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1 Introduction

The minimum depth of decision trees has been extensively studied for many computational

problems in the literature. However, another natural complexity measure, the minimum

size of decision trees is much less understood. For business applications (e.g. [GS79]) and

for some computational problems, the size of decision trees gives a reasonable measure

of the space required to implement the corresponding algorithms. For example, consider

the membership problem for a given polyhedron in n dimensions. Unless the polyhedron

has a highly-structured description, it is reasonable to expect that many decision trees

(especially those with optimized depth) have to be stored in order for the membership

queries to be processed with an e�ciency re
ecting the depths of the trees.

We focus our attention to computations in IR

n

that can be modeled by algebraic

decision trees; these include many geometric and searching-sorting problems. Clearly, the

size of a decision tree is no less than its depth, and thus a lower bound to the depth

of all decisions trees for solving a problem is also a lower bound to the size of all such

trees. Other than this obvious observation, the only lower bounds known are those for

linear decision trees (where only linear functions are used for branching, see e.g., [DL75],

[BLY92]), typically exponential in the depth. For higher degree algebraic decision trees,

no superpolynomial lower bounds are known for natural problems, except with further

constraints on the test polynomials.

In this paper we investigate the size complexity of algebraic decision trees for MAX, the

problem of �nding the maximum of n real numbers, which was studied extensively in the

literature (cf., e.g., [K73], [R72], [TY94]). We use the standard degree-d ternary algebraic

decision tree model in which each internal node performs a test p(x

1

; x

2

; � � � ; x

n

) : 0 (where

p is any real polynomial of degree d) with <;=; > as the possible outcomes. Rabin [R72]

established the sharp lower bound n�1 on the depth of any algebraic decision tree (for any

d) solving this problem (see also [MPR94]). Except for linear decision trees (d = 1) and

for cases with special restricted forms of polynomial tests (see Remark 1), no nonlinear

lower bound is known on the size.

Let \MAX=" denote the problem of verifying x

1

� x

k

for all 1 � k � n. The main

result of the present paper is to show that, for any �xed d, the size of any degree-d algebraic

decision tree for solving MAX= (and hence MAX) is at least 2

e

d

n

for some positive constant

e

d

. We will also establish an interesting connection between this lower bound and the

maximum number of minimal cutsets for any rank-d hypergraphs on n vertices. This

connection enables us to obtain better values of e

d

. There are many interesting open

problems suggested by our work, some of which are mentioned in the remarks below and

at the end of Section 2.
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Remark 1. A direct motivation for the present study is the close relation between

the size of decision trees for MAX and the depth of decision trees for selecting the i

largest elements. Let a

d;n

be the minimum size of any degree-d algebraic decision tree for

solving MAX for almost all inputs (i.e., except for a measure-0 set). Then any degree-d

algebraic decision tree for selecting the i largest elements must have depth greater than

log

2

(a

d;n

�

n

i�1

�

). This approach to the selection problem was �rst formulated in [FG79]

for the case d = 1. It is well known that Farkas Lemma implies a

d;n

= 2

n�1

for d = 1.

In [Y89] and [F93], it was proved that a

d;n

= 2

n�1

if the test polynomials are restricted

to (x

j

� x

k

)(x

h

� x

s

) and products of linear forms, respectively, leading to lower bounds

n + (i� 1) log

2

n+ O(1) or the selection problems under such constraints.

Conjecture 1: a

d;n

= 2

n�1

for all d; n.

A proof of this conjecture would imply that the depth complexity of algebraic decision

tree for selecting the i largest elements among n is n+(i�1) log

2

n+�(1), which has been

an open problem for some time. Even a proof of the conjecture for d = 2 will be of much

interest.

Remark 2 All the known exponential lower bounds on decision tree size for MAX,

as discussed in Remark 1, were proved with the following approach: show that every

branch of the tree has to be of length n � 1 or more. This is no longer possible for the

general case even for d = 2, since a degree-2 decision tree with the root node testing

p = x

1

� x

2

2

� � � � � x

2

n

� 1 : 0 has a branch of length 1 (the branch with p(x) > 0 at the

root). To our knowledge, no lower bound better than n � 1 is known before this paper.

Remark 3We consider in the paper standard ternary decision trees (cf. [SY82], [B83])

branching according to the signs >;=; <. Notice that for binary decision trees studied in

[R72] (branching according to the signs �; >), MAX= has an (n � 1)-size linear decision

tree, namely the tree which successively tests x

1

� x

2

; x

1

� x

3

; : : : ; x

1

� x

n�1

.

