is an injection (i.e.,[x;y℄ 6=[x0;y0℄ if x 6= x0 or y 6= y0). We define complexity
K(x;y) of pair of strings asK([x;y℄).

Note thatK(x;y) changes only byO(1)-term if
we consider another computable “pairing function”:
If [x;y℄1 and [x;y℄2 are two pairing functions, then[x;y℄1 can be obtained from[x;y℄2 by an algorithm,
soK([x;y℄1)6 K([x;y℄2)+O(1).

Note that

K(x;y) > K(x) and K(x;y) > K(y)
(indeed, there are computable functions that produce
x andy from [x;y℄).

For similar reasons, K(x;y) = K(y;x) and
K(x;x) = K(x).

We can defineK(x;y;z), K(x;y;z; t) etc. in a sim-
ilar way: K(x;y;z) = K([x; [y;z℄℄) (or K(x;y;z) =
K([[x;y℄;z℄), the difference isO(1)).
Theorem 7

K(x;y) 6 K(x)+2logK(x)+K(y)+O(1):

Proof. Byx we denote binary stringx with all bits
doubled. LetD be the optimal decompression algo-
rithm. Consider the following decompression algo-
rithm D2:

bin(jpj)01pq 7! [D(p);D(q)℄:
Note that D2 is well defined, because the input
string bin(jpj)01pq can be disassembled into parts
uniquely: we know where 01 is, so we can findjpj
and then separatep andq.

If p is the shortest description forx andq is the
shortest description fory, thenD(p) = x, D(q) = y
andD2(bin(p)01pq) = [x;y℄. Therefore

KD2
([x;y℄) 6 jpj+2logjpj+ jqj+O(1);

herejpj = K(x) and jqj = K(y) by our assumption.
(End of proof.)

Of course,p andq can be interchanged: we can
replace logK(p) by logK(q).
Conditional complexity

We now want to define conditional complexity ofx
when y is known. Imagine that you want to send
string x to your friend using as few bits as possible.
If she already knows some stringy which is similar
to x, this can be used.

Here is the definition. Lethp;yi 7! D(p;y) be a
computable function of two arguments. We define
conditional complexityKD(xjy) of x wheny is known
as

KD(xjy) = minfjpj j D(p;y) = xg:
As usual, min(?) = +∞. The functionD is called
“conditional decompressing function” or “condi-
tional description mode”:p is the description (com-
pressed version) ofxwheny is known. (To getx from
p the decompressing algorithmD needsy.)

Theorem 8 There exists an optimal conditional de-
compressing function D such that for any other con-
ditional decompressing function D0 there exists a
constant c such that

KD(xjy) 6 KD0(xjy)+c

for any strings x and y.

5

Proof is similar to the proof of unconditional
theorem. Consider some programming language
where programs allow two input strings and are self-
delimiting. Then let

D(uv;y) = the output of programu applied tov;y.

Algorithm D finds a (self-delimiting) programu as a
prefix of its first argument and then appliesu to the
rest of the first argument and the second argument.

Let D0 be any other conditional decompressing
function. Being computable, it has some programu.
Then

KD(xjy) 6 KD0(xjy)+ juj:
Indeed, let p be the shortest string such that
D0(p;y) = x (therefore, jpj = KD0(xjy)). Then
D(up;y) = x, thereforeKD(xjy) 6 jupj = jpj+ juj =
KD0(xjy)+ juj. (End of proof.)

We fix some optimal conditional decompressing
function D and omit indexD in KD(xjy). Beware
thatK(xjy) is defined only “up toO(1)-term”.

Theorem 9 (a) K(xjy) 6 K(x)+O(1)
(b) For any fixed y there exists some constant c

such that jK(x)�K(xjy)j 6 c:
This theorem says that conditional complexity is

smaller than unconditional one but for any fixed con-
dition the difference is limited by a constant (depend-
ing on the condition).

Proof. (a) IfD0 is an (unconditional) decompress-
ing algorithm, we can consider a conditional decom-
pressing algorithm

D(p;y) = D0(p)
that ignores conditions. ThenKD(xjy) = KD0

(x).
(b) On the other hand, ifD is a conditional decom-

pressing algorithm, for any fixedy we can consider
an (unconditional) decompressing algorithmDy de-
fined as

Dy(p) = D(p;y):
Then KDy

(x) = KD(xjy) for given y and for all x.
And K(x)6KDy

(x)+O(1) (whereO(1)-constant de-
pends ony). (End of proof.)

Pair complexity and conditional complexity

Theorem 10

K(x;y) = K(xjy)+K(y)+O(logK(x)+ logK(y)):
Proof. Let us prove first that

K(x;y) 6 K(xjy)+K(y)+O(logK(x)+ logK(y)):
We do it as before: IfD is an optimal decompressing
function (for unconditional complexity) andD2 is an
optimal conditional decompressing function, let

D0(bin(p)01pq) = [D2(p;D(q));D(q)℄:
In other terms, to get the description of pairx;y we
concatenate the shortest description ofy (denoted by
q) with the shortest description ofx wheny is known
(denoted byp). (Special precautions are used to
guarantee the unique decomposition.) Indeed, in this
caseD(q) = yandD2(p;D(q)) =D2(p;y) = x, there-
fore

KD0([x;y℄) 6 jpj+2logjpj+ jqj+O(1)66 K(xjy)+K(y)+O(logK(x)+ logK(y)):
The reverse inequality is much more interesting.

Let us explain the idea of the proof. This inequality
is a translation of a simple combinatorial statement.
Let A be a finite set of pairs of strings. ByjAj we
denote the cardinality ofA. For any stringy we con-
sider the setAy defined as

Ay = fxjhx;yi 2 Ag:
The cardinalityjAyj depends ony (and is equal to 0
for all y outside some finite set). Evidently,

∑
y
jAyj= jAj:

Therefore, the number ofy such thatjAyj is big, is
limited: jfyj jAyj> cgj 6 jAj=c

for anyc.
Now we return to complexities. Letx andy be two

strings. The inequalityK(xjy) +K(y) 6 K(x;y) +
O(logK(x)+ logK(y)) can be informally read as fol-
lows: if K(x;y) < m+n, then eitherK(xjy) < m or

6

K(y) < n up to logarithmic terms. Why it is the
case? Consider a setA of all pairs hx;yi such that
K(x;y) < m+n. There is at most 2m+n pairs inA.
The given pairhx;yi belongs toA. Consider the set
Ay. It is either “small” (contains at most 2m elements)
or big. If Ay is small (jAyj 6 2m), thenx can be de-
scribed (wheny is known) by its ordinal number in
Ay, which requiresm bits, andK(xjy) does not ex-
ceedm (plus some administrative overhead). IfAy

is big, theny belongs to a (rather small) setY of all
stringsy such thatAy is big. The number of strings
y such thatjAyj > 2m does not exceedjAj=2m = 2n.
Therefore,y can be (unconditionally) described by
its ordinal number inY which requiresn bits (plus
overhead of logarithmic size).

Let us repeat this more formally. LetK(x;y) = a.
Consider the setA of all pairshx;yi that have com-
plexity at mosta. Let b= blog2 jAyj
. To describex
wheny is known we need to specifya;b and the or-
dinal number ofx in Ay (this set can be enumerated
effectively if a andb are known sinceK is enumer-
able from above). This ordinal number hasb+O(1)
bits and, therefore,K(xjy) 6 b+O(loga+ logb).

On the other hand, the set of ally0 such thatjAy0 j > 2b consists of at mostjAj=2b = O(2a�b) el-
ements and can be enumerated whena and b are
known. Oury belongs to this set, therefore,y can be
described bya, b andy’s ordinal number andK(y)6
a�b+O(loga+ logb). Therefore,K(y)+K(xjy)6
a+O(loga+ logb). (End of proof.)

Problems

1. Define K(x;y;z) as K([[x;y℄; [x;z℄℄). Is this
definition equivalent to a standard one (up toO(1)-
term)?

2. Prove that K(x;y) 6 K(x) + logK(x) +
2log logK(x)+K(y)+O(1). (Hint: repeat the trick
with encoded length.)

3. Let f be a computable function of two ar-
guments. Prove thatK(f (x;y)jy) 6 K(xjy) +O(1)
whereO(1)-constant depends onf but not onxandy.

4��. Prove thatK(xjK(x)) = K(x)+O(1).

