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Abstra
t

We prove an exponential lower bound 2


(n= logn)

on the size of any

randomized ordered read-on
e bran
hing program 
omputing integer mul-

tipli
ation. Our proof depends on proving a new lower bound on Yao's ran-

domized one-way 
ommuni
ation 
omplexity of 
ertain boolean fun
tions.

It generalizes to some other 
ommon models of randomized bran
hing pro-

grams. In 
ontrast, we prove that testing integer multipli
ation, 
ontrary

even to nondeterministi
 situation, 
an be 
omputed by randomized or-

dered read-on
e bran
hing program in polynomial size. It is also known

that 
omputing the latter problem with deterministi
 read-on
e bran
hing

programs is as hard as fa
toring integers.

1 Preliminaries

Oblivious (or ordered) read-on
e bran
hing programs be
ome an important tool

in the �eld of digital design and veri�
ation (see, for example, [8℄ and [22℄). In
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these �elds they are also known as \OBDDs" (ordered binary de
ision diagrams).

There are some important pra
ti
al fun
tions whi
h are hard for OBDDs. One

of su
h fun
tions is integer multipli
ation [7℄. The other fun
tion is testing mul-

tipli
ation for whi
h there is an exponential lower bound (2


(n

1=4

)

) known for

nondeterministi
 OBDDs [12℄. An interesting open problem remained whether

randomization 
an help in 
omputation of these fun
tions by OBDDs. In this

paper we show, �rstly, that the method of [4℄ yields polynomial size (O(n

6

log

4

n))

bound for the latter fun
tion for randomized OBDDs. Interestingly, it is known

that 
omputing this fun
tion with deterministi
 read-on
e bran
hing programs is

as hard as integer fa
toring [22, 15℄. Further we prove an exponential lower bound

2


(n= logn)

on the size of any randomized OBBD 
omputing integer multipli
ation.

During last de
ade there were several attempts to �nd generalizations of OB-

DDs model for hardware veri�
ation, strong enough to 
ompute eÆ
iently integer

multipli
ation. But again the results showed that multipli
ation remained hard

for these models ([11, 15℄).

In [4℄, a randomized model of bran
hing programs was introdu
ed. The im-

portan
e of this model was highlighted by the fa
t that there is a fun
tion whi
h

is hard for deterministi
 OBDDs but is easy for randomized OBDDs [4℄. During

the last 
ouple of years new examples of su
h fun
tion were presented by di�erent

authors. For example, 
lique-only fun
tion is hard for nondeterministi
 synta
-

ti
 read-k-times bran
hing programs [5℄ but is simple for randomized OBDDs

[18, 20℄. See [21℄ for another example.

It was proved that randomized and nondeterministi
 models of OBDD are

in
omparable [2℄. So there was still hope (note that multipli
ation is hard for

nondeterministi
 OBDD [11℄) that randomized OBDDs 
an 
ompute integer mul-

tipli
ation in polynomial size. Our results show that randomized OBDDs 
an test

integer multipli
ation in polynomial size but integer multipli
ation itself requires

exponential size.

Up to now it was not 
lear what is harder to multiply or to test the mul-

tipli
ation (see [16℄ for more information). It is known that DMULT (testing

multipli
ation) is hard for synta
ti
 nondeterministi
 read-k-times bran
hing pro-

grams [12℄. Note that DMULT fun
tion is AC

0

equivalent to MULT [9℄. Our

result answers also to the open problem raised in [22℄ about su

in
t representa-

tions for fun
tions DMULT and MULT .
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We re
all now basi
 de�nitions ([17℄).

A deterministi
 bran
hing program P for 
omputing a boolean fun
tion g :

f0; 1g

n

! f0; 1g is a dire
ted a
y
li
 multi-graph with a distinguished sour
e

node s and a distinguished sink node t. The out degree of of ea
h non-sink

node is exa
tly 2 and the two outgoing edges are labeled by x

i

= 0 and x

i

= 1

for variable x

i

asso
iated with the node. Call su
h node an x

i

-node. The label

\x

i

= Æ" indi
ates that only inputs satisfying x

i

= Æ may follow this edge in the


omputation. The bran
hing program P 
omputes a fun
tion g in the obvious

way: for ea
h � 2 f0; 1g

n

we let f(�) = 1 i� there is a dire
ted s� t path starting

in the sour
e s and leading to to the (a

epting) node t su
h that all labels x

i

= �

i

along this path are 
onsistent with � = �

1

; �

2

; : : : ; �

n

.

