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Abstract

We present some of the recent results on computational complexity of ap-

proximating bounded degree combinatorial optimization problems. In particular,

we present the best up to now known explicit nonapproximability bounds on the

very small degree optimization problems which are of particular importance on

the intermediate stages of proving approximation hardness of some other generic

optimization problems.

1 Introduction

An interesting approximation hardness phenomenon of combinatorial optimiza-

tion was discovered in [PY91] and [ALMSS92], to the e�ect that the bounded

degree instances of several optimization problems are hard to approximate to

within an arbitrary constant. This fact seemed to be a bit puzzling at the time

as bounded degree instances of many optimization problems were known to have

trivial approximation algorithms dramatically improving performances of the best

known approximation algorithms on general instances. An interesting artifact on

their complementary, i. e. dense, instances was also the existence of polyno-

mial time approximation schemes (PTASs) for them [AKK95], [KZ97], see [K01]
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for a survey. We discuss here explicit approximation lower bounds for bounded

degree instances with a very small bounds on degrees like 3 or 4, and also the

best known approximation algorithms on that instances. These instances have

turned out to be particularly important at the intermediate reduction stages for

proving hardness of approximation of some other important optimization prob-

lems, like Set Cover, some restricted versions of Traveling Salesman Problem, and

the problem of Sorting by Reversals motivated recently by molecular biology, cf.

[F98], [PY91], [PY93], [BK99], [FK99], [E99], [EK00]. We mention here some

interesting new results on asymptotic relations between hardness of approxima-

tion and bounds on a degree of instances [H00], [T01]. These results do not yield

though explicit lower approximation bounds for small degree instances needed in

applications mentioned before.

We survey in this paper the best known up to now explicit approximation

lower bounds for the small degree (number of variable occurrences) optimiza-

tion problems, like the problems of maximization or minimization of the sat-

is�ability of systems of linear equations mod 2, MAX-CUT, MAX- and MIN-

BISECTION, MAX-2SAT, MAXIMUM INDEPENDENT SET, and MINIMUM

NODE COVER [BK99], [BK01b]. We move on, and apply these results to get ex-

plicit lower approximation bounds for the problem of Sorting by Reversals [BK99],

and the Traveling Salesman Problem with distances one and two [EK00]. Finally,

we mention recent improvement on approximation ratios of algorithms for small

degree MAX-CUT and MAX-BISECTION problems based on local enhancing

methods for semide�nite programming [FKL00a], [FKL00b], [KKL00].

2 Bounded Degree Maximization Problems

We are going to de�ne basic optimization problems of this section.

� MAX-Ek-LIN2: Given a set of equations mod 2 with exactly k variables

per equation, construct an assignment maximizing the number of equations

satis�ed.

� b-OCC-MAX-Ek-LIN2: Given a set of equations mod 2 with exactly k vari-

ables per equation and the number of occurrences of each variable bounded

by b, construct an assignment maximizing the number of equations satis�ed.

� b-OCC-MAX-HYBRID-LIN2: Given a set of equations mod 2 with exactly

two or three variables per equation, and the number of occurrences of each

variable bounded by b, construct an assignment maximizing the number of

equations satis�ed.

� b-OCC-MAX-2SAT: Given a conjunctive normal form formula with two

variables per clause, construct an assignment maximizing the number of

clauses satis�ed.
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� d-MAX-CUT: Given an undirected graph of degree bounded by d, partition

its vertices into two groups so as to maximize the number of edges with

exactly one endpoint in each group.

� d-MIS: Given an undirected graph of degree bounded by d, construct a

maximum cardinality subset of vertices such that no two vertices of it are

adjacent.

We are going to display now approximation preserving reductions which re-

duce from the MAX-E2-LIN2 and the MAX-E3-LIN2 problems. The method of

reductions depends on a new wheel-ampli�er construction of Berman and Karpin-

ski [BK99] designed specially for bounded degree problems. This kind of ampli�er

has turned out to be more e�cient than the standard expander ampli�ers (cf.

e.g., Arora and Lund [AL97]) for small degree, and number of occurrences, opti-

mization problems.

We start with the following known inapproximability results of H�astad [H97].

Theorem 1. ([H97]) For any 0 < � <

1

2

, it is NP-hard to decide whether

an instance of MAX-E2-LIN2 with 16n equations has its optimum value above

(12 � �)n or below (11 + �).

Theorem 2. ([H97]) For any 0 < � <

1

2

, it is NP-hard to decide whether an

instance of MAX-E3-LIN2 with 2n equations has its optimum value above (2��)n

or below (1 + �)n.