Applications of conditional complexity

Theorem 11 If x;y;z are strings of length at most n,
then

2K(x;y;z) 6 K(x;y)+K(x;z)+K(y;z)+O(logn)
Proof. The statement does not mention conditional

complexity; however, the proof uses it. Recall that
(up toO(logn)-terms) we have

K(x;y;z)�K(x;y) = K(zjx;y)
and

K(x;y;z)�K(x;z) = K(yjx;z)
Therefore, our inequality can be rewritten as

K(zjx;y)+K(yjx;z) 6 K(y;z);
and the right-hand side is (up toO(logn)) equal to
K(zjy) + K(y): It remains to note thatK(zjx;y) 6
K(zjy) (the more we know, the smaller is the com-
plexity) andK(yjx;z) 6 K(y). (End of proof.)

Incompressible strings

The string x of length n is called incompressible
if K(xjn) > n. More liberal definition: x is c-
incompressible, ifK(xjn)> n�c.

Theorem 12 For each n there exist incompressible
strings of length n. For each n and each c the frac-
tion of c-incompressible strings (among all strings of
length n) is greater than1�2�c.

Proof. The number of descriptions of length less
thann�c is 1+2+4+ : : :+2n�c�1 < 2n�c. There-
fore, the fraction ofc-compressible strings is less
than 2n�c=2n = 2�c. (End of proof.)

Computability and complexity of initial seg-
ments

Theorem 13 An infinite sequence x= x1x2 : : : of
zeros and ones is computable if and only if
K(x1 : : :xnjn) = O(1).

7

Proof. If x is computable, then the initial seg-
ment x1 : : :xn is a computable function ofn, and
K(f (n)jn) = O(1) for any computable function ofn.

Another direction is much more complicated. We
provide this proof since is uses some methods typi-
cal for the general theory of computation (recursion
theory).

Now assume thatK(x1 : : :xnjn)< c for somec and
all n. We have to prove that the sequencex1x2 : : :
is computable. A string of lengthn is called “sim-
ple” if K(xjn)< c. There is at most 2c simple strings
of any given length. The set of all simple strings is
enumerable (we can generate them trying all short
descriptions in parallel for alln).

We call a string “good” if all its prefixes (in-
cluding the string itself) are simple. The set of all
good strings is also enumerable. (Enumerating sim-
ple strings, we can select strings whose prefixes are
found to be simple.)

Good strings form a subtree in full binary tree.
(Full binary tree is a set of all binary strings. A sub-
setT of full binary tree is a subtree if all prefixes of
any stringt 2 T are elements ofT.)

The sequencex1x2 : : : is an infinite branch of the
subtree of good strings. Note that this subtree has at
most 2c infinite branches because each level has at
most 2c vertices.

Imagine for a while that subtree of good strings
is decidable. (In fact, it is not the case, and we will
need additional construction.) Then we can apply the
following

Lemma 1. If a decidable subtree has only finite
number of infinite branches, all these branches are
computable.

Proof. If two branches in a tree are different then
they diverge at some point and never meet again.
Consider a levelN where all infinite branches di-
verge. It is enough to show that for each branch there
is an algorithm that chooses the direction of branch
(left or right, i.e., 0 or 1) above levelN. Since we are
above levelN, the direction is determined uniquely:
if we choose a wrong direction, no infinite branches
are possible. Compactness argument says that in this
case a subtree rooted in the “wrong” vertex will be
finite. This fact can be discovered at some point (re-
call that subtree is assumed to be decidable). There-
fore, at each level we can wait until one of two possi-

ble directions is closed, and chose another one. This
algorithm works only above levelN, but the initial
segment can be a compiled-in constant. (Lemma is
proved.)

Application of Lemma 1 is made possible by the
following

Lemma 2. LetG be a subtree of good strings.
Then there exists a decidable subtreeG0 � G that
contains all infinite branches ofG.

Proof. For eachn let g(n) be the number of
good strings of lengthn. Consider an integerg =
limsupg(n). In other words, there exist infinitely
many n such thatg(n) = g but only finitely many
n such thatg(n) > g. We choose someN such
thatg(n) 6 g for all n> N and consider only levels
N;N+1; : : :

A level n> N is called complete ifg(n) = g. By
our assumption there are infinitely many complete
levels. On the other hand, the set of all complete
levels is enumerable. Therefore, we can construct
a computable increasing sequencen1 < n2 < :: : of
complete levels. (To findni+1, we enumerate com-
plete levels until we findni+1 > ni .)

There is an algorithm that for eachi finds the list
of all good strings of lengthni . (It waits until g
goods strings of lengthni appear) Let us call all those
strings (for alli) “selected”. The set of all selected
strings is decidable. If a string of lengthn j is se-
lected, then its prefix of lengthni (for i < j) is se-
lected. It is easy to see now that selected strings
and their prefixes form a decidable subtreeG0 that
includes any infinite branch ofG.

Lemma 2 and theorem 13 are proved.
For computable sequencex1x2 : : : we have

K(x1 : : :xnjn) = O(1) and thereforeK(x1 : : :xn) 6
logn+ O(1). One can prove that the inequality
also implies computability (see Problems). However,
the inequalityK(x1 : : :xn) = O(logn) does not imply
computability ofx1x2 : : : .
Theorem 14 Let A be any enumerable set of natu-
ral numbers. Then for its characteristic sequence
a0a1a2 : : : (ai = 1 if i 2 A and ai = 0 otherwise) we
have

K(a0a1 : : :an) = O(logn)
Proof. To specifya0 : : :an it is enough to specify

two numbers. The first isn and the second is the

8

number of 1’s ina0 : : :an, i.e., the cardinality of the
setA\ [0;n℄. Indeed, for a givenn, we can enumerate
this set, and since we know its cardinality, we know
where to stop the enumeration. Both of them use
O(logn) bits. (End of proof.)

This theorem shows that initial segments of char-
acteristic sequences of enumerable sets are far from
being incompressible.

As we know that for eachn there exists an incom-
pressible sequence of lengthn, it is natural to ask
whether there is an infinite sequencex1x2 : : : such
that its initial segment of any lengthn is incompress-
ible (or at leastc-incompressible for somec that does
not depend onn). The following theorem shows that
it is not the case.

Theorem 15 There exists c such that for any se-
quence x1x2x2 : : : there are infinitely many n such
that

K(x1x2 : : :xn)6 n� logn+c

Proof. The main reason why it is the case is that
the series∑(1=n) diverges. It makes possible to se-
lect the setsA1;A2; : : : with following properties:

(1) eachAi consists of strings of lengthi;
(2) jAij6 2i=i;
(3) for any infinite sequencex1x2 : : : there are in-

finitely manyi such thatx1 : : :xi 2 Ai.
(4) the setA= [iAi is decidable.
Indeed, starting with someAi , we cover about(1=i)-fraction of the whole spaceΩ of all infinite se-

quences. Then we can chooseAi+1 to cover other
part ofΩ, and so on until we cover allΩ (it happens
because 1=i +1=(i +1)+ : : :+1= j goes to infinity).
Then we can start again, providing a second layer of
covering, etc.

It is easy to see thatjA1j+ jA2j+ : : : + jAij =
O(2i=i): Each term is almost twice as big as the
preceding one, therefore, the sum isO(last term).
Therefore, if we write down in lexicographic order-
ing all the elements ofA1;A2; : : :, any elementx of Ai
will have numberO(2i=i). This number determines
x uniquely and therefore for anyx2 Ai we have

K(x)6 log(O(2i)=i) = i� logi +O(1):
. (End of proof.)

Problems

1. True or false: for any computable func-
tion f there exists a constantc such thatK(xjy) 6
K(xj f (y))+c for all x;y such thatf (y) is defined.

2. Prove thatK(x1 : : :xnjn) 6 logn+O(1) for any
characteristic sequence of an enumerable set.

3�. Prove that there exists a sequencex1x2 : : : such
thatK(x1 : : :xn) > n�2logn� c for somec and for
all n.

4�. Prove that ifK(x1 : : :xn)6 logn+c for somec
and alln, then the sequencex1x2 : : : is computable.

Incompressibility and lower bounds

We apply Kolmogorov complexity to obtain lower
bound for the following problem. LetM be a Tur-
ing machine (with one tape) that duplicates its in-
put: for any stringx on the tape (with blanks on
the right ofx) it producesxx. We prove thatM re-
quires timeΩ(n2) if x is an incompressible string of
length n. The idea is simple: the head of TM can
carry finite number of bits with limited speed, there-
fore the speed of information transfer (measured in
bit�cell=step) is bounded and to moven bits by n
cells we needΩ(n2) steps.

Theorem 16 Let M be any Turing machine. Then
there exists some constant c with the following prop-
erty: for any k, any l> k and any t, if cells ci
with i > k are initially empty, then the complexity
of the string cl+1cl+2 : : : after t steps is bounded by
ct=(l �k)+O(logl + logt).

Roughly speaking, if we have to move informa-
tion at least byl �k cells, then we can bring at most
ct=(l�k) bits into the area where there was no infor-
mation at the beginning.

