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Abstract

In this paper we give a fully polynomial randomized approx-

imation scheme (FPRAS) for the number of matchings in k-

uniform hypergraphs whose intersection graphs contain few

claws. Our method gives a generalization of the canonical

path method of Jerrum and Sinclair to hypergraphs satisfy-

ing a local restriction. The proof depends on an application

of the Euler tour technique for the canonical paths of the un-

derlying Markov chains. On the other hand, we prove that

it is NP-hard to approximate the number of matchings even

for the class of 2-regular, linear, k-uniform hypergraphs, for

all k ≥ 6, without the above restriction.

1 Introduction

A hypergraph H = (V, E) is a finite set of vertices
V together with a family E of distinct, nonempty
subsets of vertices called edges. In this paper we
consider k-uniform hypergraphs (called also k-graphs)
in which, for a fixed k ≥ 2, each edge is of size k.
A matching in a hypergraph is a set (possibly empty)
of disjoint edges. We will often identify a matching
M with the hypergraph H [M ] = (V (M), M) induced
by M in H , where V (M) =

⋃

e∈M e. We denote by
∆(H) the maximum vertex degree degH(v), that is, the
maximum number of edges of H containing a vertex
v. A hypergraph is called linear (a.k.a. simple) when
no two edges share more than one vertex, that is, the
maximum pair degree is one.

The intersection graph of a hypergraph H is the
graph L := L(H) with vertex set V (L) = E(H) and
edge set E(L) consisting of all intersecting pairs of edges
of H . When H is a graph, the intersection graph L(H)
is called the line graph of H . Every graph G is the
intersection graph of some hypergraph, in fact, of the
dual hypergraph G∗ of G (obtained by interchanging
the roles of the vertices and edges of G, equivalently, by
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Figure 1: 4-uniform 3-comb

taking the transpose of the incidency matrix of G).
In a seminal paper [15], Jerrum and Sinclair con-

structed an FPRAS (see Section 1.4 for the definition)
for counting the number of matchings in a graph (the
monomer-dimer problem) based on an ingenious tech-
nique of canonical paths. The method was extended
later in [16] to solve the permanent problem.

Here we modify their method to address the corre-
sponding problem for k-graphs, k ≥ 3. It turns out that
for k-graphs H , one can adopt the proof of the graph
case, whenever for every two matchings M, M ′ in H
the intersection graph L = L(M ∪ M ′) between M and
M ′ satisfies ∆(L) ≤ 2. This happens if and only if H
contains no 3-comb, a k-graph consisting of a matching
{e1, e2, e3} and one extra edge e4 such that |e4 ∩ ei| ≥ 1
for i = 1, 2, 3 (see Fig.1). Let us denote by Hk

0 the
family of all k-graphs which do not contain a 3-comb.
In Section 3 we give a couple of examples of classes of
k-graphs which belong to Hk

0 .
By substantially modifying the canonical path

method we are able to construct an FRPAS for a
broader class Hk

s , s ≥ 0, defined as follows. Call an
edge e ∈ H wide if it intersects a matching in H of size
at least three (so, every 3-comb contains a wide edge).
The class Hk

s consists of all k-graphs containing at most
s wide edges. Our main result is the following hyper-
graph generalization of the Jerrum-Sinclair theorem. In
fact, they, as well as many other contributors to the
field, considered the weighted case (with intensity λ),
while we, for clarity, assume that the hypergraphs are
unweighted (λ = 1). However, the weighted case can
be handled in a similar manner. Our proof method de-
pends on an application of the Euler tour technique for
the canonical paths of the underlying Markov chains.

Theorem 1.1. For every k ≥ 3 and s ≥ 0 there exists
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an FPRAS for the problem of counting all matchings in
a k-graph H ∈ Hk

s .

The proof of Theorem 1.1 is given in Section 2. We
can characterize family Hk

s in terms of the intersection
graph L(H). A claw in a graph G is an induced
subgraph of G isomorphic to the star K1,3. The vertex
of degree three in a claw will be called the center of that
claw. A k-graph H ∈ Hk

s if and only if the intersection
graph L(H) of H contains at most s centers of claws.
In particular, H ∈ Hk

0 if and only if L(H) is claw-
free. Every 2-graph, i.e., every graph, is in H2

0. For
k ≥ 3, the requirement that H ∈ Hk

s is a bit restrictive
and causes the hypergraph to be rather sparse (of size
O(nk−1)). Nevertheless, as can be seen in the next
subsection, the problem of (exactly) counting matchings
in k-graphs belonging to Hk

s is computationally hard
already for s = 0.

