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Abstract

The bandwidth problem is the problem of enumerating the vertices of a given graph

G such that the maximum di�erence between the numbers of adjacent vertices

is minimal. The problem has a long history and a number of applications and is

known to be NP -hard, Papadimitriou [Pa 76]. There is not much known though on

approximation hardness of this problem. In this paper we show, that there are no

e�cient polynomial time approximation schemes for the bandwidth problem under

some plausible assumptions. Furthermore we show that there are no polynomial

time approximation algorithms with an absolute error guarantee of n

1��

for any

� > 0 unless P = NP .
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1 Introduction

The bandwidth problem on graphs has a very long and interesting history cf.

[CCDG 82].

Formally the bandwidth minimization problem is de�ned as follows. Let G =

(V;E) be a simple graph on n vertices. A numbering ( or layout ) of G is a one-

to-one mapping f : V ! f1; :::; ng. The bandwidth B(f;G) of this numbering is

de�ned by

B(f;G) = maxfjf(v)� f(w)j : fv; wg 2 Eg;

the greatest distance between adjacent vertices in G corresponding to f . The

bandwidth B(G) is then

B(G) = min

f is a numbering of G

fB(f;G)g

Clearly the bandwidth of G is the greatest bandwidth of its components.

The problem of �nding the bandwidth of a graph is NP-hard [Pa 76], even for

trees with maximum degree 3 [GGJK 78]. The general problem is not known to

have any sublinear n

�

-approximation algorithm (cf. [KWZ 97], [Ka 97]).

Smithline [Sm 95] proved that the bandwidth of a complete k-ary tree can be

computed in polynomial time. For caterpillars [HMM 91] found a polynomial time

logn-approximation algorithm. A caterpillar is a special kind of a tree consist-

ing of a simple chain, the body, with an arbitrary number of simple chains, the

hairs, attached to the body by coalescing an endpoint of the added chain with a

vertex of the body. Karpinski, Wirtgen and Zelikovsky [KWZ 97] constructed a

3-approximation algorithm for �-dense graphs.

De�nition 1.1 We call a graph dense if it has 
(n

2

) edges. A graph G is �-dense,

if the minimum degree �(G) is at least �n. We call it everywhere dense, if it is

�-dense for some � > 0.

The design of approximation algorithms for NP -hard optimization problems

became an important �eld in computer science. In the best situation one can �nd

approximation algorithms which work in polynomial time and approximate the

optimal solutions within an arbitrary given constant. Such (meta-) algorithms are

called polynomial time approximation schemes (PTASs) cf. eg., [Ho 97]. Besides a

problem instance, they have an additional input, an approximation ratio r. These

schemes give us solutions which are r-near to the optimum in time, polynomial

in the instance size. There are only few problems for which such schemes exist.

For example the KNAPSACK [IK 75], and BINPACKING [FL 81], [KK 82],

are known to have PTASs. For the dense instances of problems in MAXSNP
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[PY 88], the existence of PTAS has been proven by Arora, Karger, Karpinski

[AKK 95]. Arora [Ar 96] designed recently a PTAS for the Euclidean traveling

salesman problem.

Most of the above algorithms have one thing in common, namely their running

times are bounded by n

O(f(1=�))

where the approximation ratio is r = 1 + �. The

algorithms are becoming more practical if their running times are functions of the

kind g(1=�)n

O(1)

. These algorithms are called e�cient polynomial approximation

schemes (EPTASs). There has been recently some progress in this direction. Fer-

nandez de la Vega [Fe 96] designed a randomized algorithm for the MAXCUT

problem, which runs in 2

(1=�)

O(1)

n

O(1)

. Frieze and Kannan [FK 96] obtained similar

bounds for dense instances of some MAXSNP -hard problems using an algorith-

mic version of Szemeredi's regularity lemma. Another improvement was given by

[GGR 96] and [FK 97].

In this paper we relate the parameterized complexity theory [DF 92] to the

notion of EPTASs to show, that there are no EPTASs for the bandwidth problem,

under su�ciently strong conditions. A similar approach was recently made by Cai

and Chen [CC 93], and Cesati and Trevisan [CT 97].