In Berman and Karpinski [BK99] the following polynomial time randomized

approximation preserving reductions were constructed:

� f

1

: MAX-E2-LIN2 ! 3-OCC-MAX-E2-LIN2,

� f

2

: MAX-E2-LIN2 ! 3-MAX-CUT,

� f

3

: MAX-E3-LIN2 ! 3-OCC-MAX-HYBRID-LIN2,

The constructions for f

1

, and f

2

use variants of wheel-ampli�er methods,

whereas a construction for f

3

uses certain 3-hypergraph extension of it. The

following optimizing properties of f

1

; f

2

, and f

3

were proven in [BK99].

Theorem 3. ([BK99]) For any 0 < � <

1

2

, it is NP-hard to decide whether an

instance of f

1

(MAX-E2-LIN2) 2 3-OCC-MAX-E2-LIN2 with 336 edges has its

optimum value above (332 � �)n or below (331 + �)n.

A similar result can be proven for f

2

, and the 3-MAX-CUT-problem.
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Theorem 4. ([BK99]) For any 0 < � <

1

2

, it is NP-hard to decide whether an

instance of f

2

(MAX-E2-LIN2) 2 3-MAX-CUT with 336 edges has its optimum

value above (332 � �)n or below (331 + �)n.

For f

3

and MAX-HYBRID-LIN2 we have

Theorem 5. ([BK99]) For any 0 < � <

1

2

, it is NP-hard to decide whethr an in-

stance of f

3

(MAX-E3-LIN2) 2 3-OCC-MAX-HYBRID-LIN2 with 60n equations

with exactly two variables and 2n equations with exactly three variables has its

optimum value above (62 � �)n or below (61 + �)n.

Theorem 4 can be also used to derive the following bound for 3-OCC-MAX-

2SAT.

Theorem 6. ([BK99]) For any 0 < � <

1

2

, it is NP-hard to decide whether

an instance of 3-OCC-MAX-2SAT, with 2016n clauses has its optimum above

(2012 � �)n or below (2011 + �)n.

The 3-OCC-MAX-HYBRID-LIN2 problem and Theorem 5 can be used to

derive lower bounds for 4-MIS problem, and using some more subtle construction,

even for 3-MIS problem.

Theorem 7. ([BK99]) For any 0 < � <

1

2

, it is NP-hard to decide whether an

instance of 4-MIS with 152n nodes has its optimum value above (74��)n or below

(73 + �)n, and whether an instance of 3-MIS with 284n nodes has its optimum

value above (140 � �)n or below (139 + �)n.

The results above imply the following explicit nonapproximability results.

Corollary 1. For every � > 0, it is NP-hard to approximate:

(1) 3-OCC-MAX-E2-LIN2 and 3-MAX-CUT to within a factor 332=331 � �,

(2) 3-OCC-MAX-HYBRID-LIN2 to within a factor 62=61 � �,

(3) 3-OCC-MAX-2SAT to within a factor 2012=2011 � �,

(4) 4-MIS to within a factor 74=73��, and 3-MIS to within a factor 140=139��.

The best to our current knowledge gaps between upper and lower approxi-

mation bounds are summarized in Table 1. The upper approximation bounds

are from [GW94], [BF94], [BF95], [FG95], [FKL00a].The technical results of this

section will be used also later on in our paper.
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TABLE 1:

Bounded Degree Maximization Problems

Problem Approx. Upper Approx. Lower

3-OCC-MAX-E2-LIN2 1.0858 1.0030

3-OCC-MAX-HYBRID-LIN2 2 1.0163

3-MAX-CUT 1.0858 1.0030

3-OCC-MAX-2SAT 1.0741 1.0005

3-MIS 1.2 1.0071

4-MIS 1.4 1.0136

3 Bounded Degree Minimization Problems

We are going to introduce now the following minimization problems.

� d-Node Cover: Given an undirected graph of degree bounded by d, con-

struct a minimum cardinality subset of vertices such that each edge of a

graph has hat least one of its endpoints in it.

� MIN-Ek-LIN2: Given a set of equations mod 2 with exactly k variables

per equation, construct an assignment minimizing the number of equations

satis�ed.

� b-OCC-MIN-Ek-LIN2: Given a set of equations mod 2 with exactly k vari-

ables per equation and the number of occurrences of each variable exactly

equal to b, construct an assignment minimizing the number of equations

satis�ed.