One technical detail: stringsl+1cl+2 : : : denotes
the visited part of the tape.

This theorem can be used to get a lower bound
for duplication. Letx be an incompressible string
of length n. We apply duplicating machine to the
string 0nx (with n zeros beforex). After the machine
terminates int steps, the tape is 0nx0nx. Let k = 2n
and l = 3n. We can apply our theorem and getn6
K(x)6 ct=n+O(logn+ logt). Therefore,t = Ω(n2)
(note that logt < 2logn unlesst > n2).

9

Proof. Letu be any point on the tape betweenk
and l . A police officer records what TM carries is
its head while crossing pointu from left to right (but
not the time of crossing). The recorded sequenceTu

of TM-states is calledtrace at point u. Each state
occupiesO(1) bits since the set of states is finite.
This trace together withu, k, l and the number of
steps after the last crossing (at mostt) is enough
to reconstruct the contents ofcl+1cl+2 : : : at the mo-
ment t. (Indeed, we can simulate the behaviour of
M on the right ofu.) Therefore,K(cl+1cl+2 : : :) 6
cNu +O(logl) +O(logt) whereNu is the length of
Tu, i.e., the number of crossings atu.

Now we add these inequalities for allu = k;k+
1; : : : ; l . The sum ofNu is bounded byt (since only
one crossing is possible at any given time). So(l �k)K(cl+1cl+2 : : :)66 t +(l �k)[O(logl)+O(logt)℄
and theorem is proved.

The original result (one of the first lower bounds
for time complexity) was not for duplication but
for palindrome recognition: Any TM that checks
whether its input is a palindrome (likeabadaba)
needsΩ(n2) steps for some inputs of lengthn. We
can prove it by incompressibility method.

Proof sketch: Consider a palindromexxR of length
2n. Let u be any position in the first half ofxxR:
x = yz and length ofy is u. Then the traceTu de-
terminesy uniquely if we record states of TM while
crossing checkpointu in both directions. Indeed, if
strings with differenty have the same trace, we can
mix the left part of one computation with the right
part of another one and get a contradiction. Taking
all u betweenjxj=4 and jxj=2, we get the required
bound.

Incompressibility and prime numbers

Let us prove that there are infinitely many prime
numbers. Imagine that there are onlyn prime num-
bersp1; : : : ; pn. Then each integerN can be factored
as

N = pk1
1

pk2
2
: : : pkn

n :
where allki do not exceed logN. Therefore, each
N can be described byn integersk1; : : : ;kn andki 6

logN for any i, so the total number of bits needed
to describeN is O(nlog logN). But integerN corre-
sponds to a string of length logN, so we get a contra-
diction if this string is incompressible.

Incompressible matrices

Consider an incompressible Boolean matrix of size
n� n. Let us prove that its rank (over fieldF2 =f0;1g) is greater thann=2.

Indeed, imagine that its rank is at mostn=2. Then
we can selectn=2 columns of the matrix such that
any other column is a linear combination of se-
lected ones. Letk1; : : : ;kn=2 be the numbers of these
columns.

Then instead of specifying all bits of the matrix we
can specify:

(1) the numbersk1; : : : ;kn (O(nlogn) bits)
(2) bits in the selected columns (n2=2 bits)
(3) n2=4 bits that are coefficients in linear com-

binations of selected columns needed to get any
non-selected column, (n=2 bits for any ofn=2 non-
selected columns).

Therefore, we get 0:75n2 +O(nlogn) bits instead
of n2 needed for incompressible matrix.

Of course, it is trivial to find an�n Boolean ma-
trix of full rank, so why this construction is useful?
In fact, the same idea shows that incompressible ma-
trix has minors of big rank (see LV for details).

Incompressible graphs

Any graph withn vertices can be represented by a bit
string of lengthn(n�1)=2. We call a graphincom-
pressibleif this string is incompressible.

Let us show that incompressible graph is con-
nected. Indeed, imagine that it can be divided
into two connected components, and one of them
(smaller) hask vertices (k < n=2). Then the graph
can be described by

(1) numbers ofk vertices in this component (k logn
bits)

(2) k(k�1)=2 and(n�k)(n�k�1)=2 bits needed
to describe both components.

In (2) (compared to the full description of the
graph) we savek(n� k) bits for edges that go from
one component to another one, andk(n� k) >
O(k logn) for big enoughn (recall thatk< n=2).

10

Incompressible tournaments

Let M be a tournament, i.e., a complete directed
graph withn vertices (for any two different verticesi
and j there exists either edgei ! j or j ! i but not
both).

A tournament istransitive if vertices are linearly
ordered by the relationi ! j.

Lemma. Each tournament of size 2k�1 has a tran-
sitive sub-tournament of sizek.

Proof. (Induction byn) Let x be any vertex.
Then 2k � 2 remaining vertices are divided into
two groups: “smaller” thanx and “greater” thanx.
At least one of the groups has 2k�1 � 1 elements
and contains transitive sub-tournament of sizek�1.
Adding x to it, we get a transitive sub-tournament of
sizek.

This lemma gives a lower bound on the size of
graph that does not include transitivek-tournament.

The incompressibility method provides an upper
bound: an incompressible tournament withn vertices
may have transitive sub-tournaments ofO(logn) size
only.

A tournament withn vertices is represented by
n(n� 1)=2 bits. If a tournamentR with n vertices
has transitive sub-tournamentR0 of sizek, thenRcan
be described by:

(1) numbers of vertices inR0 listed according to
linearR0-ordering (k logn bits)

(2) remaining bits in the description ofR (except
for bits that describe relations insideR0)

In (2) we savek(k�1)=2 bits, and in (1) we use
k logn additional bits. Since we have to lose more
than we win,k= O(logn).
Discussion

All these results can be considered as direct refor-
mulation of counting (or probabilistic arguments).
Moreover, counting gives us better bounds without
O()-notation.

But complexity arguments provide an important
heuristics: We want to prove that random objectx
has some property and note that ifx does not have it,
thenx has some regularities that can be used to give
a short description forx.

Problems

1. Let x be an incompressible string of lengthn
and lety be a longest substring ofx that contains only
zeros. Prove thatjyj= O(logn)

2�. Prove thatjyj= Ω(logn).
3. (LV, 6.3.1) Letw(n) be the largest integer such

that for each tournamentT on N = f1; : : : ;ng there
exist disjoint setsA andB, each of cardinalityw(n),
such thatA�B � T. Prove thatw(n) 6 2dlogne.
(Hint: add 2w(n)dlogne bit to describe nodes, and
savew(n)2 bits on edges. Source: P. Erdös and
J. Spencer, Probabilistic methods in combinatorics,
Academic Press, 1974.)

k- and k+1-head automata

A k-head finite automaton hask (numbered) heads
that scan from left to right an input string (which is
the same for all heads). Automaton has a finite num-
ber of states. Transition table specifies an action for
each state and eachk-tuple of input symbols. Action
includes new state and the set of heads to be moved.
(We may assume that at least one head should be
moved; otherwise we can precompute the transition.)

One of the states is called aninitial state. Some
states areacceptingstates. An automatonA accepts
stringx if A comes to an accepting state after reading
x starting from the initial state. (Readingx is finished
when all heads leavex. We require that this happens
for any stringx.)

For k = 1 we get the standard notion of finite au-
tomaton.

Example: A 2-head automaton can recognize
strings of formx#x (wherex is a binary string). The
first head moves to #-symbol and then both heads
move and check whether they see the same symbols.

It is well known that this language cannot be rec-
ognized by 1-head finite automaton, so 2-head au-
tomata are more powerful that 1-head ones.

Our goal is to prove separation for biggerk.

Theorem 17 For any k there exists a language that
can be recognized by(k+1)-head automaton but not
by k-head one.

11

The language is similar to the language considered
above. For example, fork = 2 we consider a lan-
guage consisting of strings

x#y#z#z#y#x

Using three heads, we can easily recognize this lan-
guage. Indeed, the first head moves from left to right
and ignores the left part of the input string. While
it reaches (right)y, another head is used to check
whethery on the left coincides withy on the right.
(The first head waits till the second one crossesx and
reachesy.) When the first head then reachesx, the
third head is used to checkx. After that the first head
is of no use, but second and third heads can be used
to checkz.

The same approach shows that an automaton with
k heads can recognize languageLN that consists of
strings

x1#x2#: : :#xN#xN#: : :#x2#x1

for N = (k�1)+(k�2)+ : : :+1= k(k�1)=2 (and
for all smallerN).