(More generally, this construction shows that the membership problem for any polyhedron

de�ned by k inequalities has a linear decision tree of size k + 1 in this binary tree model;

compare this with the lower bound on the depth 
(logN) of [GKV95] where N is the

number of all the faces of a polyhedron). On the other hand, MAX does not seem to have

any polynomial-size trees in the binary tree model.

Conjecture 2: Any binary algebraic decision tree (of any degree) for MAX must have

size 2


(n)

.

It is not hard to see that Conjecture 1 implies Conjecture 2. We also mention that for the

membership problem to a union of k hyperplanes

S

1�i�k

a

i

X = b

i

, there is a ternary (as

well as binary) algebraic decision tree of the size k. It simply tests (a

1

X � b

1

)

2

, then, if
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the sign is >, tests (a

2

X � b

2

)

2

, etc. Notice that this tree is nonlinear.

Remark 4 A more re�ned way to model space requirement is to consider branching

programs (see e.g., [BFKLT81], [BFMUW87]) in which \equivalent" nodes are permitted

to be merged together. Very little is known about branching programs with algebraic

decision elements (however, see [Y82]).

2 Summary of Results

Consider an input n-tuple of real numbers (x

1

; : : : ; x

n

) 2 IR

n

. An Algebraic Decision Tree

(ADT) T of degree d and dimension n for MAX (MAX=) is a ternary tree with each

internal node perfoming a ternary test p(x

1

; x

2

; � � � ; x

n

) : 0 where p is a polynomials of

degree at most d, and branching according to the outcomes (<;=; or >). Each leaf of

the tree is either labeled by a certain index i 2 f1; : : : ; ng (MAX), or by a label \yes"or

\no" (MAX=). We say that the decision tree T solves MAX (MAX=) in dimension n

if, for an arbitrary input vector (x

1

; : : : ; x

n

) 2 IR

n

, the path traversed in T terminates in

a leaf labeled by i (\yes") if and only if x

i

= maxfx

1

; : : : ; x

n

g (x

1

= maxfx

1

; : : : ; x

n

g,

respectively). The size (resp. depth) of T is the number of its leaves (resp. the maximum

length of its paths). It is well-known [R72] that the depth of an ADT for MAX is at least

n� 1. This bound is optimal as one can easily construct T with the depth n� 1 and size

2

n�1

.

We prove an exponential lower bound on the size.

Theorem 1 Any algebraic decision tree of degree d solving MAX (MAX=) in dimension

n has size at least 
(2

c

0

(d)n

) where c

0

(d) > 0 depends only on d.

A hypergraph F on vertex set f1; : : : ; Ng is a family of subsets of f1; : : : ; Ng. The

rank of F is the maximum size of any member of F . A minimal cutset of F is a set

V � f1; : : : ; Ng which intersects every member set of F and no proper subset of V has

this property. Let us denote by m

F

the number of minimal cutsets of F . Let m

d;N

be

the maximum m

F

for any hypergraphs F of rank d or less on N vertices. It is not hard

to show that for d = 2, m

2;N

is equal to the maximum number of maximal cliques of any

N -vertex graph, which by a result of Moon and Moser [MM65] is equal to �(3

N=3

).

A slight variation of the proof of Theorem 1 leads to an interesting connection of our

lower bound to the combinatorial quantity m

d;N

.

Theorem 2 Any algebraic decision tree of degree d solving MAX (MAX=) in dimension

n has size at least 2

n�1

=m

d;n�1

.

From the fact m

2;N

= �(3

N=3

), it follows then that any degree-2 algebraic decision
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tree for MAX (MAX=) must have size 
(2

c

0

(d)n

) with c

0

(2) = 1� (log

2

3)=3 � 0:47. This

improves over the value 1�

1

1+

1

2

log

2

(

4

3

)

� 0:18 for c

0

(2) obtained in the proof of Theorem

1 (see Section 3); it also improves all the c

0

(d) for d > 2, since the proof of Theorem 1

de�nes c

0

(d) recursively.

Remark 5 An interesting open combinatorial question is to determine the smallest

�(d) for which m

d;N

� O(2

�(d)N

). By Theorem 2, we can then choose c

0

(d) in Theorem 1

to be 1� �(d). To our knowledge, even the best �(3) has not been determined.

3 Proof of Theorem 1

Clearly every decision tree for MAX can be easily converted into a decision tree for the

MAX= by relabeling a leaf \yes" whenever it is originally leabled as \x

1

is maximum".

Thus we only need to prove Theorem 1 for MAX=.