Another open problem was the question whether there exist absolute approxi-

mation algorithms for the bandwidth problem. We say, a solution S is a absolute

r-approximation to the optimum OPT , if S � OPT + r (in the case of minimiza-

tion problems). For some graph parameters like the treewidth, or vertex separator,

it is known, that there are no absolute approximations [BGHK 95], [BJ 92]. We

relate the bandwidth to the treewidth and show similar results for the bandwidth

problem, even for some special graph classes.

This paper is organized as follows. We introduce in section 2 the parameterized

complexity hierarchy and follow the methods of Cesati and Trevisan [CT 97] to

prove that there is probably no e�cient approximation scheme for the bandwidth

problem. In Section 3 we introduce some graph theoretical notions related to the

bandwidth and discuss some known results of [ACP 87], [BGHK 95], [KKM 96]. In

section 4 we relate the results of section 3 to the bandwidth problem in everywhere

dense graphs and note in passing its NP -hardness, [KW 97]. Section 5 gives the

proof, that there is no absolute approximation algorithm for the bandwidth problem

unless NP = P .
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2 There is no EPTAS for the Bandwidth

Problem

Many practical optimization problems are computationally intractable in the exact

setting. A natural and reasonable way of dealing with this situation is to design

heuristics for these problems. Such heuristics should guarantee their solutions rea-

sonably near the optimum solution.

We say an approximation algorithm A for an optimization problem X has an

approximation ratio r if A outputs for any instance I 2 X a solution with costs

A(I), such that

max

�

A(I)

OPT (I)

;

OPT (I)

A(I)

�

� r

with OPT (I) the costs of the optimal solution. We are very interested in ( meta- )

algorithms that have an additional input, the approximation ratio. We call these

algorithms approximation schemes. Formally, we de�ne them as follows.

De�nition 2.1 (PTAS) Given an optimization problem X, we call a (meta-) al-

gorithm A a polynomial time approximation scheme (PTAS) if for every �xed

� > 0, A has approximation ratio r = 1 + �, and its running time is polynomial in

the input size.

Note that the running time can be exponential in 1=� or can be of order n

O(1=�)

.

We strengthen the above de�nition to the more e�cient approximation algorithms

classes.

De�nition 2.2 (EPTAS,FPTAS) We call a PTAS

� an e�cient polynomial time approximation scheme (EPTAS) if the running

time is of order f(1=�)n

O(1)

. That means, the exponent in our polynomial is

independent of � but f can be a very fast growing function.

� a fully polynomial time approximation scheme (FPTAS), if the running time

is a polynomial in n and 1=�.

In this section we note that there is probably no EPTAS (and therefore no

FPTAS) for the bandwidth problem. We follow the methods of Cesati and Tre-

visan [CT 97] to relate this approximation problem to the so called parameterized

complexity and �xed parameter tractable problems (see cf. Downey and Fellows

[DF 92]).

Many NP -hard problems become polynomial solvable if we restrict the prob-

lems to those, whose instances have constant size k. For the bandwidth problem
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for example there are O(n

k

)-time algorithms [Sa 80]. Formally the parameterized

problems are de�ned as follows.

De�nition 2.3 Let A be a subset of �

�

. The parameterized problem of A is de�ned

as the family fA

k

g

k2IN

where A

k

is the set of instances whose witnesses have size k.

A parameterized problem fA

k

g

k2IN

is in the class SP , if there is an algorithm whose

running time is bounded by n

g(k)

, where n is the size of the instance. fA

k

g

k2IN

is

�xed parameter tractable (it is in the class FPT ), if there is an algorithm with a

running time bounded by f(k)n

O(1)

.

Downey and Fellows introduced a new notion of reduction for parameterized

problems, the so called parameterized reduction. They introduced for each k 2

IN , a basic parameterized problem �

s

and de�ned the class W [s] to be the set

of problems, which parameterized reduce to �

s

(see [DF 92]). This leads to the

following parameterized hierarchy.

FPT � W [1] � W [2]:::� SP

It is believed that each of the inclusions is pure. We say that a problem is W [s]-

hard if every problem in W [s] parameterized reduces to it. If it is both in W [s] an

W [s]-hard, then it is W [s]-complete. Each problem which is hard for W [s] for some

s � 1 is conjectured not to have an algorithm with complexity bound f(k)n

O(1)

.