1.1 Approximation Hardness In this section we
demonstrate that the problem of counting matchings
in k-graphs belonging to the family Hk

0 is still #P-
complete, as well as that it is NP-hard to approximate
the number of matchings already for 2-regular, linear
6-graphs if no restriction on the number of 3-combs is
imposed.

Proposition 1. The problem of counting matchings in
a linear, k-partite k-graph H ∈ Hk

0 of maximum degree
at most 4 is #P-complete for every k ≥ 3.

Proof. We use a reduction from the problem of counting
matchings in bipartite graphs G = (V, E) of maximum
degree at most four, which, by a result of Vadhan [22]
is #P-complete. For a given bipartite graph G = (V, E)
of maximum degree at most four with a bipartition
V = V1 ∪ V2 we construct a k-graph H = (V ′, E′)
belonging to the family Hk

0 as follows. For every
edge e ∈ E we add to V additional k − 2 vertices,
so V ′ = V ∪

⋃

e∈E{v
e
1, v

e
2, . . . , v

e
k−2}. Now, every edge

e = (u, v) ∈ E is replaced by the corresponding k-tuple
(v, ve

1, v
e
2, . . . , v

e
k−2, u). Thus |V ′| = |V | + (k − 2)|E|,

|E| = |E′|, and the resulting k-graph H ′ = (V ′, E′)
is linear, k-partite, has maximum vertex degree at most
four and, more importantly, does not contain a 3-comb.
Moreover, there is a natural one-to-one correspondence
between the matchings in G and the matchings in H.

Proposition 2. For every k ≥ 6, unless NP=RP,
there is no FPRAS for the number of matchings in a
2-regular, linear k-graph.

Proof. We use a reduction from the problem of approx-
imating the number of independent sets in a k-regular

graph, k ≥ 6, for which it has been recently proved
(see [20],[11], and [21]) that, unless NP=RP, there is
no FPRAS. Any k-regular graph G is the intersection
graph of the dual hypergraph H = G∗, with vertex set
V (H) = E(G) and the edges ev ∈ H being the sets of
edges incident to the same vertex v ∈ V (G). Thus, the
number of independent sets in G equals the number of
matchings in H . Moreover, observe that by construc-
tion, H is k-uniform, 2-regular, and linear.

The meaning of Proposition 2 is that for k ≥ 6 there
is no hope for an FPRAS for the number of matchings
even if the degrees and co-degrees of H are as small as
they can get (1-regular k-graphs are matchings them-
selves and the problems become trivial). Instead one
has to impose some additional structural restrictions.
Inspired by the canonical method of Jerrum and Sin-
clair, we came up with the restriction on the number of
3-combs. In turn, Proposition 1 tells us that even the
assumption of no 3-combs at all is not too restrictive,
as the problem of exact counting of matchings remains
#P-complete in a quite narrow subclass of Hk

0 .

1.2 Motivation from Statistical Physics In 1972
Heilmann and Lieb [13] studied monomer-dimer sys-
tems, which in the graph theoretic language correspond
to (weighted) matchings in graphs. In physical applica-
tions these graphs are typically some (infinite) regular
lattices. Dimers represent diatomic molecules which oc-
cupy disjoint pairs of adjacent vertices of the lattice and
monomers are the remaining vertices. Heilmann and
Lieb proved that the associated Gibbs measure is unique
(in other words, there is no phase transition). They did
it by proving that the roots of the generating matching
polynomial of any graph are all real, equivalently that
the roots of the hard core partition function (indepen-
dence polynomial) of any line graph are all real. The
latter result was later extended to all claw-free graphs
by Chudnovsky and Seymour [8]. The uniqueness of
Gibbs measure on d-dimensional lattices was reproved
in a slightly stronger form and by a completely different
method by Van der Berg [3].

