
Pattern-Matching for Strings

with Short Descriptions

Marek Karpinski

?

Wojciech Rytter

y

Ayumi Shinohara

??

Abstract. We consider strings which are succinctly described. The description

is in terms of straight-line programs in which the constants are symbols and

the only operation is the concatenation. Such descriptions correspond to the

systems of recurrences or to context-free grammars generating single words.

The descriptive size of a string is the length n of a straight-line program (or size

of a grammar) which de�nes this string. Usually the strings of descriptive size

n are of exponential length. Fibonacci and Thue-Morse words are examples

of such strings. We show that for a pattern P and text T of descriptive sizes

m;n, an occurrence of P in T can be found (if there is any) in time polynomial

with respect to n. This is nontrivial, since the actual lengths of P and T could

be exponential, and none of the known string-matching algorithms is directly

applicable. Our �rst tool is the periodicity lemma, which allows to represent

some sets of exponentially many positions in terms of feasibly many arithmetic

progressions. The second tool is arithmetics: a simple application of Euclid

algorithm. Hence a textual problem for exponentially long strings is reduced here

to simple arithmetics on integers with (only) linearly many bits. We present also

an NP-complete version of the pattern-matching for shortly described strings.

?

Deptartment of Computer Science, University of Bonn, 53117 Bonn, and Interna-

tional Computer Science Institute, Berkeley, California. Research partially supported

by the DFG Grant KA 673/4-1, and by the ESPRIT BR Grants 7097 and ECUS

030. Email: marek@cs.uni-bonn.de

y

Deptartment of Computer Science, University of Bonn, 53117 Bonn, and Institute

of Informatics, Warsaw University, 02-097 Warszawa. Supported by the DFG Grant

Bo 56/142-1. Email: rytter@mimuw.edu.pl

??

Deptartment of Computer Science, University of Bonn, 53117 Bonn, and Research

Institute of Fundamental Information Science, Kyushu University 33, Fukuoka 812,

Japan. Email: ayumi@rifis.kyushu-u.ac.jp

1

1 Introduction

We describe algorithms for implicit pattern-matching problems for some well

structured and exponentially long strings, given in the form of a succinct de-

scription. The descriptive size n of such strings is the size of their description,

while their real size N is the actual length of the string, assuming it is explicitly

written. The size of the whole problem is n. Usually N =
(2

c�n

).

In our algorithms we cannot write such long strings explicitly. Fortunately,

each position in such strings can be written with only linear number of bits.

Hence the size of the output is small: the output of our algorithm is an occur-

rence of one long string in another very long string. The input consists of short

descriptions of the strings in terms of straight-line programs. We strengthen

(in a nontrivial way) a result of [7], where quite sophisticated polynomial-time

algorithm for equality of two strings generated by grammars was given. The

equality-test algorithm from [7] is not directly applicable here since there are

exponentially many positions, where the equality between the pattern and the

text can happen. However we use this algorithm as one of the basic subroutines.

A straight-line program R is a sequence of assignment statements:

X

1

:= expr

1

; X

2

:= expr

2

; : : : ; X

n

:= expr

n

where X

i

are variables and expr

i

are expressions of the form

{ expr

i

is a symbol of a given alphabet �, or

{ expr

i

= X

j

�X

k

, for some j; k < i, where � denotes the concatenation of X

j

and X

k

.

For each variable X

i

, denote by �(X

i

) the value of X

i

after the execution of the

program. �(X

i

) is the string described by X

i

. Denote by R the string described

by (the value of) the program R: R = �(R) = �(X

n

). The size jRj of the

program R is the number n, it is also called the descriptive size of the generated

string R = �(R).

R is called a string with short description, since usually jRj is very long

(exponentially) with respect to its descriptive size n = jRj.

We say that R describes a long string. If we consider a string in a usual sense

(the description is by giving the string explicitly) then we call such string an

explicit string.

For a string w denote by w[i::j] the subword of w starting at i and ending

at j. Similarly for a long string W denote W[i::j] = �(W)[i::j].

Denote by P and T the descriptions of the pattern P and a text T . P occurs

in T at position i i� T [i::i+ jP j � 1] = P .

The string matching problem for strings with short description is:

given P and T , check if P occurs in T , if \yes" then �nd any occurrence i.

The size n of the problem is the size jT j of the description of the text T . Assume

jPj = m � n.

Our main result is the following theorem.

2

Theorem1. The pattern-matching problem for strings with short descriptions

can be solved in polynomial time with respect to the descriptive size.