For most of the W [s] classes are natural complete problem known [DF 92]. Under

them is interestingly also the bandwidth problem.

Theorem 2.4 ([BFH 94]) The bandwidth problem is W [s]-hard for all s � 1.

This makes it improbable, that there are f(k)n

O(1)

algorithms for the k-para-

meterized bandwidth problem. Similar to [CT 97] we use this fact, to show that

there is no EPTAS for the bandwidth problem under certain conditions.

Theorem 2.5 There is no EPTAS for the bandwidth problem unless FPT = W [k]

(for all k � 1)

Proof: Suppose, that there is a EPTAS A for the bandwidth problem. For �xed

� > 0 and input length n A has a running time bounded by T (n; �) = f(1=�)n

c

(c 2 O(1)). Now take any k-parameterized bandwidth instance G with jGj = n.

We have to decide in time g(k)n

O(1)

, whether B(G) � k or B(G) � k + 1. Fix

� =

1

2k

and run A in time f(2k)n

c

. We have two possibilities.

� B(G) � k) A(G) � (1 +

1

2k

)k = k + 1=2

� B(G) � k + 1) A(G) � k + 1
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3 The Relationship of the Bandwidth and the

Treewidth

We introduce now the notion of k-trees [ACP 87] and treewidth [BGHK 95] and

relate them to the bandwidth. The class of k-trees is de�ned recursively as follows:

1. The complete graph on k vertices is a k-tree.

2. Let G be a k-tree on n vertices, then the graph constructed as follows is also

a k-tree: add a new vertex and connect it to all vertices of a k-clique of G,

and only to these vertices.

Any subgraph of a k-tree is called partial k-tree. PARTIAL-k-TREE is the prob-

lem given a graph G and an integer k, decide whether G is a partial k-tree or not.

[ACP 87] shows that PARTIAL-k-TREE is NP -complete.

A tree decomposition of a graph G = (V;E) is a pair (fX

i

ji 2 Ig; T = (I; F )),

where T is a tree and fX

i

g is a set of subsets of V such that

1.

S

i2I

X

i

= V

2. For all fu; vg 2 E, there is an i 2 I with u; v 2 X

i

3. For all i; j; k 2 I , if j is on the path from i to k in T , then X

i

\X

k

� X

j

.

The treewidth tw((fX

i

g; T ); G) of a tree decomposition (fX

i

g; T ) is de�ned by

tw((fX

i

g; T ); G) = max

i

jX

i

j � 1

The treewidth tw(G) of a graph G is then

tw(G) = min

(fX

i

g;T )

tw((fX

i

g; T ); G)

Between the treewidth of a graph and the smallest k such that G is a partial

k-tree exists the following well known connection:

Lemma 3.1 For k � 1 the treewidth of a graph G is at most k if and only if G is

a partial k-tree. Thus tw(G) equals to the smallest k such that G is a partial k-tree.

Proof: See, for example, [Le 90].

There is also a connection between the bandwidth and the treewidth of cobi-

partite graphs as showed in [KKM 96]. We call a graph cobipartite if it is the

complement of a bipartite graph.

Lemma 3.2 ([KKM 96]) Let G be a cobipartite graph. Then

B(G) = tw(G)
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Using Lemma 3.1 we get

Corollary 3.3 Let G be a cobipartite graph. Then B(G) equals to the smallest k

such that G is a partial k-tree.

In section 4 we will have a closer look at the proof of NP -hardness of this

problem and prove that the instance for PARTIAL-k-TREE constructed there,

is everywhere dense and cobipartite. Thus it is easy to show that the bandwidth

problem on everywhere dense graphs is NP-hard.

4 NP-Hardness for Everywhere Dense Cobi-

partite Graphs

We sketch now the proof ofNP -hardness of PARTIAL-k-TREE given in [ACP 87]

to show that the constructed instance is a everywhere dense cobipartite graph. By

the results stated in section 3, the NP -hardness of the bandwidth in everywhere

dense graphs will follow.

Theorem 4.1 ([ACP 87]) PARTIAL-k-TREE is NP -hard.