We de�ne a randomized bran
hing program [4℄ as a program having in addition

spe
ially designated random (\
oin-toss") inputs. When values of these random

inputs are 
hosen from the uniform distribution, the output of the bran
hing

program is a random variable.

We say that a randomized bran
hing program (a; b)-
omputes a boolean fun
-

tion f if it outputs 1 with probability at most a for input � su
h that f(�) = 0

and outputs 1 with probability at least b for inputs � su
h that f(�) = 1. For

1 � p > 1=2 we write shortly \p-
omputes" instead of \(1 � p; p)-
omputes".

A randomized bra
hing program 
omputes a fun
tion g with on-sided error if it

(�; 1)-
omputes g.

We de�ne the size of (P ), size(P ), (
omplexity of the bran
hing program P )

as the number of its internal nodes.

Read-on
e bran
hing program is a bran
hing program in whi
h every variable

is tested at most on
e in every path. A � -ordered read-on
e bran
hing program is

a read-on
e bran
hing program whi
h respe
ts an ordering � of the variables, i.e.

if an edge leads from an x

i

-node to an x

j

-node, the 
ondition � (i) < � (j) has to

be ful�lled. An OBDD (alternatively ordered read-on
e bran
hing program) is a

� -ordered read-on
e bran
hing program respe
ting some ordering � of variables.

2 Results

We start with de�ning a boolean de
ision fun
tion: the testing integer multi-

pli
ation fun
tion (or alternatively, de
ision problem of re
ognizing the graph
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of multipli
ation) DMULT as follows. DMULT : f0; 1g

3n

! f0; 1g and

DMULT (X;Y;Z) = 1 i� XY = Z. Here X;Y , and Z are binary represen-

tations of integer numbers, jXj = jY j = n, jZj = 2n.

Theorem 1 Fun
tion DMULT 
an be 
omputed by a randomized OBDD with

one-sided "(n)-error of size

O

 

n

6

"

5

(n)

log

4

n

"(n)

!

:

Proof. Uniformly at random sele
t a prime number p from the set Q

d(n)

=

fp

1

; : : : ; p

d(n)

g, d(n) = O(n), of �rst d(n) primes. Then deterministi
ally 
ount

a = X mod p, b = Y mod p, multiply ab, then 
ount 
 = Z mod p, and verify

whether ab = 
. If ab = 
 then a

ept an input else reje
t. Chinese reminder the-

orem provides the 
orre
tness of su
h 
omputation and �ngerprinting arguments

of [4℄ provide a 
orre
t result of testing XY = Z mod p by randomized OBDDs

with high probability. All these manipulations 
an be done by a polynomial size

randomized OBDD P 
onstru
ted below.

Phase 1. (randomized). Choose d(n) to be some fun
tion in O(n), s.t. d(n) >

4n. P randomly sele
ts a prime number p from the set Q

d(n)

= fp

1

; p

2

; : : : ; p

d(n)

g

of �rst d(n) prime numbers.

P uses t = dlog d(n)e random bits for sele
ting a prime number p. P reads

random bits in the order �

1

; : : : ; �

t

. � = �

1

: : : �

t

is interpreted as binary notation

of a number N(�). P sele
ts i-th prime number p

i

2 Q

d(n)

i� N(�) = i mod d(n).

Phase 2. (deterministi
). During a 
omputation path P 
ounts a = X mod p,

by reading 
onsequently bits from X. P stores a by internal node (state). Then,

P 
ounts b = Y mod p and stores the produ
t ab. At last P 
ounts 
 = Z mod p

and verify whether ab = 
. If ab = 
 then it a

epts else it reje
ts.

So, if XY = Z, then P with probability 1 outputs the 
orre
t answer. If

XY 6= Z, then it 
an happen that XY = Z (mod p) for some p 2 Q

d(n)

. In

these 
ases P makes an error.

For XY 6= Z we have jXY � Zj � 2

2n

< p

1

� � � p

2n

where p

1

; : : : ; p

2n

are

the �rst 2n prime numbers. This means that in the 
ase when XY 6= Z, the

probability "(n) of the error of P on the input X;Y;Z is less than equal to

4n=d(n) (less than equal to 2n=d(n) if t is a power of 2).
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For p 2 Q

d(n)

denote by S

p

a deterministi
 subprogram of P that 
arries out

the deterministi
 part of 
omputations of the phase 2 with the prime p.