Hypergraphs may be at hand when instead of
diatomic molecules bigger molecules (polymers) are
considered which, again, can occupy “adjacent”, disjoint
sets of vertices of a lattice. As long as the hypergraph
lattice H belongs to the family Hk

0 , the intersection
graph L(H) is claw-free (because H contains no 3-comb)
and, by the result of [8] combined with the proof from
[13] there is no phase transition either. However, it is
possible to have a phase transition for a monomer-trimer
system (cf. [12]). Interestingly, the example given by
Heilmann (the decorated, or subdivided, square lattice
with hyperedges corresponding to the collinear triples
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Figure 2: Heilmann’s 3-graph lattice; the shaded edges
form a 3-comb

with midpoints at the branching points of the original
square lattice) is a 3-uniform hypergraph containing 3-
combs, and thus its intersection graph is not claw-free.
(see Fig.2).

1.3 Related Results Recently, an alternative ap-
proach to constructing counting schemes for graphs has
been developed based on the concept of spatial correla-
tion decay. This resulted in deterministic fully polyno-
mial time approximation schemes (FPTAS) for count-
ing independent sets in graphs with maximum degree
at most five ([23]), counting matchings in graphs of
bounded degree ([2]), and, very recently, counting in-
dependent sets in claw-free graphs of bounded degree
([10]). It is not clear to what extent these methods can
be applied to hypergraphs.

The above mentioned result of Weitz [23] has been
recently complemented by the hardness result for graphs
with maximum degree at most six, used in the proof of
Proposition 2 above. In turn, an FPTAS for counting
independent sets in claw-free graphs of bounded degree
trivially implies an FPTAS for counting matchings in
hypergraphs whose intersection graphs have bounded
degree too. This is the case of the Heilmann lattice
described in the previous subsection (the maximum
degree of its intersection graph is three), which, by
the way,undermines our temptation to link the absence
of phase transition for a hypergraph lattice with the
absence of a 3-comb, that is, with the claw-freeness of
the intersection graph of the lattice.

As far as hypergraphs are concerned, the authors of
[4] showed that, under certain conditions, the Glauber
dynamics for independent sets in a hypergraph, as well
as the Glauber dynamics for proper colorings of a hy-
pergraph mix rapidly. It is doubtful, however, if the
path coupling technique applied there can be of any use
for the problem of counting matchings in hypergraphs.
Nevertheless, paper [4] marks a new line of research, as

there have been only few results ([6], [7]) on approxi-
mate counting in hypergraphs before. The only other
paper devoted to counting matchings in hypergraphs we
are aware of is [1], where Barvinok and Samorodnitsky
compute the partition function for matchings in hyper-
graphs under some restrictions on the weights of edges.
In particular they are able to distinguish in polynomial
time between hypergraphs that have sufficiently many
perfect matchings and hypergraphs that do not have
nearly perfect matchings.

1.4 Approximate Counting and Uniform Sam-

pling Given ǫ > 0 and δ > 0, we say that a random
variable Y is an (ǫ, δ)-approximation of a constant C if

P (|Y − C| ≥ ǫC) ≤ δ. Let f be a function over a set of
input strings Σ∗.

Definition 1. A randomized algorithm is called a
fully polynomial randomized approximation scheme
(FPRAS) for f if for every triple (ǫ, δ, x) with ǫ >
0, δ > 0, and x ∈ Σ∗, the algorithm returns an (ǫ, δ)-
approximation Y of f(x) and runs in time polynomial
in 1/ǫ, log(1/δ), and |x|.

Consider a counting problem, that is, a problem
of computing f(x) = |Ω(x)|, where Ω(x) is a well
defined finite set associated with x (think of the set
of all matchings in a hypergraph). As it turns out (see
below), to construct an FPRAS for such a problem it is
sufficient to be able to efficiently sample an element of
Ω(x) almost uniformly at random. To make it precise,
given ǫ > 0, we say that a probability distribution

P : 2Ω → [0, 1] over a finite sample space Ω is ǫ-uniform

if for every S ⊆ Ω,
∣

∣

∣P(S) − |S|
|Ω|

∣

∣

∣
≤ ǫ, that is, if the

total variation distance, dTV (P, 1
|Ω| ), between the two

distributions is bounded by ǫ.

Definition 2. A randomized algorithm is called a fully
polynomial almost uniform sampler (FPAUS) for a
counting problem |Ω(x)| if for every pair (ǫ, x) with
ǫ > 0 and x ∈ Σ∗, the algorithm samples ω ∈ Ω(x)
according to an ǫ-uniform distribution P and runs in
time polynomial in 1/ǫ and |x|.