� MIN-BISECTION: Given an undirected graph, partition the vertices into

two equal halves so as to minimize the number of edges with exactly one

endpoint in each half.

� d-MIN-BISECTION: Given a d-regular graph, partition the vertices into

two equal halves so as to minimize the number of edges with exactly one

endpoint in each half.

We will specialize now techniques of Section 2 to obtain lower approximation

bounds on bounded degree minimization problems.
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We start with a direct application of Theorem 7 towards d-Node Cover prob-

lem. For a given undirected graph G = (V;E), and a maximum independent

set I of G, V nI is a minimum node cover of G. We take now an instance of

4-MIS with 152n nodes. It is NP-hard, for any 0 < � <

1

2

, to decide whether

4-Node Cover has its optimum value above (152� 73� �)n = (79� �)n or below

(152 � 74 + �)n = (78 + �)n. Similarly for 3-Node Cover. Thus we have

Theorem 8. For any 0 < � <

1

2

, it is NP-hard to decide whether an instance of

4-Node Cover with 152n nodes has its optimum value above (79 � �)n or below

(78 + �)n, and whether an instance of 3-Node Cover with 284n has its optimum

value above (145 � �)n or below (144 + �)n.

Theorem 8 gives the following approximation lower bounds for 4-Node Cover

and 3-Node Cover problems.

Corollary 2. For every � > 0, it is NP-hard to approximate

1. 3-Node Cover to within a factor 145=144 � �,

2. 4-Node Cover to within a factor 79=78 � �.

We turn now to the bounded occurrence minimum satis�ability of linear equa-

tions.

We need the following recent result of Dinur, Kindler, Raz and Safra [DKRS00]

(see also [DKS98], [KST97]).

Theorem 9.([DKRS00])MIN-LIN2 is NP-hard to approximate to within a factor

n

c=loglogn

for some constant c.

MIN-LIN2 is equivalent to the well known Nearest Codeword problem (cf.

[ABSS93]). Only very recently the �rst sublinear approximation ratio O(n=logn)

algorithm was designed by Berman and Karpinski [BK01b].

We introduce now a notion of an (r; t)-approximation algorithm. For two

functions r and t, we call an approximation algorithm A for an optimization

problem P , an (r(n); t(n))-approximation algorithm if A approximates P within

an approximation ratio r(n) and A works in O(t(n)) time for n a size of an

instance.

Berman and Karpinski [BK01b] proved the following result on the (r; t)-

approximations of the 3-OCC-MIN-E3-LIN2 problem.

Theorem 10. ([BK01b]) There exists a constant c such that if there exists an

(r(n); t(n))-approximation algorithm for 3-OCC-MIN-E3-LIN2, then there exists

an (r(cn); t(cn))-approximation algorithm for MIN-LIN2.

Theorem 9 entails now
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Theorem 11. The problem 3-OCC-E3-LIN2 is NP-hard to approximate to within

a factor n

c=loglogn

for some constant c.

The 3-OCC-MIN-E3-LIN2 problem is equivalent to the exactly-3 bounded

occurrence 3-ary Nearest Codeword problem (c.f. [KST97]), and therefore we

have

Corollary 3. The 3-ary Nearest Codeword problem with the number of occur-

rences of each variable exactly equal to 3 is NP-hard to approximate to within a

factor n

c=loglogn

for some constant c.

We apply a similar technique for the problem of MIN-BISECTION. Here our

result will be only relative to the approximation hardness of MIN-BISECTION,

the status of which is wide open, and we know currently of no proof technique

which excludes existence of a PTAS for that problem.

Somewhat surprisingly in that context, Berman and Karpinski [BK01b]

proved the following result on approximation hardness of bounded degree ver-

sion of MIN-BISECTION.

Theorem 12. ([BK01b]) If there exists an (r(n); t(n))-approximation algorithm

for 3-MIN-BISECTION, then there exists an (r(n

3

); t(n

3

))- approximation algo-

rithm for MIN-BISECTION.

The best currently known approximation algorithm for the MIN-BISECTION

is of ratio O(log

2

n) due to Feige and Krauthgamer [FK00]. Any asymptotic

improvement on approximation ratio r for 3-regular graphs, say r = o(log

2

n),

will entail, by Theorem 12, an improvement on an approximation ratio for the

general MIN-BISECTION.

A similar technique can be also used to prove approximation hardness result

for the general planar MIN-BISECTION of the planar MIN-BISECTION problem

on 3-regular graphs.