A similar problem was considered recently in [2], where strings are described

in terms of Lempel-Ziv encoding. The main di�erence between our results and the

results in [2] is that in [2] patterns are assumed to have explicit representations,

while we consider implicitly given patterns with short description.

Example 1. We refer the reader to [6] for de�nitions of the Fibonacci and Thue-

Morse words. Let P = F

5

be the 5th Fibonacci word abaab, and T = T

3

be the

3rd Thue-Morse word abbabaab. We show below short descriptions F

5

and T

3

for these words. An instance of the pattern-matching problem for strings with

short description is:

�nd any occurrence of F

5

in T

3

.

An occurrence i = 4 of F

5

in T

3

is a solution to this instance.

The 5th Fibonacci word is described by the following program P:

X

1

:= b; X

2

:= a; X

3

:= X

2

�X

1

; X

4

:= X

3

�X

2

; X

5

:= X

4

�X

3

The computation of F

5

works as follows.

�(X

1

) = b; �(X

2

) = a; �(X

3

) = ab; �(X

4

) = aba; �(X

5

) = abaab:

The 3rd Thue-Morse word is described by the following program T

3

.

X

0

:= a; Y

0

:= b; X

1

:= X

0

�Y

0

; Y

1

:= Y

0

�X

0

;

X

2

:= X

1

�Y

1

; Y

2

:= Y

1

�X

1

; X

3

= X

2

�Y

2

The 3rd Thue-Morse word is generated as follows:

�(X

0

) = a; �(Y

0

) = b; �(X

1

) = ab; �(Y

1

) = ba;

�(X

2

) = abba; �(Y

2

) = baab; �(X

3

) = abbabaab:

Using our algorithm it can be e�ectively found, for example, an occurrence (if

there is any) of the Fibonacci word F

220

in the Thue-Morse word T

200

, despite

the fact that actual lengths of these strings are astronomic: jT

200

j = 2

200

and

jF

220

j � 2

120

.

2 Arithmetic Progressions and Euclid's Algorithm

A crucial role in our algorithm is played by periodicities in strings. A nonnegative

integer p is a period of a nonempty string w i� w[i] = w[i� p], whenever both

sides are de�ned. Hence p = jwj and p = 0 are considered to be periods.

Lemma2 (periodicity lemma, see [1]).

If w has two periods p; q such that p + q � jwj then gcd(p; q) is a period of w,

where gcd means \greatest common divisor".

3

Denote Periods(w) = fp : p is a period of wg. A set of integers forming an

arithmetic progression is called here linear. We say that a set of positive integers

from [1 : : :N] is succinct w.r.t. N i� it can be decomposed in at most blog

2

(N)c+

1 linear sets. For example the set Periods(aba) = f0; 2; 3g consists of blog

2

(3)c+

1 = 2 such sets.

For sets U and W de�ne U �W = fi + j : i 2 U; j 2Wg.

Lemma3 (succinct sets lemma).

The set Periods(w) is succinct w.r.t. jwj.

Proof. The proof is by induction with respect to j = blog

2

(jwj)c. The case

j = 0 is trivial, one-letter string (jwj = 1) has periods 0 and 1 (forming a single

progression), hence we have precisely blog

2

(jwj)c+ 1 progressions.

Let k = d

jwj

2

e. It follows directly from Lemma 2 that all periods in A =

Periods(w) \ [1 : : :k] form a single arithmetic progression, whose step is the

greatest common divisor of all of them. Let q be the smallest period larger than

k. Then it is easy to see that

Periods(w) = A [fqg � Periods(w[q + 1::jwj]):

Now the claim follows from the inductive assumption, since blog

2

(jwj � q)c < j

and A is a single progression.

Observe that the structure of Periods(w) corresponds to a greedy construc-

tion: �nd the �rst period p and take the longest progression containing consecu-

tive periods which starts with p, then go to the next period and continue. There

are at most blog

2

(jwj)c+1 resulting progressions. Assume that we use such type

of the representation for sets of periods. Let S

1

be a set of periods of w from

[1::k], and S

2

be a set of periods from an interval [k+1::jwj]. Then, when adding

these sets, it can happen that the last linear set in S

1

continues, with the same

step, in S

2

, as the �rst linear set in S

2

. We join these two progressions in S and

have less linear sets in S.

Generally de�ne the operation compress(S), which for a given set of disjoint

linear sets joins any two linear sets (if one is a continuation of the other) wher-

ever it is possible. This operation is important, since we will be often adding

succinct sets, and we need also a succinct representation in terms of at most

logarithmically many progressions.