Let us prove now thatk-head automatonA cannot
recognizeLN if N is bigger thank(k�1)=2. In par-
ticular, no automaton with 2 heads recognizesL3 and
evenL2)

Let us fix a string

x= x1#x2#: : :#xN#xN#: : :#x2#x1

where allxi have the same lengthl and the string
x1x2 : : :xN is an incompressible string (of lengthNl).
Stringx is accepted byA. In our argument the follow-
ing notion is crucial: We say that (unordered) pair of
heads “covers”xm if at some point one head is inside
the left instance ofxm while another head is inside
the right instance.

After that the right head can visit only strings
xm�1; : : : ;x1 and left head cannot visit left counter-
parts of those strings (they are on the left of it).
Therefore, only onexm can be covered by any given
pair of heads.

In our example we had three heads (and, therefore,
three pairs of heads) and each stringx1;x2;x3 was
covered by one pair.

The number of pairs isk(k� 1)=2 for k heads.
Therefore there exists somexm that was not covered

at all during the computation. We show that condi-
tional complexity ofxm when all otherxi are known
does not exceedO(log l). (The constant here depends
on N and A, but not onl .) This contradicts to the
incompressibility ofx1 : : :xN (we can replacexm by
self-delimiting description ofxm when otherxi are
known and get a shorter description of incompress-
ible string).

The bound for the conditional complexity ofxm

can be obtained in the following way. During the ac-
cepting computation we take special care of the pe-
riods when one of the heads is insidexm (any of two
copies). We call there periods critical sections. Note
that each critical section is either L-critical (some
heads are inside left copy ofxm) or R-critical but not
both (no pair of heads coversxm). Critical section
starts when one of the heads moves insidexm (other
heads can also move in during the section) and ends
when all heads leavexm. Therefore, the number of
critical sections during the computation is at most 2k.

Let us record the positions of all heads and the
state of automaton at the beginning and at the end of
each critical section. This requiresO(log l) bits (note
that we do not record time and may assume without
loss of generality that heads do not move more than
one cell out of the input string).

We claim that this information (calledtrace in the
sequel) determinesxm if all other xi are known. To
see why, let us consider two computations with dif-
ferentxm andx0m but the samexi for i 6= m and the
same traces.

Equal traces allow us to “cut and paste” these two
computations on the boundaries of critical sections.
(Outside the critical sections computations are the
same, because the strings are identical except forxm

and state and positions after each critical section are
included in a trace.) Now we take L-critical sections
from one computation and R-critical sections from
another one. We get a mixed computation that is an
accepting run ofA on a string that hasxm on the left
andx0m on the right. Therefore,A accepts string that
it should not accept. (End of proof.)

Heap sort: time analysis

(This section assumes that you know what heapsort
is.)

12

Let us assume that we sort numbers 1;2; : : : ;N.
We haveN! possible permutations. Therefore, to
specify any permutation we need about logN! bits.
Stirling formula says thatN! � (N=e)N, therefore the
number of bits needed to specify one permutation is
N logN+O(N). As usual, most of the permutations
are incompressible in the sense that they have com-
plexity at leastO(N logN)�O(N). We estimate the
number of operations for heap sort in case of incom-
pressible permutation.

Heap sort consists of who phases. First phase cre-
ates a heap out of array. (The indexes in arraya[1::N℄
form a tree where 2i and 2i +1 are sons ofi. Heap
property says that ancestor has bigger value that any
of its descendants.)

Transforming array into a heap goes as follows:
for eachi = N;N� 1; : : : ;1 we make the heap out
of subtree rooted ati. Doing this for nodei, we need
O(k) steps wherek is the distance between nodei and
the leaves of the tree. Therefore,k= 0 for about half
of nodes,k= 1 for about 1=4 of nodes etc., the aver-
age number of steps per node isO(∑k2�k) = O(1),
and the total number of operations isO(N).

Important observation: after the heap is created,
the complexity of arraya[1::N℄ is still N logN +
O(N), if the initial permutation was incompressible.
Indeed, heapifying means composition of initial per-
mutation with some other permutation (which is de-
termined by results of comparisons between array
elements). Since total time for heapifying isO(N),
there are at mostO(N) comparisons and their results
form a bit string of lengthO(N) that determines the
heapifying permutation. The initial (incompressible)
permutation is a composition of the heap andO(N)-
permutation, therefore heap has complexity at least
N logN�O(N).

The second phase transforms heap into sorted ar-
ray. At any stage array is divided into parts:a[1::n℄
is still a heap, buta[n+1::N℄ is the end of the sorted
array. One step of transformation (it decreasesn by
1) goes as follows: the maximal heap elementa[1℄
is taken out of the heap and exchanged witha[n℄.
Therefore,a[n::N℄ is now sorted, and heap property
is almost true: ascendant has bigger value that de-
scendant unless ascendant isa[n℄ (that is now in root
position). To restore heap property, we movea[n℄
down the heap. The question is how many steps do

we need. If the final position isdn levels above the
leaves level, we need logN�dn exchanges, and the
total number of exchanges isN logN�∑dn.

We claim that∑dn = O(N) for incompressible
permutation, and, therefore, the total number of ex-
changes isN logN+O(N). (There are different im-
plementation of heapsort. A careful one first looks
for the possible path for the new element, then
looks for its position (starting from the leaves) and
then actually moves new element, thus making only
N logN + O(N) assignments and 2N logN + O(N)
comparisons. See LV for details.)

So why∑dn is O(N)? Let us record the direction
of movements while elements fall down through the
heap (using 0 and 1 for left and right). We don’t use
delimiters to separate strings that correspond to dif-
ferentn and useN logN�∑di bits altogether. Sepa-
rately we write down alldn in self-delimiting way.
This requires∑(2logdi + O(1)) bits. All this in-
formation allows us to reconstruct all moves dur-
ing the second phase, and therefore to reconstruct
initial state of the heap before the second phase.
Therefore, the complexity of heap before the sec-
ond phase (which isN logN�O(N)) does not ex-
ceedN logN�∑dn+∑(2logdn)+O(N), therefore,
∑(dn�2logdn) = O(N). Since 2logdn < 0:5dn for
dn > 16 (and all smallerdn have sumO(N) anyway),
we conclude that∑dn = O(N).
Problems

1�. Prove that for most pairs of binary stringsx;y
of lengthn any common subsequence ofx andy has
length at most 0:99n (for large enoughn).

Infinite random sequences

There is some intuitive feeling saying that a fair coin
tossing cannot produce sequence

00000000000000000000000: : :
or

01010101010101010101010: : : ;
therefore, infinite sequences of zeros of ones can be
divided in two categories. Random sequences are se-
quences that can appear as the result of infinite coin
tossing; non-random sequences (like two sequences

13

above) cannot appear. It is more difficult to provide
an example of a random sequence (it somehow be-
comes non-random after the example is provided),
so our intuition is not very reliable here.

Classical probability theory

Let Ω be the set of all infinite sequences of zeros and
ones. We define anuniform Bernoulli measureon Ω
as follows. For each binary stringx let Ωx be the set
of all sequences that have prefixx (a subtree rooted
atx).

Consider a measureP such thatP(Ωx) = 2�jxj.
Lebesgue theory allows us to extend this measure to
all Borel sets (and even farther).

A set X � Ω is callednull set, if P(X) is defined
andP(X) = 0. Let us give a direct equivalent defini-
tion that is useful for constructive version:

A set X � Ω is a null set if for everyε > 0 there
exists a sequence of binary stringsx0;x1; : : : such that

(1) X � Ωx0
[Ωx1

[: : :;
(2) ∑

i
2�jxi j < ε .

Note that 2�jxi j is P(Ωxi
) according to our defini-

tion. In words:X is a null set if it can be covered by
a sequence of intervalsΩxi

whose total measure is as
small as we wish.

Examples: Each singleton is a null set. A count-
able union of null sets is a null set. A subset of a null
set is a null set. The setΩ is not a null set (com-
pactness). The set of all sequences that have zeros at
positions with even numbers is a null set.

Strong Law of Large Numbers

Informally, it says that random sequencex0x1 : : : has
limit frequency 1=2, i.e.,

lim
n!∞

x0+x1+ : : :+xn�1

n
= 1

2
:

However, the word “random” here is used only as a
shortcut: the full meaning is that the set of all se-
quences that do not satisfy the Strong Law of Large
Numbers (do not have limit frequency or have it dif-
ferent from 1=2) is a null set.

In general, “P(ω) is true for randomω 2 Ω”
means that the setfω j P(ω) is falseg

is a null set.
Proof sketch: it is enough to show that for every

δ > 0 the setNδ of sequences that have frequency
greater than 1=2+δ for infinitely many prefixes, has
measure 0. (After that we use that a countable union
of null sets is a null set.) For eachn consider the
probability p(n;δ) of the event “random string of
lengthn has more than(1=2+δ)n ones”. The crucial
observation is that

∑
n

p(n;δ) < ∞

for anyε > 0. (Actually, p(n;ε) is exponentially de-
creasing whenn! ∞; proof uses Stirling’s approxi-
mation for factorials.) If the series above has a finite
sum, for everyε > 0 one can find an integerN such
that

∑
n>N

p(n;δ) < ε :
Consider all stringsz of length greater thanN that
have frequency of ones greater than 1=2+ δ . The
sum ofP(Ωz) is equal to∑n>N p(n;δ)< ε ; andNε is
covered by familyΩz. (End of proof sketch.)