It has been proved by Jerrum, Valiant, and Vazirani
[17] that for a broad class of counting problems, called
self-reducible, including the matching problem, knowing
an FPAUS allows one to construct an FPRAS. For a
proof in the graph case see Proposition 3.4 in [14]. The
hypergraph case follows mutatis mutandis. Thus, the
proof of Theorem 1.1 reduces to constructing an FPAUS
for matchings in H .

In fact, this approach has been invented for match-
ings in graphs already by Broder in [5], and successfully
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executed by Jerrum and Sinclair in [15]. In their ver-
sion the main steps of finding an efficient FPAUS for
matchings in a graph H were

• a construction of an ergodic time-reversible, sym-
metric Markov chain MC(H) whose state space Ω
consists of all matchings in H ;

• a proof that MC(H) is rapidly mixing.

1.5 Rapid Mixing Given an arbitrary probability
distribution P0 on the state space Ω, let us define the
mixing time tmix(ǫ) of a Markov chain MC as

tmix(ǫ) = min{t : dTV (Pt,
1
|Ω| ) ≤ ǫ},

where Pt is the chain’s state distribution after t steps,
beginning from the initial distribution P0. Recall that if
an ergodic time-reversible Markov chain is symmetric,
i.e., the transition probabilities satisfy pij = pji for
all i, j ∈ Ω, then its unique stationary distribution is
uniform (cf. [14]). In that case we define the transition
graph GMC = G of MC as a graph on the vertex set
V (G) = Ω and the edge set E(G) = {{i, j} : pij > 0}.
Note that G is undirected but, possibly, with loops.
The pivotal role in estimating the rate of convergence of
MC to its uniform stationary distribution is played by
an expansion parameter, called the conductance and
denoted Φ(MC). Given S ⊆ Ω, let

cut(S) = {ij ∈ G, i ∈ S, j ∈ Ω \ S}

be the edge-cut of G defined by S. In the symmetric
case the conductance is defined by a simplified formula

(1.1) Φ := Φ(MC) = minS

∑

{pij : ij ∈ cut(S)}

|S|
,

where here (and below) the minimum is taken over all
S ⊆ Ω with 0 < |S| ≤ 1

2 |Ω|. Indeed, it follows from
Theorem 2.2 in [15] that if pii ≥

1
2 for all i ∈ Ω then

(1.2) dTV (Pt,
1
|Ω| ) ≤ |Ω|2

(

1 − Φ2/2
)t

,

regardless of the initial distribution P0, and conse-
quently,

(1.3) tmix(ǫ) ≤
2

Φ2

(

2 log |Ω| + log ǫ−1
)

.

Hence, it becomes crucial to estimate the conductance
from below by the reciprocal of a polynomial in the
input size. To this end, observe that, by (1.1),

(1.4) Φ(MC) ≥ minS
pmin|cut(S)|

|S|
,

where

pmin = min{pij : {i, j} ∈ G, i 6= j}.

For Markov chains defined on the space of all matchings
of an n-vertex k-graph H , denoted further by MC(H),
to bound |cut(S)|, Jerrum and Sinclair introduced the
method of canonical paths which boils down to:

• defining a canonical path in G = GMC(H) for every
pair of matchings (I, F ) in H ;

• bounding from above the number of canonical
paths containing a prescribed transition (an edge
of G) by poly(n)|Ω|.

Since every canonical path between a matching in S
and a matching in the complement of S must go through
an edge of cut(S), we then have, for |S| ≤ 1

2 |Ω|,

(1.5) |cut(S)| ≥
|S|(|Ω| − |S|)

poly(n)|Ω|
≥

|S|

2poly(n)

and, by (1.4),

(1.6) Φ(MC(H)) ≥
pmin

poly(n)
.

2 The Proof of Theorem 1.1

In this section we first give a proof of Theorem 1.1 in
its special case s = 0. This proof is similar to the proof
from [15]. After that we show how this proof can be
modified in order to yield the full generality of our main
result.

We begin by defining a Metropolis Markov chain
whose states are the matchings of a k-graph H and
then show that the chain is rapidly mixing to a uniform
stationary distribution, yielding an FPAUS.

