Approximability of Combinatorial Optimization Problems on Power Law Networks

Mikael Gast

Dept. of Computer Science and B-IT Research School, University of Bonn

> Ph.D. Thesis Defense September 4, 2013

— Real world networks are not random, they have very small diameter and they possess a power law distribution of node degrees

Biological Networks

Example:

Protein interactions of Arabidopsis Thaliana

Biological Networks

Technological Networks

Example:

Network of *Internet Routers*

Technological Networks

Social Networks (Disease Spreading)

Example: *Airport Network* in the

United States

universitätbonn

Social Networks (Disease Spreading)

Example:

Airport Network in the United States

universitätbonn

Social Networks (Info Spreading)

Example: *Contact Network* of karate club members

Social Networks (Info Spreading)

Example:

Contact Network of karate club members

Power Law Degree Distribution

Uniform random graph vs. power law random graph
 Number of nodes y_i having degree i: y_i ~ c · i^{-β}

Erdős-Rényi Random Graph

universität bonn

Power Law Degree Distribution

Uniform random graph vs. power law random graph
 Number of nodes y_i having degree i: y_i ~ c · i^{-β}

universität bon

Power Law Degree Distribution

Uniform random graph vs. power law random graph
 Number of nodes y_i having degree i: y_i ~ c · i^{-β}

universitätbon

— The study of combinatorial optimization problems on real world networks is motivated by applications

Example: Dominating Set Problem

Minimum dominating set problem in real world networks:

universität<mark>bon</mark>

- Optimal sensor or server placement in wireless mobile networks
- Search for key players or nodes in social networks

Example: Dominating Set Problem

Minimum dominating set problem in real world networks:

universität<mark>bon</mark>r

 Optimal sensor or server placement in wireless mobile networks

 Search for key players or nodes in social networks

Example: Dominating Set Problem

Minimum dominating set problem in real world networks:

universität<mark>bon</mark>i

- Optimal sensor or server placement in wireless mobile networks
- Search for key players or nodes in social networks

— Real world networks display a number of other unique and characteristic topological properties

Real world networks behave like "Small Worlds"

Existence of bridging links across the network

Small Worlds

Real world networks behave like "Small Worlds"
Existence of bridging links across the network

Real world networks have large clustering coefficients

Clustering coefficient measures cliquishness

- Real world networks have large clustering coefficients
- Clustering coefficient measures cliquishness

Hyperbolicity

- Real world networks have embedded hyperbolic geometries
- Relates to Gromov's four-point condition for δ-hyperbolicity of a metric space

Hyperbolicity

- Real world networks have embedded hyperbolic geometries
- Relates to Gromov's four-point condition for δ-hyperbolicity of a metric space

— There exists a large number of generating models for power law graphs

Preferential Attachment

Evolving random model for PLG's:

The Preferential Attachment Model (Barabási and Albert, 1999)

Preferential Attachment

universität<mark>bonn</mark>.

Evolving random model for PLG's:

The Preferential Attachment Model (Barabási and Albert, 1999)

After adding u, probability that u connects to some vertex v:

$$\Pr(\{u, v\}) = \begin{cases} \deg(v) / \sum_{i} \deg(v_{i}) - 1 & u \neq v \\ 1 / \sum_{i} \deg(v_{i}) - 1 & u = v \end{cases}$$

71

U

Static Degree Sequences

Static random model for PLG's:

The G_{α,β} Model or ACL Model (Aiello, Chung, and Lu, 2001)

Ensures power-law degree distribution by fixing a degree sequence $(y_1, y_2, \ldots, y_{\Delta})$ via two parameters α , β and then taking the space of random multigraphs with this degree sequence

Static Degree Sequences

Static random model for PLG's:

The G_{α,β} Model or ACL Model (Aiello, Chung, and Lu, 2001)

Ensures power-law degree distribution by fixing a degree sequence $(y_1, y_2, \ldots, y_{\Delta})$ via two parameters α , β and then taking the space of random multigraphs with this degree sequence

Definition of the ACL Model $\mathcal{G}_{\alpha,\beta}$:

For each $1 \leq i \leq \Delta = |e^{\alpha/\beta}|$,

$y_i = egin{cases} \left\lfloor rac{\mathrm{e}^{lpha}}{i^{eta}} ight ceil & ext{if } i > 1 ext{ or } \sum_{i=1}^{\Delta} \left\lfloor rac{\mathrm{e}^{lpha}}{i^{eta}} ight ceil & ext{is even} \ \left\lfloor \mathrm{e}^{lpha} ight ceil + 1 & ext{otherwise} \end{cases}$

α is the logarithm of the network size, β is the log-log growth rate

universität<mark>bonn</mark>.

Definition of the ACL Model $\mathcal{G}_{\alpha,\beta}$: For each $1 \leq i \leq \Delta = \lfloor e^{\alpha/\beta} \rfloor$,

$$y_i = \begin{cases} \left\lfloor \frac{\mathrm{e}^{\alpha}}{i^{\beta}} \right\rfloor & \text{if } i > 1 \text{ or } \sum_{i=1}^{\Delta} \left\lfloor \frac{\mathrm{e}^{\alpha}}{i^{\beta}} \right\rfloor \text{ is even} \\ \left\lfloor \mathrm{e}^{\alpha} \right\rfloor + 1 & \text{otherwise} \end{cases}$$