Effectively null sets

The following notion was introduced by Per Martin-
Löf. A set X � Ω is aneffectively nullset if there
is an algorithm that gets a rational numberε > 0 as
input and enumerates a set of stringsfx0;x1;x2; : : :g
such that

(1) X � Ωx0
[Ωx1

[Ωx2
[: : :;

(2) ∑
i

2�jxi j < ε .

The notion of effectively null set remains the same
if we allow onlyε of form 1=2k, or if we replace “<”
by “6” in (2).

Any subset of an effectively null set is also an ef-
fectively null set (evident observation).

A singleton fωg (containing some infinite se-
quence of zeros and ones) is a null set ifω is com-
putable (or non-random, see below).

An union of two effectively null sets is an effec-
tively null set. (Indeed, we can find enumerable cov-
erings of sizeε=2 for both and combine them.)

More general statement requires preliminary def-
inition. By “covering algorithm” for an effectively

14

null set we mean algorithm mentioned in the defini-
tion (that getsε and generates a covering sequence
of strings with sum of measures less thanε).

Lemma. LetX0;X1;X2; : : : be a sequence of ef-
fectively null sets such that there exists an algorithm
that for any inputi produces (some) covering algo-
rithm for Xi. Then[Xi is an effectively null set.

Proof. To get anε-covering for[Xi, we put to-
gether(ε=2)-covering forX0, (ε=4)-covering forX1,
etc. To generate this combined covering, we use al-
gorithm that produces covering forXi from i. (End
of proof.)

Maximal effectively null set

Up to now the theory of effectively null sets just re-
peats classical theory of null sets. The crucial differ-
ence is in the following theorem (proved by Martin-
Löf):

Theorem 18 There exists a maximal effectively null
set, i.e., an effectively null set N such that X� N for
any effectively null set X.

(Trivial) reformulation: the union of all effectively
null sets is an effectively null set.

We cannot prove this theorem by applying Lemma
above to all effectively null sets (there are uncount-
ably many of them, since any subset of an effectively
null set is an effectively null set).

But we don’t need to consider all effectively null
sets; it is enough to consider all covering algo-
rithms. For a given algorithm (that gets positive ra-
tional number as input and generates binary strings)
we cannot say (effectively) whether it is a cover-
ing algorithm or not. But we may artificially en-
force some restrictions: if algorithm (for givenε >0)
generates stringsx0;x1; : : :, we can check whether
2�jx0j + : : :+ 2�jxkj < ε or not; if not, we deletexk
from generated sequence. Let us denote byA0 the
modified algorithm (ifA was an original one). It is
easy to see that

(1) if A was a covering algorithm for some effec-
tively null set, thenA0 is equivalent toA (the condi-
tion that we enforce is never violated).

(2) For anyA algorithmA0 is (almost) a covering
algorithm for some null set (the only difference is

that the infinite sum∑2�jxi j can be equal toε even if
all finite sums are strictly less thanε .

But this is not important: we can apply the same
arguments (that were used to prove Lemma) to all al-
gorithmsA0

0;A0
1; : : : whereA0;A1; : : : is a sequence of

all algorithms (that get positive rational numbers as
inputs and generate binary strings). (End of proof.)

Definition. A sequenceω of zeros and ones is
called (Martin-Löf)randomwith respect to uniform
Bernoulli measure ifω does not belong to maximal
effectively null set.

(Reformulation: “. . . ifω does not belong to any
effectively null set.”)

Therefore, to prove that some sequence is non-
random, it is enough to show that it belongs to some
effectively null set.

Note also that a setX is an effectively null set if
and only if all elements ofX are non-random.

This sounds like a paradox for people familiar
with classical measure theory. Indeed, we know that
measure somehow reflects the “density” of set. Each
point is a null set, but if we have too many points,
we get a non-null set. Here (in Martin-Löf theory)
if any element of a set forms an effectively null sin-
gleton (i.e., is non-random), then the whole set in an
effectively null one.

Problems

1. Prove that if sequencex0x1x2 : : : of zeros and
ones is (Martin-Löf) random with respect to uniform
Bernoulli measure, then the sequence 000x1x2 : : : is
also random. Moreover, adding any finite prefix to
random sequence, we get a random sequence, and
adding any finite prefix to non-random sequence, we
get a non-random sequence.

2. Prove that any (finite) binary string appears in-
finitely many times in any random sequence.

3. Prove that any computable sequence is non-
random. Give an example of a non-computable non-
random sequence.

4. Prove that the set of all computable infinite se-
quences of zeros and ones is an effectively null set.

5�. Prove that ifx0x1 : : : is not random, thenn�
K(x0 : : :xn�1jn)! ∞ asn! ∞.

15

Gambling and selection rules

Richard von Mises suggested (around 1910) the fol-
lowing notion of a random sequence (he uses Ger-
man word Kollektiv) as basis for probability theory.
A sequencex0x1x2 : : : is called (Mises) random, if

(1) The limit frequency of 1’s in 1=2, i.e.,

lim
n!∞

x0+x1+ � � �+xn�1

n
= 1

2
;

(2) the same is true for any infinite subsequence
selected by an admissible selection rule.

Examples of admissible selection rules: (a) se-
lect terms with even indices; (b) select terms that
follow zeros. The first rule gives 0100: : : when
applied to 00100100: : : (selected terms are under-
lined). The second rule gives 0110: : : when applied
to 00101100: : :

Mises gave no exact definition of admissible se-
lection rule (at that time the theory of algorithms was
not developed). Later Church suggested the follow-
ing formal definition of admissible selection rule.

An admissible selection rule is a total computable
function S defined on finite strings that has values
1 (“select”) and 0 (“do not select”). To applyS
to a sequencex0x1x2 : : : we select allxn such that
S(x0x1 : : :xn�1) = 1. Selected terms form a subse-
quence (finite or infinite). Therefore, each selection
rule S determines a mappingσS : Ω ! Σ, whereΣ
is the set of all finite and infinite sequences of zeros
and ones.

For example, ifS(x) = 1 for any stringx, thenσS is
an identity mapping. Therefore, the first requirement
in Mises approach follows from the second one, and
we come to the following definition:

A sequencex = x0x1x2 : : : is Mises–Church ran-
dom, if for any admissible selection ruleS the
sequenceσS(x) is either finite or has limit fre-
quency 1=2.

Church’s definition of admissible selection rules
has the following motivation. Imagine you come to a
casino and watch the outcomes of coin tossing. Then
you decide whether to participate in the next game
or not, applyingS to the sequence of observed out-
comes.

Selection rules and Martin-Löf randomness

Theorem 19 Applying admissible selection rule
(according to Church definition) to Martin-L̈of ran-
dom sequence, we get either finite or Martin-Löf ran-
dom sequence.

Proof. LetS be a function that determines selec-
tion ruleσS.

Let Σx be the set of all finite of infinite sequences
that have prefixx (herex is a finite binary string).

Consider the setAx = σ�1
X (Σx) of all (infinite) se-

quencesω such that selected subsequence starts with
x. If x= Λ (empty string), thenAx = Ω.

Lemma. The setAx has measure at most 2�jxj.
Proof. What isA0? In other terms, what is the

set of all sequencesω such that the selected subse-
quence (according to selection ruleσS) starts with 0?
Consider the setB of all stringsz such thatS(z) = 1
but S(z0) = 0 for any prefixz0 of string z. These
strings are places where the first bet is made. There-
fore,

A0 = [fΩz0 j z2 Bg
and

A1 = [fΩz1 j z2 Bg:
In particular, the setsA0 andA1 have the same mea-
sure and are disjoint, therefore

P(A0) = P(A1)6 1
2
:

From the probability theory viewpoint,P(A0)
[P(A1)] is the probability of the event “the first se-
lected term will be 0 [resp. 1]”, and both events have
the same probability (that does not exceed 1=2) for
(almost) evident reasons.

We can prove in the same way thatA00 and A01
have the same measure. (See below for details.)
Since they are disjoint subsets ofA0, both of them
have measure at most 1=4. The setsA10 andA11 also
have equal measure and are subsets ofA1, therefore
both have measure at most 1=4, etc.