For any f1g � I � f1; : : : ; ng consider the following (`wall') set M

I

= f(x

1

; : : : ; x

n

) :

x

i

> x

j

for all i 2 I; j =2 I and x

i

1

= x

i

2

for all i

1

; i

2

2 Ig. Denote the plane P

I

=

f(x

1

; : : : ; x

n

) : x

i

1

= x

i

2

for all i

1

; i

2

2 Ig. Then dimP

I

= n � jI j+ 1 and M

I

is an open

polyhedron in P

I

. Note that P

f1g

= IR

n

and all P

I

are pairwise distinct. Obviously, the

sets M

I

are pairwise disjoint and form a partition of the set x

1

= maxfx

1

; : : : ; x

n

g with

2

n�1

elements. Observe that the Euclidian closure M

I

has a non-empty intersection with

M

J

if and only if I � J . Moreover, if M

I

T

M

J

6= ; then M

I

� M

J

. Thus, fM

I

g form a

cellular decomposition of the set x

1

= maxfx

1

; : : : ; x

n

g and the boundary @M

I

=

S

J�I

M

J

in the plane P

I

.

The method of our proof is based on the analysis of a \touching frequency" of the sets

computed along the branches of a tree T with the `wall sets' M

I

.

Consider any branch B (i.e., a path from the root to some leaf) of the tree T , and

let the testing polynomials together with their signs along this branch be f

1

= � � � =

f

k

= 0; g

1

> 0; : : : ; g

l

> 0. Let W

B

� IR

n

denote the (semialgebraic) set of all x =

(x

1

; x

2

; � � � ; x

n

) satisfying ff

1

(x) = � � � = f

k

(x) = 0; g

1

(x) > 0; : : : ; g

l

(x) > 0g. We say

that W

B

touches M

I

if dim(W

B

T

M

I

) = dimM

I

= n � jI j + 1. Observe that if W

B

touches M

I

then the label of B is \yes". Since for every M

I

there exists B such that W

B

touches M

I

, Theorem 1 follows immediately from the Main Lemma below.

Main Lemma. For any branch B of T , W

B

can touch at most 2

c(d)n

sets M

I

for

some constant c(d) < 1 dependent only on d.

De�ne c(d) recursively as follows. Let c(1) = 0, and c(d) = c(d � 1) +
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(1�c(d�1))

2

1�c(d�1)+

1

d

log

2

(

2

d

2

d

�1

)

for d � 2. It is straightforward to verify that 0 � c(d) < 1 for

all d.

We now prove the Main Lemma by a series of Propositions.

Proposition 1. W

B

cannot touch M

I

;M

J

such that I

�

6=

J .

Proof. Assume the contrary. Let fj

1

; : : : ; j

n�jJ j

g = f1; : : : ; ng n J . For any

polynomial f 2 IR[X

1

; : : : ; X

n

] denote f

(J)

(X

1

; X

j

1

; : : : ; X

j

n�jJj

) = f j

X

j

=X

1

;j2J

2

IR[X

1

; X

j

1

; : : : ; X

j

n�jJj

]. (From now on, we sometimes use the notation X

i

instead of

x

i

when they are considered as formal variables instead of numbers.) One could consider

f

(J)

as the restriction of f on the plane P

J

with the coordinatesX

1

; X

j

1

; : : : ; X

j

n�jJj

, where

X

1

= X

j

for each j 2 J . Then f

(J)

1

; : : : ; f

(J)

k

vanish identically because these polynomials

vanish on the semialgebraic set W

B

T

M

J

of full dimension in the plane P

J

.

By assumption there exists a point x 2 M

I

such that g

1

(x) > 0; : : : ; g

`

(x) > 0. There

exists a ball B

x

(r) with a radius r > 0 centered in x such that g

1

; : : : ; g

l

are positive

everywhere on B

x

(r). As x 2M

I

� @M

J

there exists a point x

0

2 (B

x

(r)

T

P

J

)nM

J

. The

decision tree T being applied to x

0

goes through the branch B, since x

0

= (x

0

1

; : : : ; x

0

n

) 2

W

B

. Since branch B leads to a \yes" leave, the input x

0

is accepted by the decision tree.

This is a contradiction, as max(x

0

1

; : : : ; x

0

n

) is not x

0

1

(x

0

=2M

J

). 2

Remark 6. In fact we proved a stronger statement. Namely, if W

B

touches M

J

then

W

B

T

M

I

= ; for any I

�

6=

J .

Proposition 2. If W

B

touches M

I

then I is a minimal (with respect to the inclusion)

among the subsets f1g � J � f1; : : : ; ng such that f

(J)

1

; : : : ; f

(J)

k

vanish identically.