Denote ArithProg(i; p; k) = fi; i+ p; i+2p; : : : ; i+ kpg, so it is an arithmetic

progression of length k+ 1. Its description is given by numbers i; p; k written in

binary. The size of the description, is the total number of bits in i; p; k.

Denote by Solution(p; U;W) any position i 2 U such that i+ j = p for some

j 2 W . If there is no such position i then Solution(p; U;W) = 0.

Lemma4 (application of Euclid algorithm).

Assume that two linear sets U;W � [1 : : :N] are given by their descriptions.

Then for a given number c 2 [1 : : :N] we can compute Solution(c; U;W) in

polynomial time with respect to log(N).

4

Proof. The problem can be easily reduced to the problem:

for given nonnegative integers a; b; c; A;B, �nd any integer solution (x; y)

to the following equation with constraints

ax+ by = c; (1 � x � A; 1 � y � B): (1)

It is enough to compute a solution in polynomial time with respect to the number

of bits of the input constants.

We can assume that a; b are relatively prime, otherwise we can divide the

equation by their greatest common divisor.

As a side e�ect of Euclid algorithm applied to a; b, we obtain integers (not

necessarily positive, but with not too many bits) x

0

0

; y

0

0

such that ax

0

0

+ by

0

0

= 1.

Let x

0

= cx

0

0

, y

0

= cy

0

0

. Then all solutions to the equation (1) are of the form

(x; y) = (x

0

+ kb; y

0

� ka); where k is an integer parameter.

This de�nes a line, and we have to �nd any integer point in the rectangle

f(i; j) : 1 � i � A, 1 � j � Bg which is hitten by this line. This can be

done in polynomial time using operations div and mod on integers with polyno-

mial number of bits. We refer for details to [5] (see page 325 and Exercise 14 on

page 327).

3 The Pattern-Matching Algorithm

Let us �x the pattern P = �(P), the length of P is M and the length of the

text T = �(T) is N . Observe that N = O(2

n

), hence all positions in T can be

written using O(n) bits.

Let X be a string (long or short) of the length K. Then de�ne:

Prefs(X) = f1 � i � K : X[K � i+ 1::K] is a pre�x of Pg:

Su�s(X) = f1 � i � K : X[1::i] is a su�x of Pg:

Observation 1

Let P; A; B be long strings, then P occurs in A � B i�:

(1) P occurs in A or P occurs in B;

(2) or jP j 2 Prefs(A)� Su�s(B).

De�ne the operations of the pre�x-extension and su�x-extension. For a long

or a short word X de�ne

PrefExt(S;X) = fi+ jXj : i 2 S and P [1::i]�X is a pre�x of Pg:

Su�Ext (S;X) = fi+ jXj : i 2 S and X �P [M � i + 1::M] is a su�x of Pg:

Assume the straight line program T de�ning the text T is using variablesX

1

,

X

2

, : : :, X

n

. Each of variables X

i

corresponds to a program X

i

which computes

X

i

. We denote

SUFF [i] = Su�s (X

i

); PREF [i] = Prefs(X

i

):

5

Observe that these tables depend on the pattern P , however it is convenient to

assume further that P is �xed. We are now able to give a sketch of the whole

structure of the algorithm. Assume that the lengths of all strings described by

X

k

's are computed (it can be easily done in polynomial time).

ALGORITHM PATTERN MATCHING ;

for k = 1 to n do

if j�(X

k

)j � n then fX

k

can be treated as an explicit stringg

test by classical methods an occurrence of P in X

k

;

if there is an occurrence of P in X

k

then report it and STOP

else compute PREF [k], SUFF [k] by classical methods;

else fassume X

k

= X

i

�X

j

for i; j < k g

pos := Solution(jP j;PREF [i]; SUFF [j]);

if pos 6= 0 then report an occurrence and STOP

else begin

U := PrefExt(PREF [i];X

j

) [PREF [j];

V := Su�Ext (SUFF [j];X

i

) [SUFF [i];

PREF [k] := compress(U); SUFF [k] := compress(V);

end

Let k be the �rst position in PREF [i], then all the other positions in PREF [i]

are of the form k + p

0

, where p

0

is a period of P [1::k]. Hence Lemma 3 implies

directly the following fact.

Lemma5. The sets SUFF [i] and PREF [j] are succinct, for any 1 � i; j � n.

For a sequence of long strings
 = X

1

; : : : ;X

p

de�ne �(
) = �(X

1

)�(X

2

) : : : �(X

p

).