The size of P is bounded by

2

t+1

� 1 +

X

p2Q

d(n)

size(S

p

):

S

p

has the length 3n. For the realization of the pro
edure des
ribed

in the phase 2 it is suÆ
ient to store in the internal nodes four numbers:

X mod p; Y mod p;XY mod p and Z mod p. The i-th prime is of order O(i log i).

Therefore we have

size(S

p

) = O(np

4

) = O(n(d(n) log d(n))

4

):

>From the above upper bounds for the size(S

p

), size(P ) and from the upper

bound for "(n) ("(n) < 4n=d(n)), the upper bound of the theorem follows.

We de�ne now integer multipli
ation fun
tion MULT as follows. The fun
tion

MULT

k

: f0; 1g

2n

! f0; 1g 
omputes the k-th bit, 0 � k � 2n � 1 in the

produ
t of two n-bit integers. That isMULT

k

(X;Y ) = z

k

where X = x

n�1

: : : x

0

,

Y = y

n�1

: : : y

0

, and Z = z

2n�1

: : : z

0

. Now denote by MULT fun
tion MULT

n�1

whi
h 
omputes the middle bit in the produ
t xy. It is known that the middle

bit is the \hardest" bit (see, for example [15℄).

For p 2 (1=2; 1), k 2 f0; : : : ; 2n � 1g, and a permutation � of f1; : : : ; 2ng let

P

p

(k; � ) be a randomized OBDD with the ordering � that p-
omputes MULT

k

.

Theorem 2 Given p 2 (1=2; 1). For every � there exists a k su
h that

size(P

p

(k; � )) � 2

n(1�H(p))=8

;

where H(p) = �p log p� (1 � p) log(1 � p) is Shannon entropy.

Theorem 3 Let for p 2 (1=2; 1) the fun
tion MULT (X;Y ) is p-
omputed by a

randomized OBDD P . Then

size(P ) � 2


(n= logn)

:
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These two theorems state that multipli
ation is hard for randomized OBDD.

The �rst one is \theoreti
ally weaker" than the se
ond. But the proof of the

�rst one is shorter and more dire
t. It is based on proving lower bound for the

polynomial proje
tion fun
tion ofMULT

k

([6℄). The proof of the theorem 3 itself

is based on proving lower bound for another polynomial proje
tion of MULT

[7, 11℄ using randomized binary sear
h 
ommuni
ation game. See [14, 13℄ for

more information. Proofs of the theorems are presented in the next se
tion.

3 Proofs

3.1 Proof of the theorem 2

Our proof pro
eeds as follows:

i) we 
onstru
t a polynomial proje
tion f

k;�

of MULT

k

and then

ii) we prove that f

k;�

is hard for a randomized � -ordered OBDD.

For an arbitrary ordering � in a randomized OBDD, there are two subsets L

and W of equal sizes l � n=2 su
h that:

1) P reads all variables from L before starting reading variables from W and

2) L � X and W � Y or L � Y and W � X.

W.l.g. assume in the rest of the proof that L � X and W � Y . So, L =

fx

i

1

; : : : ; x

i

l

g and W = fy

j

1

; : : : ; y

j

l

g.

>From now on we are interested only in inputs � 2 f0; 1g

2n

su
h that:

for variables Y all bits of � ex
ept for a one bit of W are 0. Call su
h W 
ontrol

set. Variables from L 
an take arbitrary values from f0; 1g. For 
onvenien
e �x

the remaining variables from XnL to be 0. Call su
h L data set.

Denote by [k℄ a set of pair of bits of data and 
ontrol sets that are transmitted

to the k-th bit of the produ
t XY . Formally

[k℄ = f(x

i

; y

j

) 2 L�W : i+ j = kg:

As jL�W j = l

2

� n

2

=4, there exists a k su
h that

j[k℄j = t � l

2

=(2n) = n=8: (1)

Now �x this set [k℄. Denote by L

k

� L (W

k

� W ) a subset of L (W ) that


onsists of all variables x

i

(y

j

) that \take part" in the set [k℄.

6



Consider a proje
tion f

k;�

: L

k

� W

k

! f0; 1g of MULT

k

, for whi
h all

variables from (Y [ X)n(L

k

[W

k

)) are �xed and equal 0. The 
ommuni
ation

matrix CM of f

k;�

for a partition (L

k

;W

k

) of inputs has the following property:

1) it is 2

t

� t boolean matrix and

2) all rows of CM are di�erent.