[Let us give an explicit description ofA00. Let B0
be the set of all stringszsuch that

(1) S(z) = 1;
(2) there exists exactly one proper prefixz0 of z

such thatS(z0) = 1;
(3) z00 is a prefix ofz.

16

In other terms,B0 corresponds to the positions
where we are making our second bet while our first
bet produces 0. Then

A00 = [fΩz0 j z2 B0g
and

A01 = [fΩz1 j z2 B0g:
ThereforeA00 andA01 indeed have equal measures.]
(Lemma in proved.)

It is also clear thatAx is the union of intervalsΩy

that can be effectively generated ifx is known. (Here
we use the computability ofS.

Let σS(ω) be an infinite non-random sequence.
Then fωg is effectively null singleton. Therefore,
for each ε one can effectively generate intervals
Ωx1

;Ωx2
; : : : whose union coversσS(ω). The preim-

agesσ�1
S (Ωx1

);σ�1
S (Ωx2

); : : : coverω . Each of these
preimages is an enumerable union of intervals, and
if we combine all these intervals we get a covering
for ω that has measure less thanε . Thus,ω is non-
random (a contradiction).

Theorem is proved.

Theorem 20 Any Martin-L̈of random sequence has
limit frequency1=2.

Proof. By definition this means that the set:SLLN
of all sequences that do not satisfy Strong Law of
Large Numbers is an effectively null set. As we have
mentioned, this is a null set and the proof relies on
an upper bound for binomial coefficients. This upper
bound is explicit, and the argument showing that the
set:SLLN is a null set can be extended to show that:SLLN is an effectively null set. (End of proof.)

Combining these two results, we get the following

Theorem 21 Any Martin-L̈of random sequence is
also Mises–Church random.

Problems

1. The following selection rule isnot admissi-
ble according to Mises definition: choose all terms
x2n such thatx2n+1 = 0. Show that (nevertheless) it
gives (Martin-Löf) random sequence if applied to a
Martin-Löf random sequence.

2. Let x0x1x2 : : : be a Mises–Church random se-
quence. LetaN = jfn<N j an = 0;an+1 = 1gj. Prove
thataN=N ! 1=4 asN ! ∞.

Probabilistic machines

Consider a Turing machine that has access to source
of random bits. It has some special statesa;b;c with
the following properties: after machine comes toa,
it jumps to one of the statesb andc with probability
1=2 for each.

Or consider a program in some language that al-
lows assignments

a := random;

whererandomis a keyword anda is a variable that
gets value 0 or 1 (with probability 1=2; each new
random bit is independent of others).

For a deterministic machine output is a function of
input. Now it is not the case: for a given input ma-
chine can produce different outputs, and each output
has some probability. In other terms, for any given
input machine’s output is a random variable.

Our goal is to find out what distribution this ran-
dom variable may have. But let us consider a simpler
question first. LetM be a machine that does not have
input. (For example,M can be a Turing machine that
is put to work on an empty tape, or a Pascal program
that does not haveread statements.) Now consider
probability of the event “M terminates”. What can
be said about this number?

More formally, for each sequenceω 2 Ω we con-
sider the behaviour ofM if random bits are taken
from ω . For a givenω the machine either terminates
or not. Thenp is the measure of the setT of all ω
such thatM terminates usingω . It is easy to see that
T is measurable. Indeed,T is a union ofTn, where
Tn is the set of allω such thatM stops after at most
n steps usingω . EachTn is a union of intervalsΩt

for some stringst of length at mostn (machine can
use at mostn random bits if it runs in timen) and
therefore is measurable.

A real numberp is calledenumerable from below
or semicomputable from belowif p is a limit of in-
creasing computable sequence of rational numbers:
p= lim pi , wherep06 p16 p26 : : : and there is an
algorithm that computespi given i.

Lemma. A real numberp is enumerable from be-
low if and only if the setXp = fr 2 Q j r < pg is
enumerable.

17

Proof. (1) Let p be the limit of computable in-
creasing sequencepi. For any rational numberr

r < p,9i r < pi :
Let r0; r1; : : : be a computable sequence of rational
numbers such that any rational number appears in-
finitely often in this sequence. The following algo-
rithm enumeratesXp: at ith step, comparer i and pi ;
if r i < pi , outputr i .

(2) If Xp is enumerable, letr0; r1; r2; : : : be its enu-
meration. Thenpn = max(r0; r1; : : : ; rn) is an in-
creasing computable sequence of rational numbers
that converges top. (End of proof.)

Theorem 22 (a) Let M be a probabilistic machine
without input. Then M’s probability of termination is
enumerable from below.

(b) Let p be any real number in[0;1℄ enumerable
from below. Then there exists a probabilistic ma-
chine that terminates with probability p.

Proof. (a) LetM be any probabilistic machine. Let
pn be the probability thatM terminates after at most
n steps. The numberpn is a rational number with
denominator 2n that can be effectively computed for
any givenn. (Indeed, machineM can use at most
n random bits duringn steps. For each of 2n bi-
nary strings we simulate behaviour ofM and see for
how many of themM terminates.) The sequence
p0; p1; p2 : : : is an increasing computable sequence
of rational numbers that converges top.

(b) Let p be any real number in[0;1℄ enumerable
from below. Letp06 p16 p26 : : : be an increasing
computable sequence that converges top. Consider
the following probabilistic machine. It treats random
bits b0;b1;b2 : : : as binary digits of a real number

β = 0:b0b1b2 : : :
When i random bits are generated, we have lower
and upper bounds forβ that differ by 2�i. If the up-
per boundβi turns out to be less thanpi , machine
terminates. It is easy to see that machine terminates
for givenβ = 0:b0b1 : : : if and only if β < p. Indeed,
if upper bound forβ is less than lower bound forp,
thenβ < p. On the other hand, ifβ < p, thenβi < pi
for somei (sinceβi ! β andpi ! p asi !∞). (End
of proof.)

Now we consider probabilities of different out-
puts. Here we need the following definition: A se-
quencep0; p1; p2 : : : of real numbers isenumerable
from below, if there is a computable total functionp
of two variables (that range over natural numbers)
with rational values (with special value�∞ added)
such that

p(i;0) 6 p(i;1) 6 p(i;2) : : :
and

p(i;0); p(i;1); p(i;2); : : : ! pi

for any i.
Lemma. A sequencep0; p1; p2; : : : of reals is enu-

merable from below if and only if the set of pairsfhi; ri j r < pig
is enumerable.

Proof. Let p0; p1; : : : be enumerable from below
andpi = limn p(i;n). Then

r < pi ,9n[r < p(i;n)℄
and we can checkr < p(i;n) for all pairs hi; ri and
for all n. If r < p(i;n), pair hi; ri is included in the
enumeration.

On the other hand, if the set of pairs is enumerable,
for eachn we let p(i;n) be the maximum value ofr
for all pairs hi; ri (with given i) that appear during
n steps of the enumeration process. (If there are no
pairs,p(i;n) =�∞.) Lemma is proved.

Theorem 23 (a) Let M be a probabilistic machine
without input that can produce natural numbers as
outputs. Let pi be the probability of the event “M
terminates with output i”. Then sequence p0; p1; : : :
is enumerable from below and∑i pi 6 1.

(b) Let p0; p1; p2 : : : be a sequence of non-negative
real numbers that is enumerable from below, and
∑i pi 6 1. Then there exists a probabilistic machine
M that outputs i with probability(exactly) pi .

Proof. Part (a) is similar to the previous argument:
let p(i;n) be the probability thatM terminates with
outputi after at mostn steps. Thanp(i;0); p(i;1); : : :
is a computable sequence of increasing rational num-
bers that converges topi .

18

(b) is more complicated. Recall the proof of the
previous theorem. There we had a “random real”β
and “termination region”[0; p) wherep was the de-
sired termination probability. (Ifβ is in termination
region, machine terminates.)

Now termination region is divided into parts. For
each output valuei there is a part of termination re-
gion that corresponds toi and has measurepi . Ma-
chines terminates with outputi if and only if β is
insideith part.

Let us consider first a special case when sequence
pi is a computable sequence of rational numbers,
Then ith part is a segment of lengthpi . These seg-
ments are allocated from left to right according to
“requests”pi. One can say that each numberi comes
with requestpi for space allocation, and this request
is granted. Since we can compute the endpoints of
all segments, and have lower and upper bound forβ ,
we are able to detect the point whenβ will for sure
be insidei-th part. (And ifβ is inside ith part, this
will be detected at some step.)

In general case construction should be modified.
Now eachi come to space allocator many times with
increasing requestsp(i;0); p(i;1); p(i;2) : : : Each
time the request is granted by allocating additional
segment of lengthp(i;n)� p(i;n�1). Note thatith
part is not contiguous: it consists of infinitely many
segments separated by other parts. But for now it is
not important. Machine terminates with inputi when
current lower and upper bounds forβ guarantee that
β is insideith part. The interior ofith part is a count-
able union of intervals, and ifβ is inside this open
set, machine will terminate with outputi. Therefore,
termination probability is the measure of this set, i.e.,
equals limn p(i;n).