Proof. First, as we have seen in the proof of Proposition 1 that f

(I)

1

; : : : ; f

(I)

k

vanish

identically. Second, assume that J

�

6=

I such that f

(J)

1

; : : : ; f

(J)

k

vanish identically. As W

B

touches M

I

, there exists a point x 2 M

I

T

W

B

; by de�ntion, g

1

(x) > 0; : : : ; g

l

(x) > 0.

Then g

1

; : : : ; g

l

are positive everywhere in a ball B

x

(r) for a suitable r > 0. Since x 2

M

I

� @M

J

, the open set B

x

(r)

T

M

J

in P

J

is nonempty, and B

x

(r)

T

M

J

� W

B

by

de�nition of W

B

. Thus, W

B

touches M

J

and we get a contradiction with Proposition 1,

which proves the proposition. 2

The Main Lemma follows immediately from Proposition 2 and the following proposi-

tion.

Proposition 3. For any polynomials h

1

; : : : ; h

m

2 IR[X

1

; : : : ; X

n

] with degrees

deg(h

i

) � d, the number of sets minimal (with respect to the inclusion) among the subsets

f1g � I � f1; : : : ; ng such that h

(I)

1

; : : : ; h

(I)

m

vanish identically, does not exceed 2

c(d)n

.
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We prove the proposition by induction on d. For d = 1, each h

i

=

P

1�j�n

�

ij

X

j

+

�

i

; 1 � i � m, is a linear polynomial. Let f1g � I � f1; : : : ; ng be a minimal set for which

h

(I)

1

; : : : ; h

(I)

m

vanish identically. Then for each 1 � i � m, �

i

= 0,

P

1�j�n

�

ij

= 0, and I

must contain all j with �

ij

6= 0. Thus, either no such I exists, or there is a unique such I

consisting of f1g and all j 2 f1; : : : ; ng for which there exists 1 � i � m such that �

ij

6= 0.

This proves the proposition for the induction base d = 1.

Inductive step. Let d > 1. Consider two cases. Denote 0 < c =

1�c(d�1)

1�c(d�1)+

1

d

log

2

(

2

d

2

d

�1

)

<

1. A set V � fX

2

; : : : ; X

n

g is called a cover set if each monomial X

�

1

1

; : : : ; X

�

n

n

occurring

in at least one of the polynomials h

1

; : : : ; h

m

contains a variable from V [ fX

1

g.

1. In the �rst case there does NOT exist a cover set V of size jV j � cn. We con-

struct a set fb

1

; b

2

; : : : ; b

l

g of monomials occurring in at least one of h

1

; : : : ; h

m

such

that they are pairwise disjoint in the variables and contain only the variables from

fX

2

; : : : ; X

n

g. We add b

1

; b

2

; � � � sequentially until no additional monomial can be

added without violating the property stated above. Clearly, b

1

; : : : ; b

l

contain at

most dl variables among fX

2

; : : : ; X

n

g, and that these variables constitute a cover

set. By assumption, we must have dl > cn.

Observe that for any set f1g � I � f1; : : : ; ng such that h

(I)

1

; : : : ; h

(I)

m

vanish iden-

tically, the set fX

i

; i 2 Ig should have a common variable with each monomial

b

1

; : : : ; b

l

. Therefore, the number of all such sets I does not exceed

2

n

 

2

d

� 1

2

d

!

l

� 2

n

 

2

d

� 1

2

d

!

cn

d

: (1)

2. In the second case there exists a cover set V with jV j � cn. Consider any min-

imal f1g � I such that h

(I)

1

; : : : ; h

(I)

m

vanish identically. Let I

0

= V n fX

i

; i 2

Ig and I

1

= V \ fX

i

; i 2 Ig. We uniquely expand h

(I

1

[f1g)

j

= X

1

h

j;X

1

+

P


=(���


i

���)

(

Q

i2I

0

X




i

i

)P

j;


; 1 � i � m, where the polynomials P

j;


; h

j;X

1

are in the

variables X

i

=2 V . Note that P

j;


; h

j;X

1

depend on variables in I

0

. Since V is a cover

set, deg P

j;


� d� 1 for each multi-index 
; obviously deg(h

j;X

1

) � d� 1.

Since h

(I)

j

vanishes identically, the polynomials P

(InI

1

)

j;


also vanish identically, and

furthermore, the polynomial h

(InI

1

)

j;X

1

vanishes identically as well. Thus, I n I

1

is a

minimal set for which the polynomials P

(InI

1

)

j;


; h

(InI

1

)

j;X

1

, 1 � j � m, vanish identically.