2.1 The Markov Chain Given a k-graph H =
(V, E), |V | = n, let Ω(H) denote the set of all matchings
in H. We define a Markov chain MC(H) = (Xt)

∞
t=0

with state space Ω(H) as follows. Set X0 = ∅ and for
t ≥ 0, let Xt be a matching M = {h1, h2, . . . , hs} in
H , 0 ≤ s ≤ n/k. Choose an edge h ∈ H uniformly
at random and consider the set Ih := {i : h ∩ hi 6=
∅, i = 1, . . . , s} of the edges of M intersected by h. The
following transitions from Xt are allowed in MC(H):

(-) if h ∈ M then M ′ := M − h,

(+) if h /∈ M and |Ih| = 0 then M ′ := M + h,

(+/-) if h /∈ M and Ih = {j} then M ′ := M + h − hj ,

(0) if h /∈ M and |Ih| ≥ 2 then M ′ := M .
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Finally, with probability 1/2 set Xt+1 := M ′, else
Xt+1 := Xt.

Fact 2.1. The Markov chain MC(H) is ergodic and
symmetric.

Proof. First note that this chain is irreducible (one can
get from any matching to any other matching by a
sequence of transitions given above and aperiodic (due
to loops), and so it is ergodic. To prove the symmetry of
MC(H), note that for two different matchings M, M ′ ∈
Ω(H), the transition probability
(2.7)

PM,M ′ =











1
2|H| if |M ⊕ M ′| = 1

1
2|H| if M ⊕ M ′ = {e, f}, e∩ f 6= ∅

0 otherwise .

Thus, PM,M ′ = PM ′,M .

The above fact implies that MC(H) converges to a sta-
tionary distribution that is uniform over Ω(H). More-
over, by the definition of MC(H) (cf. (2.7))

pmin = min{PM,M ′ : {M, M ′} ∈ G, M 6= M ′}

=
1

2|H |
≥ n−k .(2.8)

2.2 Canonical Paths In this section we define
canonical paths, a tool used for estimating the mixing
time of the Markov chain MC(H) introduced in the pre-
vious subsection.

For us, a path is a k-graph with edge set
{e1, . . . , em}, m ≥ 1, where for every 1 ≤ i < j ≤ m,
ei ∩ ej 6= ∅ if and only if j = i + 1. If m ≥ 3 and, in
addition, e1∩em 6= ∅, then such a k-graph will be called
a cycle. (Note that a pair of edges sharing at least two
vertices is still a path, not a cycle.)

Set V (H) = {1, 2, . . . , n} and minS = min{i : i ∈
S} for any S ⊆ V (H). Let (I, F ) be an ordered pair
of matchings in Ω(H) (we might think of them as the
initial and the final matching of the canonical path-to-
be). The symmetric difference I ⊕ F is a hypergraph
with ∆(I ⊕ F ) ≤ 2 and, due to the assumption that
H ∈ Hk

0 , also ∆(L(I ⊕ F )) ≤ 2, that is, in I ⊕ F every
edge intersects at most two other edges. Hence, each
component of I ⊕ F is a path or a cycle, in which the
edges of I alternate with the edges of F . In particular,
each cycle-component has an even number of edges.

Let us order the components Q1, . . . , Qq of I ⊕F so
that min V (Q1) < · · · < min V (Qq). We construct the
canonical path γ(I, F ) = (M0, . . . , Mt) in the transition
graph G by setting M0 = I and then modifying the
current matching by transitions (+), (-), or (+/-), while
traversing the components Q1, . . . , Qq as follows. For

the sake of uniqueness of the canonical path, each
component will be traversed from a well defined starting
point (an edge e1) and in a well defined direction
e1, e2, . . . es. Of course, for a path component there are
just two starting points (which determine directions),
while for a cycle component there are s starting points
and two directions from each. The particular rules
for choosing the starting point and direction are quite
arbitrary and do not really matter for us. Suppose that
we have already constructed matchings M0, M1, . . . , Mj

and traversed so far the components Q1, . . . , Qr−1.
If Qr is an even path then we assume that e1 ∈ F