Theorem is proved.

Problems

1. Probabilistic machine without input terminates
for all possible coin tosses (there is no sequence of
coin tosses that leads to infinite computation). Prove
that the computation time is bounded by some con-
stant (and machine can produce only finite number
of outputs).

2. Let pi be the probability of termination with
outputi for some probabilistic machine and∑ pi = 1.

Prove that allpi are computable, i.e., for any giveni
and for any rationalε > 0 we can find (algorithmi-
cally) an approximation topi with absolute error at
mostε .

A priori probability

A sequence of real numbersp0; p1; p2; : : : is called an
enumerable from below semimeasureif there exists a
probabilistic machine (without input) that produces
i with probability pi . (As we know,p0; p1; : : : is a
enumerable from below semimeasure if and only if
pi is enumerable from below and∑ pi 6 1.)

The same definition can be used for real-valued
functions on strings instead of natural numbers
(probabilistic machines produce strings; the sum
∑ p(x) is taken over all stringsx, etc.)

Theorem 24 There exists a maximal enumerable
from below semimeasure m(for any enumerable from
below semimeasure m0 there exists a constant c such
that m0(i)6 cm(i) for all i).

Proof. LetM0;M1; : : : be a sequence of all prob-
abilistic machines without input. LetM be a ma-
chine that starts with choosing natural numberi at
random (so that any outcome has positive probabil-
ity) and then emulatesMi. If pi is the probability that
i is chosen,m is the distribution on the outputs ofM
andm0 is the distribution on the outputs ofMi, then
m(x)> pim

0(x) for anyx.
The maximal enumerable from below semimea-

sure is calleda priori probability. This name can be
explained as follows. Imagine that we have a black
box that can be turned on and prints a natural num-
ber. We have no information about what is inside.
Nevertheless we have an “a priori” upper bound for
probability of the event “i appears” (up to a constant
factor that depends on the box but not oni).

Prefix decompression

A priory probability is related to a special complex-
ity measure called prefix complexity. The idea is that
description is self-delimited; the decompression pro-
gram had to decide for itself where to stop reading
input. There are different versions of machines with

19

self-delimiting input; we choose one that is techni-
cally convenient though may be not the most natural
one.

A computable function whose inputs are binary
strings is called aprefix function, if for any string
x and its prefixy at least one of the valuesf (x) and
f (y) is undefined. (So a prefix function cannot be de-
fined both on a string and its prefix or continuation.)

Theorem 25 There exists a prefix decompressor D
that is optimal among prefix decompressors: for any
computable prefix function D0 there exists some con-
stant c such that

KD(x) 6 KD0(x)+c

for all x.

Proof. To prove similar theorem for plain Kol-
mogorov complexity we used

D(p01y) = p(y)
wherep is a programp with doubled bits andp(y)
stands for the output of programp with input y. This
D is a prefix function if and only if all programs
compute prefix functions. We cannot algorithmically
distinguish between prefix and non-prefix programs
(this is an undecidable problem). However, we may
convert each program into a prefix one in such a way
that prefix programs remain unchanged.

Let
D(p01y) = [p℄(y)

where [p℄(y) is computed as follows. We apply in
parallel p to all inputs and get a sequence of pairshyi ;zii such thatp(yi) = zi . Select a “prefix” subse-
quence by deleting allhyi ;zii such thatyi is a prefix of
y j or y j is a prefix ofyi for some j < i. This process
does not depend ony. To compute[p℄(y), wait until
y appears in the selected subsequence, i.e.y= yi for
a selected pairhyi ;zii, and then outputzi .

The functiony 7! [p℄(y) is a prefix function for any
p, and if programp computes a prefix function, then[p℄(y) = p(y).

Therefore,D is an optimal prefix decompression
algorithm. Theorem is proved.

Complexity with respect to an optimal prefix de-
compression algorithm is calledprefix complexity
and denoted byKP(x) [LV useK(x) while usingC(x)
for plain Kolmogorov complexity.]

Prefix complexity and length

As we know,K(x) 6 jxj+O(1) (consider identity
mapping as decompression algorithm). But identity
mapping is not a prefix one, so we cannot use this ar-
gument to show thatKP(x) 6 jxj+O(1), and in fact
this is not true, as the following theorem shows.

Theorem 26

∑
x

2�KP(x) 6 1

Proof. For anyx let px be the shortest description
for x (with respect to given prefix decompression al-
gorithm). Thenjpxj = KP(x) and all stringspx are
incompatible. (We say thatp andq are compatible if
p is a prefix ofq or vice versa.) Therefore, intervals
Ωpx are disjoint; they have measure 2�jpxj = 2�KP(x),
so the sum does not exceed 1. (End of proof.)

If KP(x) 6 jxj + O(1) were true, then∑x2�jxj
would be finite, but it is not the case (for each natural
numbern the sum over strings of lengthn equals 1).

However, we can prove weaker lower bounds:

Theorem 27

KP(x) 6 2jxj+O(1);
KP(x) 6 jxj+2logjxj+O(1);
KP(x) 6 jxj+ logjxj+2log logjxj+O(1)

etc.

Proof. The first bound is obtained if we use
D(x01) = x. (It is easy to check thatD is prefix func-
tion.) The second one uses

D(bin(jxj)01x) = x

where bin(jxj) is the binary representation of the
length of stringx. Iterating this trick, we let

D(bin(jbin(jxj)j)01bin(jxj)x) = x

and get the third bound etc. (End of proof.)
Let us note that prefix complexity does not in-

crease when we apply algorithmic transformation:
KP(A(x)) 6 KP(x)+O(1) for any algorithmA. Let
us take optimal decompressor (for plain complexity)
asA. We conclude thatKP(x) does not exceedKP(p)
wherep is any description ofx. Combining this with
theorem above, we conclude thatKP(x) 6 2K(x)+
O(1), thatKP(x)6 K(x)+2logK(x)+O(1), etc.

20

A priory probability and prefix complexity

We have now two measures for a string (or natural
number)x. A priori probability m(x) measures how
probable is to seex as an output of a probabilistic
machine. Prefix complexity measures how difficult
is to specify a string in a self-delimiting way. It turns
out that these two measures are closely related.

Theorem 28

KP(x) =� logm(x)+O(1)
(Herem(x) is a priori probability; log stands for

binary logarithm.)
Proof. FunctionKP is enumerable from above;

therefore,x 7! 2�KP(x) is enumerable from below.
Also we know that∑x2�KP(x) 6 1, therefore 2�KP(x)
is an enumerable from below semimeasure. There-
fore, 2�KP(x) 6 cm(x) and KP(x) > � logm(x) +
O(1): To prove thatKP(x) 6 � logm(x)+O(1), we
need the following lemma about memory allocation.

Let the memory space be represented by[0;1℄.
Each memory request asks for segment of length
1;1=2;1=4;1=8, etc. that is properly aligned. Align-
ment means that for segment of length 1=2k only
2k positions are allowed ([0;2�k℄; [2�k;2�2�k℄, etc.).
Allocated segments should be disjoint (common end-
points are allowed). Memory is never freed.

Lemma. For each computable sequence of re-
quests 2�ni such that∑2�ni 61 there is a computable
sequence of allocations that grant all requests.

Proof. We keep a list of free space divided into
segments of size 2�k. Invariant relation: all seg-
ments are properly aligned and have different size.
Initially there is one free segment of length 1. When
a new request of lengthw comes, we pick up the
smallest segment of length at leastw. This strat-
egy is sometimes called “best fit” strategy. (Note
that if the free list contains only segments of length
w=2;w=4; : : : , then the total free space is less thanw,
so it cannot happen by our assumption.) If smallest
free segment of length at leastw has lengthw, we
simple allocate it (and delete from the free list). If
it has lengthw0 > w, then we dividew0 into parts of
sizew;w;2w;4w; : : : ;w0=4;w0=2 and allocate the left
w-segment putting all others in the free list, so the
invariant is maintained. Lemma is proved.

Reformulation: . . . there is a computable sequence
of incompatible stringsxi such thatjxi j= ni . (Indeed,
an aligned segment of size 2�n is Ix for some stringx
for lengthn.)

Corollary: . . .KP(i)6 ni .
(Indeed, consider a decompressor that mapsxi to

i. Since allxi are pairwise incompatible, it is a prefix
function.)

Now we return to the proof. Sincem is enumer-
able from above, there exists a functionM : hx;ki 7!
M(x;k) of two arguments with rational values that is
non-decreasing with respect to the second argument
such that limk M(x;k) = m(x).