We omit the proof of the following fact. The proof employs the algorithm from [7]

as a subroutine, and a kind of binary search in [1 : : :N].

Lemma6 (subword-equality).

(a) For two sequences of long strings

1

= X

1

; : : : ;X

p

and

2

= Y

1

; : : : ;Y

q

we

can test equality �(

1

) = �(

2

) in polynomial time with respect to the total size

of all X

i

's and Y

j

's.

(b) For two long strings X ;Y and integers i; j; k; l we can test the equality

X [i::j] = Y[k::l], and �nd the �rst mismatch (if there is any) in polynomial

time with respect to the size of description.

Let us call the algorithms implied by the lemma the equality-test algorithms.

Our key lemma says that the operations PrefExt and Su�Ext are feasible.

Consider only the �rst of them, the second one is symmetric. We consider a

set S which consists of one linear set. If there are polynomially many linear

set-components of S, we deal with each of them separately.

6

[htbp]

-

-

-

-

-

-

-

-�
......

-�
......

-�
......

-�
......

-�
......

-�
......

extend

p

p

p

p

p

p

x

6

x

5

x

4

x

3

x

2

x

1

x

0

string P [1::k] = x

0

string W

Fig. 1. The operation PrefExt(S;W), where S = fjx

0

j; jx

1

j; : : : ; jx

6

jg.

Lemma7 (key lemma).

Assume W is a long word, and S = ft

0

; t

1

; : : : ; t

s

g � [1 : : :k] is a linear set

given by its succinct representation, where t

0

= k and strings x

i

= P [1::t

i

],

0 � i � s, are su�xes of P [1::k]. Then the representation of PrefExt(S;W) can

be computed in polynomial time.

Proof. Assume the sequence t

0

; t

1

; : : : ; t

s

is decreasing. We need to compute

all possible continuation of x

i

's in P which match W , see Figure 1. Denote

y

i

= P [1::jx

i

j + jW j] and Z = P [1::k]�W . Hence our aim is to �nd all i's such

that y

i

is a su�x of Z, (0 � i � s). We call such i's good indices. The �rst

mismatch to the period p in a string x is the �rst position (if there is any) such

that x[mismatch] 6= x[mismatch�p]. We can compute the �rst mismatch using

an equality-test algorithm from Lemma 6. There are four basic cases:

Case A: there is no mismatch in Z but there is a mismatch in y

0

.

Then good indices are all i � r, where r is the �rst index such that y

r

contains no mismatch at all. (We have r = 4 in Figure 2 (case A)).

Case B: there is a mismatch in Z and y

0

.

Then the only possible good index i is such that the �rst mismatch in y

i

is

exactly over the �rst mismatch in Z. See Figure 2 (case B), where the only

good index is i = 2. We can easily calculate such i, it is also possible that

there is no good i in this case.

Case C: there is no mismatch in Z or y

0

.

Then all indices i are good.

Case D: there is a mismatch in Z but not in y

0

.

Then none of indices i is good.

In this way we compute the set of good indices. Observe that it consists of

a subset of consecutive indices from the set S. So the corresponding set (the

7

[htb]

�� �� �� �� �� �� �� �� �

�� �� �� �� �� �� �� �� �

�� �� �� �� �� �� �� �� �

�� �� �� �� �� �� �� �� �

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� �� �� ��

�

P [1::k]

-�

W

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Case A

�

�

�

�

Z

y

0

y

1

y

2

y

3

y

4

y

5

�� �� �� �� �� �� �� �� �

�� �� �� �� �� �� �� �� �

�� �� �� �� �� �� �� �� �

�� �� �� �� �� �� �� �� �

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� �� �

�

P [1::k]

-�

W

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Case B

�

�

�

�

�

Z

y

0

y

1

y

2

y

3

y

4

y

5

Fig. 2. Two cases: Z = P [1::k]�W has no mismatch in Case A, but Z has mismatch in

Case B. y

i

= P [1::jx

i

j+ jW j]. \�" denotes the mismatch to the period.

required output) of integers fjy

i

j : i is a good index g is linear. This completes

the proof.

If the sets SUFF [j];PREF [j] has been already computed by the algorithm,

then each of them consists of a polynomial number of linear sets, for j < i.

Hence we can compute the sets PREF [i] and SUFF [i] in polynomial time using

polynomiallymany time the algorithm fromLemma 7 to each of these linear sets.

In this way we have shown that the algorithm PATTERN MATCHING works

in polynomial time. This completes the proof of our main result (Theorem 1).