(and so es ∈ I) and take Mj+1 = Mj + e1− e2, Mj+2 =
Mj+1 + e3 − e4, ..., Mj+s/2 = Mj+s/2−1 + es−1 − es. If
Qr is an odd path then we assume that min(e1 ∩ e2) <
min(es−1 ∩ es). If e1, es ∈ I then take Mj+1 = Mj − e1,
Mj+2 = Mj+1 + e2 − e3, Mj+3 = Mj+2 + e4 − e5, ...,
Mj+(s+1)/2 = Mj+(s−1)/2 + es−1 − es. If e1, es ∈ F , we
apply the sequence of transitions Mj+1 = Mj + e1 − e2,
Mj+2 = Mj+1 + e3− e4, ..., Mj+(s−1)/2 = Mj+(s−3)/2 +
es−2−es−1, and Mj+(s+1)/2 = Mj+(s−1)/2 +es. Finally,
if Qr = (e1, . . . , es) is a cycle then we assume that
min e1 = min(V (Qr) ∩ V (I)) and min(e2 ∩ e3) >
min(es−1 ∩ es), and follow the sequence of transitions
Mj+1 = Mj − e1, Mj+2 = Mj+1 + e2 − e3, Mj+3 =
Mj+2 + e4 − e5, ...,Mj+s/2 = Mj+s/2−1 + es−2 − es−1,
and Mj+s/2+1 = Mj+s/2 + es.

We call the component Qr of I ⊕ F the venue
of the transition (Mj , Mj+1) (on the canonical path
γ(I, F )) if Mj⊕Mj+1 ⊆ E(Qr). Note that the obtained
sequence γ(I, F ) = (M0, . . . , Mt) is unique and satisfies
the following properties:

(a) M0 = I and Mt = F ,

(b) for every j = 0, . . . , t − 1, the pair {Mj, Mj+1} is
an edge of the transition graph G,

(c) for every j = 0, . . . , t, we have I ∩F ⊆ Mj ⊆ I ∪F ,

(d) for every j = 0, . . . , t, we have F ∩
⋃r−1

i=1 Qi ⊆ Mj

and I ∩
⋃q

i=r+1 Qi ⊆ Mj, where Qr is the venue of
(Mj , Mj+1).

2.3 Bounding the Cuts Fix a transition edge
(M, M ′) in G. Let ΠM,M ′ = {(I, F ) : (M, M ′) ∈
γ(I, F )} be the set of canonical paths containing the
transition edge (M, M ′). Our goal is to show that

(2.9) |ΠM,M ′ | ≤ |Ω0(H)|,

where Ω0(H) = {H ′ ⊆ H : ∃e ∈ H ′ such that H ′ −
e ∈ Ω(H)}. Note that |Ω0(H)| ≤ |{(M, e) : M ∈
Ω(H), e ∈ H}| ≤ nk|Ω(H)| and log |Ω(H)| =
O(n log n). Thus, in view of the remarks at the end
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of Section 1, the estimates (1.3), (1.5), (1.6), (2.8), and
(2.9) yield a polynomial bound on tmix(ǫ) and thus com-
plete the proof of Theorem 1.1 for s = 0.

We will prove (2.9) by defining a function ηM,M ′ :
ΠM,M ′ → Ω0(H) and showing that ηM,M ′ is an injec-
tion. Fix (I, F ) ∈ ΠM,M ′ and define

(2.10) ηM,M ′(I, F ) = (I ⊕ F ) ⊕ (M ∪ M ′).

Fact 2.2. For all (I, F ) ∈ ΠM,M ′ we have
ηM,M ′(I, F ) ∈ Ω0(H).

Proof. If (I, F ) ∈ ΠM,M ′ then the canonical path
γ(I, F ) = (M0, . . . , Mt) contains a consecutive pair
Mj = M and Mj+1 = M ′ for some j ∈ {0, . . . , t}.
Let Qr be the component of I ⊕ F which is the venue
of (M, M ′) on γ(I, F ). By the construction of γ(I, F )
it follows that ηM,M ′(I, F ) is a matching, unless Qr is
a cycle (e1, . . . , es) and M ′ = M + eℓ − eℓ+1 for some
ℓ ∈ {2, 4, . . . , s − 2}. But then, by property (d) from
Section 2.2, we have

ηM,M ′(I, F ) = I ∩
r−1
⋃

i=1

(Qi ∪ F )∪

q
⋃

i=r+1

Qi ∪ {e1, e3, . . . , eℓ−1, eℓ+2, . . . , es}.

Hence, ηM,M ′(I, F ) − e1 ∈ Ω(H), and, consequently,
ηM,M ′(I, F ) ∈ Ω0(H).

Fact 2.3. The mapping ηM,M ′ : ΠM,M ′ → Ω0(H) is
injective.