4 Some Application

We are going to apply our previous results for some other generic optimization

problems. The �rst problem is one of the most important problems in analy-

sis of genome rearrangements, and it is being recently also motivated by other

algorithmic problems of computational molecular biology.

� MIN-SBR (Sorting by Reversals): Given a permutation, construct a mini-

mum length sequence of reversals (see for de�nitions [BP96]) which trans-

forms it to the identity permutation.
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We refer also to some other variants of Sorting by Reversals problems studied

in [C99], called MSBR and Tree SBR (see the de�nitions there).

The proof technique used in [BK99] to prove explicit approximation lower

bound of Theorem 7 for 4-MIS can be adapted to prove for the �rst time the

inapproximability of MIN-SBR, and, in fact, also giving an explicit approximation

lower bound for that problem.

Theorem 13. ([BK99]) For every � > 0, it is NP-hard to approximate MIN-SBR

within a factor 1237=1236 � �.

Caprara [C99] has used the above result to prove inapproximability of the

both beforementioned problems, MSBR, and Tree SBR, and to compute the �rst

explicit approximation lower bounds for those problems.

We turn now to another application of the results of Section 2. We denote by

(1,2)-TSP the Traveling Salesman Problem with distances one and two, and its

asymmetric version by (1,2)-ATSP (cf. [PY93], [V92]).

Engebretsen and Karpinski [EK00] has used recently the result on 3-OCC-

MAX-HYBRID-LIN2 of Theorem 5 to prove the following explicit inapproxima-

bility result for (1,2)-ATSP problem.

Theorem 14. ([EK00]) For every � > 0, it is NP-hard to approximate (1,2)-

ATSP within a factor 321=320 � �.

The construction used by Engebretsen and Karpinski [EK00] could be also

adapted to yield an explicit result for (1,2)-TSP.

Theorem 15. ([EK00]) For every � > 0, it is NP-hard to approximate (1,2)-TSP

within a factor 743=742 � �.

5 New Upper Approximation Bounds

The intricacy of proving the �rst explicit approximation lower bounds for small

degree optimization problems, and the resulting huge gaps between upper and

lower approximation bounds has stimulated research on improving approximation

ratios for those problems as well as for some other generic problems.

The �rst gap for 3-MAX-CUT (and 3-OCC-MAX-E2-LIN2) was improved

recently by Feige, Karpinski and Langberg [FKL00a], see Table 1. The technique

of [FKL00a] is based on a new local enhancing method for semide�nite programs.

Theorem 16. ([FKL00a]) There exists a polynomial time algorithm approximat-

ing 3-MAX-CUT within a factor 1.0858.
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We note that the best approximation ratio currently known for MAX-CUT

problem on general graphs is 1.1383 ([GW94]), and the best known approximation

lower bound is 1.0624 [H97]. We note also that for the semide�nite relaxation

of MAX-CUT used in [GW94], the integrality gap is at least 1.1312, even for

2-regular graphs. Thus the bound of Theorem 16 beats the integrality bound

even for 2-regular graphs.

We turn now to the special case of regular bounded degree graphs, and will

investigate approximation algorithms for the MAX-CUT and MAX-BISECTION

(partitioning of a graph into two halves so as to maximize a number of the edges

between them).

Rd-MAX-CUT and Rd-MAX-BISECTION are the MAX-CUT and MAX-

BISECTION problems, respectively, restricted to d-regular graphs.

Feige, Karpinski and Langberg [FKL00a], [FKL00b] were able to improve

the best known approximation ratios for both bounded degree problems, Rd-

MAX-CUT, and Rd-MAX-BISECTION. The best known approximation ratio

for MAX-BISECTION on general graphs is 1.4266 [HZ00].

Theorem 17. ([FKL00a], [FKL00b]) There are polynomial time algorithms that

approximate R3-MAX-CUT and R3-MAX-BISECTION problems within factor

1.0823 and 1.1991, respectively.

Using an additional local adhancement method, Karpinski, Kowaluk and Lin-

gas [KKL00], have further improved approximation ratios of the low degree Rd-

MAX-BISECTION problems.

Theorem 18. ([KKL00]) There exists a polynomial time algorithm approximat-

ing R3-MAX-BISECTION within a factor 1.1806.

Interestingly, the �rst improvements on approximation ratios of MAX-

BISECTION on low degree planar graphs undertaken in [KKL00] has lead to

design of the �rst PTASs for the general planar MAX-BISECTION as well as for

other geometrically de�ned classes of graphs (see [JKLS01]).