Proof: (Sketch) Let G = (V;E) be a input graph of the NP -complete MINI-

MUM CUT LINEAR ARRANGEMENT (MCLA) problem (for the proof of NP -

completeness see [GJ 79], [GT44]): given G and a positive integer k, does there

exist a numbering f of V , such that

c(f;G) = max

1�j<n

jffu; vg 2 Ejf(u) � j < f(v)gj � k

We will construct a bipartite graph G

0

= (A [ B;E

0

). The vertices are de�ned as

follows:

� Each v 2 V is represented by �(G)+1 vertices in A, building the set A

v

(We

denote by �(G) the maximum vertex degree in G) and �(G) � deg(v) + 1

vertices in B, building the set B

v

.

� For each edge e 2 E there are two vertices in B. They are denoted by B

e

.

There are two di�erent edge types in E

0

:

� All vertices in A

v

are connected to both vertices in B

e

, if v 2 e.

� All vertices of A

v

are connected with all vertices in B

v

.
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Now de�ne G

00

to be G

0

after inserting all edges in A and B. Arnborg et al. showed

the following connection: G has a minimum linear cut value k with respect to some

numbering f , if and only if the corresponding graph G

00

is a partial k

0

-tree for

k

0

= (�(G) + 1)(jV j + 1) + k � 1 . Since the construction of G

00

is polynomial, it

follows that PARTIAL-k

0

-TREE is NP -hard.

As a corollary we get the following theorem.

Theorem 4.2 The bandwidth problem on everywhere dense graphs is NP -hard.

Proof: Observe that the instance G = (V;E) (n = jV j) for PARTIAL-k-TREE

constructed in the proof of Theorem 4.1 is cobipartite. Further it is at least 1=2-

dense, since the sets A and B build cliques and jAj = jBj:

jAj = (�(G) + 1)jV j

= �(G)n+ n

= �(G)n+ n�

X

v2V

deg(v) + 2jEj

=

X

v2V

(�(G)� deg(v) + 1) + 2jEj

= jBj

Applying Corollary 3.3 it follows that the bandwidth on everywhere dense graphs

is NP -hard, since G is cobipartite.

5 There is no Approximation Algorithm with

Absolute Error Guarantee of n

1��

Bodlaender et al. [BGHK 95] shows an approximation lower bound for various

parameters of graphs connected to sparse matrix factorization, including treewidth,

pathwidth, and minimum elimination tree height. In particular they prove, that

there is no absolute n

1��

approximation (for any � > 0) for the treewidth of a

graph. We use the connections of the bandwidth and the treewidth of cobipartite

graphs, pointed out in Section 3 to show the same approximation lower bound for

bandwidth problem.

An algorithm A is an absolute f(n)-approximation problem for a minimization

problem X if for all I 2 X

A(I) � OPT (I) + f(n):
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Only a few problems have such algorithms. For example for the edge coloring, we

can use Vizing's [Vi 64] theorem to construct an absolute 1-approximation algo-

rithm [Ho 81]. But the existence of such algorithms do not imply the existence of

PTAS. It is known, that there are no 4=3-approximation algorithms for the edge

coloring problem, unless P = NP [Ho 81].

At �rst we apply the construction of [BGHK 95]. Given a graph G = (V;E),

we de�ne for a constant k G

k

= (V

k

; E

k

) to be the graph with a (k + 1)-clique for

each vertex v in G. In G

k

are all the vertices of the cliques corresponding to v and

w connected, if and only if v and w are in G connected. Thus V

k

= fv

i

j1 � i �

k + 1; v 2 V g and E

k

= ffv

i

; w

j

gj1 � i; j � k + 1; fv; wg 2 Eg.

Lemma 5.1 ([BGHK 95]) tw(G

k

) = (tw(G) + 1)(k+ 1)� 1

Proof: Let (fX

i

ji 2 Ig; T = (I; F )) be a tree decomposition of G. It is easy to

see, that (fY

i

ji 2 Ig; T = (I; F )) with Y

i

= fv

j

jv 2 X

i

; 1 � j � k + 1g is a tree

decomposition of G

k

with tw((fY

i

g; T ); G

k

) = (tw((fX

i

g; T ); G) + 1)(k + 1) � 1.