We use now Yao's standard randomized one-way 
ommuni
ation 
omputation

[23, 24℄ (see also [13℄) for boolean fun
tions.

The following lemma is proved in [2℄. It states the 
onne
tion between the

size of OBDDs and the one-way 
ommuni
ation 
omplexity. Consider a boolean

fun
tion h : f0; 1g

m

! f0; 1g. Let U = V � R be partition of a set of variables

of h into two parts. For p > 1=2 denote by PC

U

p

(h) a randomized one-way


ommuni
ation p-
omputation for h (a 
omputation whi
h outputs the 
orre
t

result with the probability greater or equal to p) a

ording to the partition U of

inputs.

Lemma 1 Let " 2 [0; 1=2℄, p = 1=2 + ". Let a randomized OBDD P p-
omputes

the fun
tion h. Let U = V �R be a partition of inputs between players with V and

R de�ned a

ording to ordering � of inputs of P . That is P 
an read variables

from R only after reading variables from L and does not read variables from L

after starting reading variables from R. Then

size(P ) � 2

PC

U

p

(h)�1

:

Now use the theorem proved in [1℄ whi
h states that the randomized one-way


ommuni
ation 
omplexity 
annot be too \small" for a fun
tion with a \large"

data set and a \small" 
ontrol set.

Choose a set Z � R su
h that for an arbitrary two words u; u

0

2 V there

exists a word y 2 Z su
h that h(u; y) 6= h(u

0

; y). The set Z is 
alled the 
ontrol

set for the matrix CM .

Denote by ts(CM) the minimum size of a 
ontrol set for matrix CM and

nrow(CM) the number of di�erent rows of matrix CM .

For a number p 2 [1=2; 1℄, de�ne (probabilisti
 
ommuni
ation 
hara
teristi


(
f. [1℄)) p



U

p

(h) =

ts(CM)

lognrow(CM)

H(p), where H(p) = �p log p � (1 � p) log(1 � p)

is the Shannon entropy [10℄.
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Theorem 4 ([1℄) Let " 2 [0; 1=2℄ and p = 1=2 + ". Let U � f0; 1g

n

be su
h that

U = V � R, where V and R are de�ned in a

ording to partition � of inputs of

fun
tion h : f0; 1g

n

! f0; 1g. Then

PC

U

p

(h) � DC

U

(h)(1 � p



U

p

(h))� 1;

where DC

U

(h) is the deterministi
 one-way 
ommuni
ation 
omplexity of h.

In our 
ase we have that 1) for U = L

k

� W

k

p



U

p

(f

k;�

) = H(p) and 2)

DC

U

(f

k;�

) = log t (be
ause all rows of the 
ommuni
ation matrix CM are dif-

ferent). From the above we get that

size(P ) � 2

t(1�H(p))

:

Using (1) and the inequality above we get the lower bound of the theorem.

3.2 Proof of the theorem 3

The proof 
onsists of 3 steps:

i) we 
onstru
t a polynomial proje
tion f of MULT (
f. [7, 11℄),

ii) using randomized OBDD P for MULT (whi
h is turned to a randomized

OBDD for f when values of proper variables are �xed) 
onstru
t a randomized

one-way 
ommuni
ation proto
ol for 
omputing the fun
tion g de�ned in [19℄,

and

iii) �nally we prove the lower bound of the theorem, using the fa
t

| that randomized one-way 
ommuni
ation 
omplexity gives the lower bound

for randomized OBDD size [2℄ and

| that g is hard for randomized one-way 
ommuni
ation 
omputation [2℄.

Let � be an ordering of variables of randomized OBDD P . Then there are

two subsets L and W of the set X su
h that:

1) jLj = jW j = l(n) = 
(n) and

2) P reads all variables from L before starting reading variables from W .

Now if the remaining variables (variables from (Y [X)n(L [W )) are �xed in a

proper way, then randomized OBDD P p-
omputes the boolean fun
tion f (poly-

nomial proje
tion ofMULT ) whi
h has the following 
ommuni
ation des
ription.

Communi
ation matrix CM(f) of size 2

l(n)

� 2

l(n)

for f with rows 
orrespond-

ing to variables from L and 
olumns to variables from W is the lower triangle

8



boolean matrix. That is all the elements above the se
ond diagonal are 0 and all

elements in the se
ond diagonal and below it | are 1 [11℄. Formally, fun
tion

f(L;W ) 
an be des
ribed as follows. View L and W as a binary presentation of

numbers. Numbers presented in the reverse order (�rst bits of L andW represent

the lowest bits and last bits | the highest bit of a number). Then f(L;W ) = 1

i� L +W � 2

l(n)+1

[11℄.