On the lower bounds side, we note that the techniques of [BK99] yield also

the best up to now explicit approximation lower bounds for R3-MAX-CUT, and

R3-MAX-BISECTION problems equal to the lower approximation bound for 3-

MAX-CUT problem of Section 2.

6 Summary of Approximation Results on

Bounded Degree Minimization Problems

We present here (Table 2) the results of Section 3 and 4 on bounded degree min-

imization problems and the best to our knowledge gaps between upper and lower

9



approximation bounds on those problems. The upper approximation bounds are

from [BF94], [BF95], [BK01b], [FK00], [BHK01], [V92], [PY93].

TABLE 2:

Bounded Degree and Weight Minimization Problems

Problem Approx. Upper Approx. Lower

3-Node Cover 1.1666 1.0069

4-Node Cover 1.2857 1.0128

3-OCC-MIN-E3-LIN2 O(n=logn) n


(1)=loglogn

3-MIN-BISECTION O(log

2

n) Equal to MIN-BISECTION

MIN-SBR 1.375 1.0008

(1,2)-TSP 1.1667 1.0013

(1,2)-ATSP 1.4167 1.0031

7 Open Problems and Further Research

An obvious open problem is to improve on both the lower and upper approx-

imation bounds of bounded degree optimization problems, especially on those

with the very small degree bounds. The essential improvements on the explicit

lower bounds for these problems might be of paramount di�culty though, but

same time they are also of great interest. Any such improvement would have im-

mediate e�ects on the explicit lower bounds for other optimization problems, as

indicated in this paper. Perhaps somewhat easier undertaking would be improv-

ing on upper approximation bounds. Here essential improvements were already

achieved on the problems like a small degree MAX-CUT, and MAX-BISECTION

mentioned in Section 5. How about improvements on other bounded degree op-

timization problems?

References

[ABSS93] S. Arora, L. Babai, J. Stern and Z. Sweedyk, The Hardness of Approx-

imate Optima in Lattice, Codes, and Systems of Linear Equations,

Proc. of 34th IEEE FOCS, 1993, 724-733.

10



[AKK95] S. Arora, D. Karger, and M. Karpinski, Polynomial Time Approx-

imation Schemes for Dense Instances of NP-Hard Problems, Proc.

27th ACM STOC (1995), pp. 284-293; the full version appeared in J.

Comput. System Sciences 58 (1999), pp. 193-210.

[AL97] S. Arora and C. Lund, Hardness of Approximations, in Approximation

Algorithms for NP-Hard Problems (D. Hochbaum, ed.), PWS Publ.

Co. (1997), pp. 399-446.

[ALMSS92] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof

Veri�cation and Hardness of Approximation Problems, Proc. 33rd

IEEE FOCS (1992), pp. 14-20.

[BF94] P. Berman and M. F�urer, Approximating Maximum Independent Set

in Bounded Degree Graphs, Proc. 5th ACM-SIAM SODA (1994), pp.

365-371.

[BF95] P. Berman and T. Fujito, Approximating independent sets in degree

3 graphs, Proc. 4th Workshop on Algorithms and Data Structures,

LNCS Vol. 955, Springer-Verlag, 1995, pp. 449-460.

[BHK01] P. Berman, S. Hannenhalli and Karpinski, 1.375-Approximation Al-

gorithm for Sorting by Reversals, Manuscript, 2001.

[BK99] P. Berman and M. Karpinski, On Some Tighter Inapproximability

Results, Proc. 26th ICALP (1999), LNCS 1644, Springer, 1999, pp.

200-209.

[BK01a] P. Berman and M. Karpinski, Approximating Minimum Unsatis�abil-

ity of Linear Equations, ECCC Technical Report TR01-025 (2001).

[BK01b] P. Berman and M. Karpinski, Approximation Hardness of Bounded

Degree MIN-CSP and MIN-BISECTION, ECCC Technical Report

TR01-026 (2001).

[BP96] V. Bafna and P. Pevzner, Genome Rearrangements and Sorting by

Reversals, SIAM J. on Computing 25 (1996), pp. 272-289.

[C99] A. Caprara, Formulations and Hardness of Multiple Sorting by Re-

versals, Proc. ACM RECOMB'99, pp. 84-93.

[DKS98] I. Dinur, G. Kindler and S. Safra, Approximating CVP to Within

Almost Polynomial Factors is NP-hard, Proc. of 39th IEEE FOCS,

1998, 99-109.