Thus

tw(G

k

) � (tw(G) + 1)(k + 1)� 1

On the other hand, take some tree decomposition (fY

i

ji 2 Ig; T = (I; F )) of G

k

.

De�ne X

i

= fv 2 V jfv

1

; :::; v

k+1

g � Y

i

g

Take some edge fv; wg 2 E. By the de�nition of G

k

, v

1

; :::; v

k+1

; w

1

; :::; w

k+1

form a clique. Then there exists an i 2 I with fv

1

; :::; v

k+1

; w

1

; :::; w

k+1

g 2 Y

i

and thus v; w 2 X

i

. Let j 2 I be on the path in T from i 2 I to k 2 I . If v 2

X

i

\X

k

, then fv

1

; :::; v

k+1

g � Y

i

\Y

k

and by the de�nition of the tree decomposition

fv

1

; :::; v

k+1

g � Y

j

. Thus v is in X

j

. Therefore (fX

i

g; T ) is a tree decomposition

of G. Clearly (k + 1)max

i2I

jX

i

j � max

i2I

jY

i

j and so

tw(G

k

) � (tw(G) + 1)(k + 1)� 1

It follows, that tw(G

k

) = (tw(G) + 1)(k+ 1)� 1

Since the construction of G

k

is polynomial time, for k 2 n

O(1)

we have the

following theorem.

Theorem 5.2 ([BGHK 95]) There is no polynomial time absolute n

1��

approx-

imation algorithm A for the treewidth problem for any � > 0.

Proof: At �rst we suppose, that k is a constant. Assume, we have a polynomial

time absolute k approximation algorithm A for the treewidth problem. Take a

NP -hard instance G of the treewidth problem. We will show that a polynomial

time absolute k approximation algorithm can solve this instance exactly. Construct
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G

k

and run A on this modi�ed instance, with (fY

i

g; T ) as a result. For the costs

of this result we have the following bounds,

tw((fY

i

g; T ); G

k

) � OPT (G

k

) + k

Now we apply the construction of Lemma 5.1, to �nd a tree decomposition of

(fX

i

g; T ) G with the costs

tw((fX

i

g; T ); G) =

(tw((fY

i

g; T ); G

k

) + 1)

k + 1

� 1

�

(OPT (G

k

) + k + 1)

k + 1

� 1

=

OPT (G

k

)

k + 1

=

(OPT (G) + 1)(k+ 1)� 1

k + 1

= OPT (G) + 1� 1=(k+ 1)

Hence, we have a polynomial time algorithm for our instance G. Now we choose

k = n

c

with c = d�=(�� 1)e. Since the construction is still polynomial, we meet the

lower approximation bounds, stated in the theorem.

To get the same lower bound for the bandwidth problem, we make the following

observation.

Lemma 5.3 If G is cobipartite, then G

k

is cobipartite for all integers k.

Now we can take the NP -hard instance of the bandwidth problem constructed

in Theorem 4.2 and use the equivalence of treewidth and bandwidth for special

graphs to get the following theorem.

Theorem 5.4 There is no polynomial time absolute n

1��

approximation algorithm

A for the bandwidth problem for any � > 0.

Proof: Since the bandwidth of a cobipartite graph is equal to its treewidth and

Lemma 5.3 holds, we can take the NP -hard instance of Theorem 4.2 in the proof

of Theorem 5.2.

Since cobipartite graphs are dense, and in our constructed hard instance every-

where dense, we get the following corollary.

Corollary 5.5 There is no polynomial time absolute n

1��

approximation algorithm

A for the bandwidth problem on

� dense graphs,

� everywhere dense graphs,
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� cobipartite graphs,

� cocomparability graphs

� asteroidal triple-free graphs,

for any � > 0.

We have shown that it is unlikely that there are absolute approximation algo-

rithms for the bandwidth problem in several graph classes. However it still possible,

that there are PTASs for some of this graph classes, since for all, but the �rst ex-

ist approximation algorithms, which construct solutions, which costs are within a

constant multiplicative of the optimal costs [KKM 96], [KWZ 97].

6 Open Problems

An important computational problem remains open about the existence of a PTAS

for the bandwidth problem. At this moment we do not have even sublinear approx-

imation algorithms for this problem. We also do not know the status of the problem

for the very special case of binary trees.
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