Proof. We will prove this fact by showing that any value
η of this function uniquely determines the pair (I, F )
for which ηM,M ′(I, F ) = η. Given ηM,M ′(I, F ) we can
recover I ⊕ F by reversing equation (2.10):

I ⊕ F = η ⊕ (M ∪ M ′).

By property (c) from Section 2.2, we immediately have
I ∩F = M \ (I ⊕F ). It remains to distinguish between
the edges of I ⊕ F which belong to I and to F . First
observe that we can recover the original ordering of
the components Q1, . . . , Qq of I ⊕ F (by computing
min V (Qi) for all i), as well as the venue Qr of the
transition (M, M ′) on the canonical path γ(I, F ) (by
locating M ⊕ M ′). By property (d), for every i < r
we have Qi ∩ M ⊆ F , while for every i > r we have
Qi ∩ M ⊆ I. To reconstruct I and F on Qr, note
that it suffices to identify just one edge of Qr and then
follow the alternating pattern of I and F on Qr. To
this end, note that |M \ M ′| ≤ 1 and |M ′ \ M | ≤ 1 but
|M⊕M ′| ≥ 1. If M\M ′ = {e} then e ∈ I. If M\M ′ = ∅
then the unique edge which belongs to M ′ \ M is in F .

2.4 The General Case For s > 0, rather than
constructing an implicit approximation scheme based on
a (recursive) reduction to the case s = 0, we construct
a single generalized FPRAS for that problem. When
3-combs are possible, the structure of a union of two
matchings I and F can be much more complex, as L(I⊕
F ) may have vertices of degrees up to k. Nevertheless
we are still able to apply a modification of the canonical
path method. For the same Markov chain MC(H) as
before, let us redefine the canonical path γ(I, F ) as
follows. We again order the components of I ⊕ F and
focus on a single component Qr. Now, we define a
skeleton graph Sr by replacing each edge of Qr with
a (graph) cycle Ck. Note that every vertex of Sr has
degree two or four and therefore, by Euler’s theorem,
there is an Eulerian tour Er in Sr. We construct the
canonical path γ(I, F ) in the transition graph G by
tracing the tours Er, r = 1, . . . , q.

First, for every r we select a start vertex v0 in Er,
which is determined by the smallest indicator. Next, we
choose a direction in the following way.

(i) If degEr
(v0) = 4 then there exist g ∈ I and f ∈ F

such that v0 ∈ f ∩ g. As the first edge of Er take
(v0, w), where w is the smaller of the two neighbors
of v0 on Sr which are in g .

(ii) If degCi
(v0) = 2 and there exists g ∈ I such that

v0 ∈ g, then we choose (v0, w) as above.

(iii) If degCi
(v0) = 2 and there exists f ∈ F such that

v0 ∈ f , then the first edge of Er is (v0, w), where
w is the smaller of the two neighbors of v0 on Sr

(which are in f).

The canonical path γ(I, F ) is now being constructed
as we follow the edges of the Eulerian tours E1, . . . , Eq

from the starting points and in the directions defined
above. Let us fix Er = (e1, e2, . . . , es). Suppose that we
have traversed already l − 1 edges of Er and let Mj−1

be the current state on the transition path γ(I, F ). We
have two cases:

1) Let el ⊆ g ∈ I. If g ∈ Mj−1 then Mj := Mj−1 − g,
while if g /∈ Mj−1 then do nothing.

2) Let el ⊆ f ∈ F and set If = {h1, . . . , hm}. If
f ∈ Mj−1 then do nothing, while if f /∈ Mj−1 then
Mj := Mj−1−h1, Mj+1 := Mj−h2, . . . , Mj+m−2 =
Mj+m−3 − hm−1, Mj+m−1 = Mj+m−2 + f − hm.

So far we have not used the assumption on the
bounded number of wide edges in H . But here it comes.
In order to bound |ΠM,M ′ | ≤ poly(n)|Ω(H)| we de-
fine, as before, the function ηM,M ′ (I, F ). However, now
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ηM,M ′(I, F ) is farther away from being a matching. In-
deed, the presence of wide edges may lead to situations
where, e.g., e1, e2, e3 ∈ I, e4 ∈ F , and e4 ∩ ei 6= ∅,
i = 1, 2, 3. Then, in the process of creating the canon-
ical path γ(I, F ), in order to put e4 on the current
matching Mj we would need first to delete e1 and e2,
and at least one of them, say e2, by a transition of
type (-). As e2 might intersect two other (than e4)
edges of F , this may create a path of length three in
the set ηM,M ′(I, F ). Fortunately, this scenario can re-
peat at most s times and, consequently, ηM,M ′(I, F )
belongs to the set Ωs(H) = {H ′ ⊆ H : ∃e0, e1 . . . , es ∈
H ′ such that H ′ − {e0, e1, . . . , es} ∈ Ω(H)}. Finally,
note that |Ωs(H)| ≤ |{(M, e0, e1, . . . , es) : M ∈
Ω(H), e0, e1, . . . , es ∈ H}| ≤ n(s+1)k|Ω(H)|. Theorem
1.1 follows for any fixed s ≥ 0.