As a side e�ect of our pattern-matching algorithm we can compute the set

of all periods for strings with short description.

Theorem8. Assume X is a string given by its description of size n. Then

we can compute in polynomial time a polynomial size representation of set

Periods(�(X)). The representation consists of a linear number of linear sets.

8

Proof. Use the algorithmPATTERN MATCHING with the long pattern P = X

and the long text T = X . As a side e�ect we compute all su�xes of T which are

pre�xes of P. This determines easily all periods.

4 An NP-Complete Version of Pattern-Matching

We start with a problem which has a particularly simple polynomial time algo-

rithm, next we show that an extension of this problem is NP-complete.

The pattern{matching algorithm is much simpler if the pattern P is an ex-

plicit word of length m = O(n), where n is the descriptive size of the long text

T . Let X

i

be the variables of a program describing T .

Denote ShortVar = fX

i

: j�(X

i

)j � mg. For each variable X

i

2 ShortVar we

can compute its value by simply simulating the given straight-line program. We

need O(n �m) time for all X

i

's together.

The algorithmwhich looks for the explicit pattern P by searching only inside

all words X

i

(incorrectly assuming the pattern is contained totally in some of

X

i

's) is incorrect.

For a language L over the alphabet ShortVar de�ne �(L) = f�(
) :
 2 Lg.

Lemma9. Assume an (explicit) word P is of the real size m = O(n). Then there

is a nondeterministic �nite automaton A accepting a language L over ShortVar

such that:

the pattern P occurs in T i� P 2 �(L).

The constructed nondeterministic automaton A has O(n) states.

Proof. We omit the proof.

We can replace each edge labeled X

i

of the automaton A from the lemma

above by j�(X

i

)j edges \spelling" the word �(X

i

). Then the automaton grows

by a factor O(m). The new automaton A

0

has the size O(n

2

). It can be applied

to test if P occurs in T by simulating A

0

on P . A standard method can be used

to test if a nondeterministic automaton accepts a text. This proves the following

theorem.

Theorem10. Assume we have an (explicit) pattern P given explicitly of size

m = O(n) and a string T given by its description of size n. Then we can test if

P occurs in T in O(n

3

) time.

We show that the automata theoretic approach which was used above (and

which corresponds to regular expressions) does not work if the pattern is a long

string.

Let Var be a set of variables in some straight-line program of length n, and

P be a long pattern (given by a straight-line program of length m � n). We

consider the regular-expression-matching problem for shortly described strings

de�ned as follows:

9

given a regular expression W over Var of size O(n)

test if �(P) 2 �(W),

where �(W) = �(L), and L is the language described by expression W .

Theorem11. The regular-expression-matching problem for shortly described

strings is NP-complete, even if expressions do not contain operation

�

, nor empty

strings and the alphabet � (for strings which are values of variables) is unary.

Proof. The proof is a reduction from the SUBSET SUM problem de�ned as

follows:

Input instance: Finite set A = fa

1

; a

2

; : : : ; a

n

g of integers and an integer K.

The size of the input is the number of bits needed for the description.

Question: Is there a subset A

0

� A such that the sum of the elements in A

0

is

exactly K?

The problem SUBSET SUM is NP-complete, see [4], and [3], pp. 223. We

can construct easily a straight-line program such that �(X

i

) = 1

a

i

and P = 1

K

.

Then the SUBSET SUM problem is reduced to the membership:

�(P) 2 �((X

1

[") � (X

2

[") � � � (X

n

[")):

The empty string " can be easily eliminated by rescaling numbers and replacing

" by a single letter 1. This completes the proof.

References

1. M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, New

York (1994).

2. M. Farach and M. Thorup, \String-matching in Lempel-Ziv compressed strings",

to appear in Proc. 27th ACM STOC (1995).

3. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the The-

ory of NP-Completeness.W.H. Freeman (1979).

4. R.M. Karp, \Reducibility among combinatorial problems", in R.E. Miller and

J.W. Thatcher (eds.), Complexity of Computer Computations, Plemum Press, New

York, pp.85{103 (1972).

5. D. Knuth, The Art of Computing, Vol. II: Seminumerical Algorithms. Second edi-

tion. Addison-Wesley (1981).

6. M. Lothaire, Combinatorics on Words. Addison-Wesley (1993).

7. W. Plandowski, \Testing equivalence of morphisms on context-free languages",

ESA'94, Lecture Notes in Computer Science 855, Springer-Verlag, 460{470 (1994).

10