We assume in the remaining part of the proof the variables from (Y [X)n(L[

W ) been �xed as needed. So P is turned to the randomized OBDD that p-


omputes f . Below, using P we 
onstru
t a randomized one-way 
ommuni
ation

proto
ol � for a \pointer" fun
tion.

The \pointer" fun
tion g

n

([19℄) is de�ned as follows. Let n be an integer and

let p[n℄ be the smallest prime number greater than or equal to n. Then, for every

integer s, let !

n

(s) be de�ned as follows. Let j be the unique integer satisfying

j = s mod p[n℄ and 1 � j � p[n℄. Then, !

n

(s) = j, if 1 � j � n, and !

n

(s) = 1

otherwise.

For every n, the boolean fun
tion g

n

: f0; 1g

n

! f0; 1g is de�ned as g

n

(�) =

�

j

, where j = !

n

(

P

n

i=1

i�

i

).

For the purposes of the proof we use the following \
ommuni
ation" variant

of the \pointer" fun
tion g in the remaining part of the proof.

Let L = fx

i

1

; : : : ; x

i

l(n)

g. Let for k(n) = log l(n) (w.l.g. we 
onsider that l(n)

is a power of 2) R = fz

1

; z

2

; : : : ; z

k(n)

g is a set of \new" variables, that is R does

not 
ontains variables from X [ Y . Then de�ne a \
ommuni
ation" variant of

the \pointer" fun
tion g as g : L �R! f0; 1g.

We use now Yao's standard randomized one-way 
ommuni
ation 
omputation

for g when the �rst player I gets values of the variables from L and the se
ond

player II gets values from the remaining variables R. Player I starts the 
om-

putation on his part of inputs, then the player II, on re
eiving a message from I

and his part of the input, outputs the result.

Below, in Lemma 2 we 
onstru
t a randomized one-way 
ommuni
ation pro-

to
ol � for q-
omputing (q 2 (1=2; 1)) g su
h that

C(�) � a(log bl(n))(log size(P )); (2)

where a, b are positive 
onstants. Then we prove (see Lemma 3 below) that for

this partition of inputs between players, the following lower bound for randomized

9



one-way 
ommuni
ation q-
omputation is true

PC

q

(g) � 
(q)l(n); (3)

where 
(q) is positive 
onstant. As the inequality (3) is 
orre
t for all the ran-

domized one-way 
ommuni
ation proto
ols that q-
omputes g then from (2) we

get the lower bound of the theorem.

size(P ) � 2


l(n)= log l(n)

:

Lemma 2 For q 2 (1=2; 1) there is a randomized one-way 
ommuni
ation pro-

to
ol � for q-
omputing fun
tion g su
h that

C(�) � a(log bl(n))(log size(P ));

where a, b are positive 
onstants.

Proof. We des
ribe a randomized one-way 
ommuni
ation proto
ol � for q-


omputing the \pointer" fun
tion g as follows. Let � = �

1

; : : : ; �

l(n)

be an input

sequen
e of player I and ! = !

1

; : : : ; !

k(n)

| an input sequen
e of player II.

Let t(n) = a log(bl(n)). We de�ne 
onstants a; b later in a proper way. Player I

runs bran
hing program P on his part of inputs t(n) times and sends t(n) nodes

v

1

; : : : ; v

t(n)

whi
h were rea
hed by P during the 
omputations to the player II.

The goal of player II is to determine the input string � of player I with prob-

ability no less than q (more pre
isely player II determines a string �

0

su
h that

probability of the event �

0

= � is no less than q). Then, player II having his

part of input 
an outputs the 
orre
t result with probability no less than q. Let

B

0

:= f0; 1g

l(n)

. In ea
h step i � 1, II redu
es a set B

i�1

and in the last step

l(n) of pro
edure II gets a set B

l(n)

= f�

0

g. Player II after getting v

1

; : : : ; v

t(n)

determines �

0

by a randomized binary sear
h pro
edure as follows.

Step 1. Take a \middle" input sequen
e �

1

(sequen
e �

1

determines the mid-

dle 
olumn of the 
ommuni
ationmatrixCM(f). Columns of CM(f) are ordered

in a natural order of input strings, that is 0 = (0; : : : ; 0); : : : ;1 = (1; : : : ; 1)).