By inductive hypothesis there are at most 2

c(d�1)(n�jV j)

possible choices of I n I

1

.

Since there are at most 2

jV j

possibilities for the choice of I

1

, we have in all at most

2

c(d�1)(n�jV j)

2

jV j

� 2

c(d�1)n

2

(1�c(d�1))cn

: (2)

minimal sets I .

7



It is straightforward to verify from (1), (2) that the number of minimal sets are no

greater than 2

c(d)n

in both cases. This completes the inductive step. We have thus proved

Proposition 3, and hence Theorem 1. 2

4 Proof of Theorem 2

Let T be any degree-d algebraic decision tree for deciding whether n� 1 input real num-

bers x

2

; x

3

; � � � ; x

n

are all less than or equal to 0. We show that the size of T is at

least 2

n�1

=m

d;n�1

. This implies Theorem 2, as any decision tree for MAX= with inputs

x

1

; x

2

; � � � ; x

n

can be converted into a decision tree for the above problem by setting x

1

= 0.

The proof is analogous to the �rst half of the proof of Theorem 1. For each I �

f2; 3; : : : ; ng, let M

I

= f(x

2

; x

3

; : : : ; x

n

) : x

i

= 0 for i 2 I , x

j

< 0 for j 62 Ig. Let B be any

branch of T , with f

1

= � � � = f

k

= 0; g

1

> 0; : : : ; g

l

> 0 being the set of constraints along

B; let W

B

� IR

n

denote the set of inputs (x

2

; x

3

; : : : ; x

n

) satisfying these constraints. We

say that W

B

touches M

I

if dim(W

B

T

M

I

) = dimM

I

= n� 1� jI j.

For any J � f2; 3; : : : ; ng and a polynomial h 2 IR[X

2

; : : : ; X

n

], de�ne the polynomial

h

(J)

(X

j

; j 62 J) = hj

X

j=0;j2J

2 IR[X

j

; j 62 J ].

Similar to Proposition 2, we have the following.

Proposition 2

0

If W

B

touches M

I

, then I is a minimal subset among all subsets J

satisfying f

(J)

i

� 0 for 1 � i � k.

The proof of Proposition 2

0

is virtually identical to that of Proposition 2. Note that if

W

B

touchesM

I

, then all the polynomials f

j

have vanishing constant terms (i.e., f

j

(0) = 0).

We want to rephrase Proposition 2

0

in terms of hypergraphs. To do this, we �rst relate

the \minimal subsets" to minimal cutsets for hypergraphs. For any h 2 IR[X

2

; : : : ; X

n

], let

G

h

denote the family of nonempty subsets fi

1

; : : : ; i

q

g for which there exists a monomial

of h with the set of variables fX

i

1

; : : : ; X

i

q

g. Given a family H of polynomials, let G

H

=

S

h2H

G

h

. Note that G

h

and G

H

are hypergraphs.

Let H = fh

1

; : : : ; h

m

g where h

i

2 IR[X

2

; : : : ; X

n

] are polynomials with no constant

terms.

Proposition 4. For any J � f2; : : : ; ng, h

(J)

1

� 0; : : : ; h

(J)

m

� 0 if and only if J is a

cutset of G

H

.

Proof. If J is a cutset of G

H

, then setting X

j

to 0 for all j 2 J kills all the monomials

in h

i

. Hence h

(J)

i

� 0 for all i. If, on the other hand, h

(J)

i

� 0 for all i, then for each i

no monomials in h

i

can be free from all X

j

; j 2 J , since otherwise h

(J)

i

is not identically

8



equal to 0. Thus, J is a cutset of G

h

i

, and since G

H

is a union of all G

h

i

, J is a cutset of

G

H

. 2

Proposition 4 implies that the sets minimal among I such that the polynomials

h

(I)

1

; h

(I)

2

; : : : ; h

(I)

m

vanish identically are exactly the minimal cutsets of G

H

.

Using Proposition 4, we can rephrase Propositions 2

0

as follows: If W

B

touches M

I

,

then I is a minimal cutset of G

F

where F = ff

1

; : : : ; f

k

g. Since G

F

is of rank d or less,

there are at most m

d;n�1

such cutsets. This proves that W

B

can touch at most m

d;n�1

M

I

's. To touch all 2

n�1

M

I

's, at least 2

n�1

=m

d;n�1

branches B are needed. Thus, T must

have size at least 2

n�1

=m

d;n�1

. This completes the proof of Theorem 2.
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