Let M0(x;k) be the smallest number in the se-
quence 1;1=2;1=4;1=8; : : : ;0 that is greater than or
equal toM(x;k). It is easy to see thatM0(x;k) 6
2M(x;k) and thatM0 is monotone.

We call pairhx;ki “essential” ifk= 0 orM0(x;k)>
M0(x;k� 1). The sum ofM0(x;k) for all essential
pairs with givenx is at most twice bigger than its
biggest term (because each term is at least twice big-
ger than preceding one), and its biggest term is at
most twice bigger thanM(x;k) for somek. Since
M(x;k) 6 m(x) and ∑m(x) 6 1, we conclude that
sum ofM0(x;k) for all essential pairshx;ki does not
exceed 4.

Let hxi ;kii be a computable sequence of all essen-
tial pairs. (We enumerate all pairs and select es-
sential ones.) Letni be an integer such that 2�ni =
M0(xi ;ki)=4. Then∑2�ni 6 1.

Therefore,KP(i) 6 ni . Sincexi is obtained from
i by an algorithm, we conclude thatKP(xi) 6 ni +
O(1) for all i. For a givenx one can findi such
thatxi = i and 2�ni >mi=4, i.e.,ni 6� logm(x)+2,
thereforeKP(x)6� logm(x)+O(1).

Theorem is proved.

Prefix complexity of a pair

We can defineKP(x;y) as prefix complexity of some
code[x;y℄ of pairhx;yi. Different computable encod-
ings give complexities that differ at most byO(1).
Theorem 29

KP(x;y) 6 KP(x)+KP(y)+O(1):
Note that now we don’t needO(logn) term that

was needed for plain complexity.

21

Let us give two proofs of this theorem using prefix
functions and a priori probability.

(1) LetD be the optimal prefix decompressor used
in the definition ofKP. Consider a functionD0 such
that

D0(pq) = [D(p);D(q)℄
for all stringspandqsuch thatD(p) andD(q) are de-
fined. Let us prove that this definition makes sense,
i.e., that it does not lead to conflicts. Conflict hap-
pens if pq = p0q0 and D(p);D(q);D(p0);D(q0) are
defined. But thenp and p0 are prefixes of the same
string and are compatible, soD(p) and D(p0) can-
not be defined at the same time unlessp= p0 (which
impliesq= q0).

Let us check thatD0 is a prefix function. Indeed, if
it is defined forpqandp0q0 andpq is a prefix ofp0q0,
then (as we have seen)p and p0 are compatible and
(sinceD(p) andD(p0) are defined)p= p0. Thenq is
a prefix ofq0, soD(q) andD(q0) cannot be defined at
the same time.

D0 is computable (for givenx we try all decom-
positionsx = pq in parallel). So we have a prefix
algorithm D0 such thatKD([x;y℄) 6 KP(x) +KP(y)
andKP(x;y) 6 KP(x)+KP(y)+O(1). (End of the
first proof.)

(2) In terms of a priori probability we have to
prove that

m([x;y℄) > εm(x)m(y)
for some positiveε and all x and y. Consider the
functionm0 determined by the equation

m0([x;y℄) = m(x)m(y)
(m0 is zero for inputs that do not encode pairs of
strings). We have

∑
z

m0(z) =∑
x;y m0([x;y℄) ==∑

x;y m(x)m(y) = ∑
x

m(x)∑
y

m(y)6 1�1= 1:
Functionm0 is enumerable from below, som0 is a
semimeasure. Therefore, it is bounded by maximal
semimeasure (up to a constant factor). (End of the
second proof.)

Prefix complexity and randomness

Theorem 30 A sequence x0x1x2 : : : is Martin-Löf
random if and only if there exists some constant c
such that

KP(x0x1 : : :xn�1)> n�c

for all n.

Proof. We have to prove that sequencex0x1x2 : : :
is not random if and only if for anyc there existsn
such that

KP(x0x1 : : :xn�1)< n�c:
Proof. (if) A string u is called c-defective if

KP(u) < juj � c. We have to prove that the set of
all sequences that havec-defective prefix for anyc,
is an effectively null set. It is enough to prove that
the set of all sequences that havec-defective prefix
can be covered by intervals with total measure 2�c.

Note that the set of allc-defective strings is enu-
merable (sinceKP is enumerable from above). It
remains to show that the sum∑2�juj over all c-
defectiveu does not exceed 2�c. Indeed, ifu is c-
defective, then by definition 2�u 6 2�c2�KP(u). On
the other hand, the sum of 2�KP(u) over all u (and
therefore over defectiveu) does not exceed 1.

(only-if) Let N be the set of all non-random se-
quences.N is an effectively null set. For each integer
c consider a sequence of intervals

Ωu(c;0);Ωu(c;1);Ωu(c;2); : : :
that coverN and have total measure at most 2�2c.
Definition of effectively null set guarantees that such
a sequence exists (and its elements can be effectively
generated for anyc).

For each c; i consider the integern(c; i) =ju(c; i)j � c. For a givenc the sum∑i 2
�n(c;i) does

not exceed 2�c (because the sum∑i 2
�ju(c;i)j does not

exceed 2�2c. Therefore the sum∑c;i 2�n(c;i) over all
c andi does not exceed 1.

Consider a semimeasureM such thatM(u(c; i)) =
2�n(c;i). Correction: It may happen thatu(c; i) coin-
cide for different pairsc; i. So the correct definition
is

M(x) = ∑f2�n(c;i) j u(c; i) = xg:
22

M is enumerable from below sinceu and n are
computable functions. Therefore, ifm is uni-
versal semimeasure,m(x) > εM(x), so KP(x) 6� logM(x) + O(1), and KP(u(c; i)) 6 n(c; i) +
O(1) = ju(c; i)j�c+O(1).

If some sequencex0x1x2 : : : belongs to the setN of
non-random sequences, then it has prefixes of form
u(c; i) for anyc, and for these prefixes the difference
between length andKP is not bounded.

(End of proof.)

Strong law of large numbers revisited

Let p;q be positive rational numbers such thatp+
q= 1. Consider the following semimeasure: a string
x of lengthn with k ones andl zeros has probability

µ(x) = c
n2 pkql

where constantc is chosen in such a way that
∑nc=n2 6 1. It is indeed a semimeasure (sum over
all stringsx is at most 1, because sum ofµ(x) over
all stringsx of given lengthn is 1=n2; pkql is a prob-
ability to get stringx if coin is biased and has proba-
bilities p andq).

Therefore, we conclude thatµ(x) is bounded by
a priori probability (up to a constant) and we get an
upper bound

KP(x)6 2logn+k(� logp)+ l(� logq)+O(1)
for fixed p and q and for any stringx of length n
that hask ones andl zeros. If p = q = 1=2, we
get the boundKP(x)6 n+2logn+O(1) that we al-
ready know. The new bound is biased: Ifp > 1=2
and q < 1=2, then� logp < 1 and� logq > 1, so
we count ones with less weight than zeros, and new
bound can be better for strings that have many ones
and few zeros.

Assume thatp> 1=2 and the fraction of ones inx
is greater thatp. Then our bound implies

KP(x) 6 2logn+np(� log p)+nq(� logq)+O(1)
(more ones make our bound only tighter). It can be
rewritten as

KP(x) 6 nH(p;q)+2logn+O(1)

where H(p;q) is Shannon entropy for two-valued
distribution with probabilitiesp andq:

H(p;q) =�plogp�qlogq:
Sincep+q= 1, we have function of one variable:

H(p) = H(p;1� p) =�plog p� (1� p) log(1� p):
This function has a maximum at 1=2; it is easy to
check using derivatives thatH(p) = 1 whenp= 1=2
andH(p)< 1 whenp 6= 1=2.

Corollary. For anyp> 1=2 there exist a constant
α < 1 and a constantc such that

KP(x)6 αn+2logn+c

for any stringx where frequency of 1’s is at leastp.
Therefore, any infinite sequence of zeros and ones

that has infinitely many prefixes with frequency of
ones at leastp>1=2, is not Martin-Löf random. This
gives us a proof of a constructive version of Strong
Law of Large Numbers:

Theorem 31 For any Martin-L̈of random sequence
x0x1x2 : : : of zeros and ones

lim
n!∞

x0+x1+ : : :+xn�1

n
= 1

2
:

Problems

1. Let D be a prefix decompression algorithm.
Give a direct construction of a probabilistic machine
that outputsi with probability at least 2�KD(i).

2.� Prove thatKP(x)6 K(x)+KP(K(x))
3. Prove that there exists an infinite sequence

x0x1 : : : and a constantc such that

K(x0x1 : : :xn�1)> n�2logn+c

for all n.

23