Run P on �

1

t(n) times starting from nodes v

1

; : : : ; v

t(n)

and take the majority

result �

1

2 f0; 1g. Using �

1

, sele
t a set B

1

of potential inputs of player I (the

set of sequen
es that determine the upper half of rows of CM(f) or the set of

10



sequen
es that determine the lower half of rows of CM(f)). jB

1

j = 2

l(n)

=2.

Step 2. If �

1

= 1 then sele
t a \middle" input sequen
e �

2

between �

1

and

1 else | between 0 and �

1

.

Run P on �

2

t(n) times starting from nodes v

1

; : : : ; v

t(n)

and take the majority

result �

2

2 f0; 1g. Using �

2

, sele
t a set B

2

� B

1

of potential inputs of player

I. jB

2

j = jB

1

j=2.

After l(n) steps pro
edure stops by sele
ting a set B

l(n)

that 
onsists of unique

input sequen
e �

0

. Player II outputs the result g(�

0

; !). Clearly we have

C(�) � t(n) log size(P )):

The following 
ounting arguments show that proto
ol � q-
omputes g.

For a string 
 2 f0; 1g

l(n)

that determines a 
olumn of matrix CM(f) denote

by Pr(
) a probability of getting the 
orre
t result � by the binary sear
h pro
e-

dure above. Then the probability Pr(�

0

= �) of 
orre
tly determining an input

of player I is

Pr(�

0

= �) = Pr(�

1

) : : : P r(�

l(n)

):

The probability 1� Pr(
) of getting error � is no more than (1=
(p))

t(n)

for

some 
onstant 
(p) > 1 depending on probability p of 
orre
t 
omputation of P

(see, e.g., [14℄). By 
hoosing a 
onstant a in a proper way we get

1� Pr(
) � 1=(bl(n)):

>From the above it follows that

Pr(�

0

= �) � (1� 1=(bl(n)))

l(n)

:

Using the fa
t that fun
tion (1�1=x)

x=b

is monotoni
ally in
reasing to (1=e)

1=b

for x!1 we get for properly sele
ted 
onstant b > 1 and for n large enough

Pr(�

0

= �) � q:

We formulate now the last lemma.

11



Lemma 3 For arbitrary q 2 (1=2; 1) and arbitrary Æ > 0 and for every n large

enough, we have

PC

q

(g) � (l(n)� o(l(n)))(1 � (1 + Æ)H(q)):

where H(q) = �q log q � (1� q) log(1� q) is Shannon entropy.

See [2℄ for the proof of the lower bound of the lemma.

4 Generalization and 
on
luding remarks

Note that in the proof te
hnique used in the se
tion above for ordered read-on
e

bran
hing programs we used the following essential fa
t. The set of variables of

P 
an be partitioned (a

ording to the ordering � of P ) into two parts L and

W (of approximately equal sizes) su
h that for any 
omputation path of P the

following is true. If a variable from W is tested, then no variable from L 
an be

tested in the rest of this path. This means that the statement of the theorem 3

is true also for other 
ommon models of bran
hing programs we de�ne below.

De�ne a balan
ed partitioning as any partition of a set X (more pre
isely the

sequen
e of sets) into subsets X

1

and X

2

of jX

1

j = �(jX

2

j).

De�nition 1 Call bran
hing program P a �-balan
ed-weak-ordered bran
hing

program if it respe
ts a balan
ed partition � of its variables X into two parts X

1

and X

2

su
h that if an edge leads from an x

i

-node to an x

j

-node, where x

i

2 X

t

and x

j

2 X

m

, then the 
ondition t � m has to be ful�lled.

Call bran
hing program P an balan
ed-weak-ordered if it is �-balan
ed-weak-

ordered for some partition � of the set of variables of P into two sets.

Our theorem 3 
an be generalized as follows.

Theorem 5 Let for p 2 (1=2; 1) the fun
tion MULT (X;Y ) be p-
omputed by

randomized balan
ed-weak-ordered bran
hing program P . Then

size(P ) � 2


(n= logn)

:

12



Open problems

It is an interesting open problem to prove a lower bound for integer multipli
ation

on randomized bran
hing programs with 1) limited number of inputs readings,

and 2) without any 
ondition on ordering of variables. We 
onje
ture that the


orresponding lower bounds are also exponential.
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