3 Hypergraphs with no 3-Combs

In this section we give a couple of examples of classes
of uniform hypergraphs which belong to family Hk

0 . We
concentrate on hypergraphs whose intersection graphs
have unbounded maximum degree, so that the result of
[10] does not apply to them (cf. Section 1.3).

3.1 Subdivided 3-graphs The following operation
generalizes the edge subdivision in graphs. For an
arbitrary 3-graph H = (V, E) construct the subdivided
3-graph H ′ = (V ′, E′) in the following way. The
vertex set is V ′ = V ∪ VE , where VE = {ve : e ∈
E} is disjoint from V . The edge set E′ is obtained
by replacing each hyperedge e = {v1, v2, v3} with all
four triples of the form {vi, vj , ve}. It is easy to see
that for every H the hypergraph H ′ contains no 3-
comb. Observe that |H ′| = Θ(|V ′|) and, depending on
the structure of H , we might also have ∆(L(H ′)) =
Θ(|V |). Note that for a linear H , every matching
M = {{u1, v1}, . . . , {ut, vt}} in the shadow graph Γ(H)
of H (obtained by replacing each hyperedge with a
graph triangle) determines uniquely a matching M ′ =
{e1, . . . , et} in H ′, where ei is the unique edge of H
containing the pair {ui, vi}. Moreover, every matching
of H ′ is determined this way. Thus, for linear H ,
the problem of counting matchings in H ′ reduces to
counting matchings in graphs. In the special case
when for all e ∈ H we have νe = 1 (see Fig.3),
the above defined operation generalizes the operation
of edge subdivision for graphs and, as for graphs, it
preserves hypergraph planarity.

3.2 Rooted Blow-up Hypergraphs Partition an
N -vertex set V into n nonempty sets V1, . . . , Vn, and
fix one vertex vi ∈ Vi (the root) for each i = 1, . . . , n.
Fix k ≥ 2 and for every pair 1 ≤ i < j ≤ n include to

Figure 3: a subdivided 3-graph

the edge set E the family Eij of all k-element subsets
of Vi ∪ Vj containing both roots, vi and vj . Again, it is
not hard to see that the obtained k-graph D = (V, E)
contains no 3-comb. Note that when |Vi| = O(1) for all
i, the hypergraph D has Θ(n2) edges and ∆(L(D)) =
Θ(n).

4 Further Research

It remains an open question how to extend our result
to larger classes of hypergraphs. In particular, in view
of Proposition 2, an intriguing open question is about
the existence of an FPRAS for the class of all k-uniform
hypergraphs, k = 3, 4, 5. The success in the case of
graphs (k = 2) relied mostly on the fact that every
graph is free of 3-combs and thus I ⊕ F has a very
simple structure. This is the case of the hypergraphs in
the family Hk

0 as well. By a more complex argument we
were able to prove the existence of an FPRAS for Hk

s ,
s ≥ 0. For general hypergraphs, however, the unlimited
presence of wide edges may cause the image of ηM,M ′

to become much larger than poly(n)Ω(H), and thus the
crucial inequality (1.5) from Section 1.5 might fail.

As another direction of further research one can try
to obtain an FPRAS for perfect matchings in dense k-
uniform hypergraphs, where the density is measured
as, e.g., in [18]. For k = 2 this was done already in
[15]. The corresponding decision problem for this class
of hypergraphs as well as the problem of constructing
a perfect matching was proven in [18] to be polynomial
time solvable. The 3-combs are an obstacle here too, but
in addition, we are facing the problem of the necessity
of including into the state space of the Markov chain
matchings much smaller than the perfect ones (in [15]
it was important that the state space consisted only of
perfect and near-perfect matchings, that is, matchings
missing just two vertices).
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