[DKRS00] I. Dinur, G. Kindler, R. Raz and S. Safra, An Improved Lower Bound

for Approximating CVP, 2000, submitted.

11



[E99] L. Engebretsen, An Explicit Lower Bound for TSP with Distances

One and Two, Proc. 16th STACS (1999), LNCS 1563 (1999),

Springer, 1999, pp. 371-382.

[EK00] L. Engebretsen and M. Karpinski, Approximation Hardness of TSP

with Bounded Metrics, ECCC Technical Report TR00-089 (2000), to

appear in Proc. 28th ICALP (2001).

[F98] U. Feige, A Threshold of ln n for Approximation Set Cover, J. of

ACM 45 (1998), pp. 634-652.

[FG95] U. Feige and M. Goemans, Approximating the Value of Two Prover

Proof Systems with Applications to MAX-2SAT and MAX-DICUT,

Proc. 3rd Israel Symp. on Theory of Computing and Systems, 1995,

pp. 182-189.

[FK00] U. Feige and R. Krauthgamer, A Polylogarithmic Approximation of

the Minimum Bisection, Proc. 41st IEEE FOCS (2000), pp. 105 - 115.

[FKL00a] U. Feige, M. Karpinski, and M. Langberg, Improved Approximation

of MAX-CUT on Graphs of Bounded Degree, ECCC Technical Report

TR00-021 (2000), submitted to J. of Algorithms.

[FKL00b] U. Feige, M. Karpinski, and M. Langberg, A Note on Approxima-

tion MAX-BISECTION on Regular Graphs, ECCC Technical Report

TR00-043 (2000), to appear in Information Processing Letters.

[FK99] W. Fernandez de la Vega and M. Karpinski, On Approximation Hard-

ness of Dense TSP and Other Path Problems, Information Processing

Letters 70 (1999), pp. 53-55.

[GW94] M. Goemans and D. Williamson, .878-approximation Algorithms for

MAX-CUT and MAX2SAT, Proc. 26th ACM STOC (1994), pp. 422-

431.

[H97] J. H�astad, Some Optimal Inapproximability Results, Proc. 29th ACM

STOC (1997), pp. 1-10.

[H00] J. H�astad, On Bounded Occurrence Constraint Satisfaction, Informa-

tion Processing Letters 74 (2000), pp. 1-6.

[HZ00] E. Halperin and U. Zwick, Improved Approximation Algorithms for

Maximum Graph Bisection Problems, Manuscript, 2000.

[JKLS01] K. Jansen, M. Karpinski, A. Lingas, and E. Seidel, Polynomial Time

Approximation Schemes for MAX-BISECTION on Planar and Ge-

ometric Graphs, Proc. 18th STACS (2001), LNCS 2010, Springer,

2001, pp. 365-375.

12



[K01] M. Karpinski, Polynomial Time Approximation Schemes for Some

Dense Instances of NP-Hard Optimization Problems, Algorithmica

30 (2001), pp. 386-397.

[KKL00] M. Karpinski, M. Kowaluk, and A. Lingas, Approximation Algorithms

for MAX-BISECTION on Low Degree Regular Graphs and Planar

Graphs, ECCC Technical Report TR00-051 (2000).

[KZ97] M. Karpinski and A. Zelikovsky, Approximating Dense Cases of Cov-

ering Problems, ECCC Technical Report TR 97-004, 1997, also in

Proc. DIMACS Workshop on Network Design: Connectivity and Fa-

cilities Location, Princeton, 1997, DIMACS Series in Discrete Math-

ematics and Theoretical Computer Science 40 (1998), pp. 169-178.

[KST97] S. Khanna, M. Sudan and L. Trevisan, Constraint Satisfaction: the

approximability of minimization problems, Proc. of 12th IEEE Com-

putational Complexity, 1997, 282-296.

[PY91] C. H. Papadimitriou and M. Yannakakis, Optimization, Approxima-

tion and Complexity Classes, J. Comput. System Sciences 43 (1991),

pp. 425-440.

[PY93] C. H. Papadimitriou and M. Yannakakis, The Traveling Salesman

Problem with Distances One and Two, Math. of Oper. Res. 18 (1993),

pp. 1-11.

[T01] L.Trevisan, Non-approximability Results for Optimization Problems

on Bounded Degree Instances, to appear in Proc. 33rd ACM STOC

(2001).

[V92] S. Virhwanathan, An Approximation Algorithm for the Asymetric

Travelling Salesman Problem with Distances One and Two, Informa-

tion Processing Letters 44 (1992), pp. 297-302.

13