α is the logarithm of the network size, β is the log-log growth rate

Definition of the ACL Model $\mathcal{G}_{\alpha,\beta}$: For each $1 \leq i \leq \Delta = \lfloor e^{\alpha/\beta} \rfloor$,

$$y_i = \begin{cases} \left\lfloor \frac{\mathrm{e}^{\alpha}}{i^{\beta}} \right\rfloor & \text{if } i > 1 \text{ or } \sum_{i=1}^{\Delta} \left\lfloor \frac{\mathrm{e}^{\alpha}}{i^{\beta}} \right\rfloor \text{ is even} \\ \left\lfloor \mathrm{e}^{\alpha} \right\rfloor + 1 & \text{otherwise} \end{cases}$$

α is the logarithm of the network size, β is the log-log growth rate

ACL Model for PLG's

• Number of vertices:

$$n = \sum_{i=1}^{\Delta} \left\lfloor \frac{\mathrm{e}^{\alpha}}{i^{\beta}} \right\rfloor \approx \begin{cases} \zeta(\beta) \, \mathrm{e}^{\alpha} & \text{if } \beta > 1\\ \alpha \, \mathrm{e}^{\alpha} & \text{if } \beta = 1\\ \frac{\mathrm{e}^{\alpha/\beta}}{1-\beta} & \text{if } 0 < \beta < 1 \end{cases}$$

■ Number of edges:

$$m = \frac{1}{2} \sum_{i=1}^{\Delta} i \left\lfloor \frac{e^{\alpha}}{i^{\beta}} \right\rfloor \approx \begin{cases} \frac{1}{2} \zeta(\beta - 1) e^{\alpha} & \text{if } \beta > 2\\ \frac{1}{4} \alpha e^{\alpha} & \text{if } \beta = 2\\ \frac{1}{2} \frac{e^{2\alpha/\beta}}{2-\beta} & \text{if } 0 < \beta < 2 \end{cases}$$

universitätbonn

ACL Model for PLG's

• Number of vertices:

$$n = \sum_{i=1}^{\Delta} \left\lfloor \frac{\mathrm{e}^{\alpha}}{i^{\beta}} \right\rfloor \approx \begin{cases} \zeta(\beta) \, \mathrm{e}^{\alpha} & \text{if } \beta > 1\\ \alpha \, \mathrm{e}^{\alpha} & \text{if } \beta = 1\\ \frac{\mathrm{e}^{\alpha/\beta}}{1-\beta} & \text{if } 0 < \beta < 1 \end{cases}$$

Number of edges:

$$m = \frac{1}{2} \sum_{i=1}^{\Delta} i \left\lfloor \frac{\mathbf{e}^{\alpha}}{i^{\beta}} \right\rfloor \approx \begin{cases} \frac{1}{2} \zeta(\beta - 1) \, \mathbf{e}^{\alpha} & \text{if } \beta > 2\\ \frac{1}{4} \alpha \, \mathbf{e}^{\alpha} & \text{if } \beta = 2\\ \frac{1}{2} \frac{\mathbf{e}^{2\alpha/\beta}}{2-\beta} & \text{if } 0 < \beta < 2 \end{cases}$$

universität bonn

ACL Random Model

The distribution of graphs $G \in \mathcal{G}_{\alpha,\beta}$ over a sequence $(y_1, y_2, \ldots, y_{\Delta})$ or $(\deg(v_1), \deg(v_2), \ldots, \deg(v_n))$ is generated as follows:

ACL Random Model

- I Generate set L of deg(v) distinct copies for each vertex $v \in V(G)$
- **2** M := random matching on the elements of L
- **3** For $u, v \in V(G)$ number of edges $\{u, v\}$ equals number of edges $m \in M$ that join copies of u and v

ACL Random Model

- Generate set *L* of deg(v) distinct copies for each vertex $v \in V(G)$
- **2** M := random matching on the elements of L
- **3** For $u, v \in V(G)$ number of edges $\{u, v\}$ equals number of edges $m \in M$ that join copies of u and v

ACL Random Model

- Generate set *L* of deg(v) distinct copies for each vertex $v \in V(G)$
- **2** M := random matching on the elements of L
- **3** For $u, v \in V(G)$ number of edges $\{u, v\}$ equals number of edges $m \in M$ that join copies of u and v

Overview of Main Results

- Approximation lower bounds for MINIMUM DOMINATING SET (MIN-DS) in connected PLG's
- Approximation upper bounds for MINIMUM VERTEX COVER (MIN-VC) in random PLG's

Techniques:

- Connected Embedding Approximation-Preserving (CEAP) reductions
- Transforming hardness results for bounded occurrence CSP's and SET COVER

- Approximation lower bounds for MINIMUM DOMINATING SET (MIN-DS) in connected PLG's
- Approximation upper bounds for MINIMUM VERTEX COVER (MIN-VC) in random PLG's

Techniques:

LP-relaxation and deterministic rounding algorithm
Upper and lower bounds on the size of half-integral solutions in random PLG's

- Approximation lower bounds for MINIMUM DOMINATING SET (MIN-DS) in connected PLG's
- Approximation upper bounds for MINIMUM VERTEX COVER (MIN-VC) in random PLG's

Further results:

- Approximation lower bounds for MIN-VC in connected PLG's
- \blacksquare Approximation upper bounds for MIN-DS for $\beta>2$

- Approximation lower bounds for MINIMUM DOMINATING SET (MIN-DS) in connected PLG's
- Approximation upper bounds for MINIMUM VERTEX COVER (MIN-VC) in random PLG's

Further results:

- Approximation lower bounds for MIN-VC in connected PLG's
- Approximation upper bounds for MIN-DS for $\beta > 2$

Techniques and Paradigms Used

Lower bound technique:

CEAP reductions (high level view)

- Embed bounded occurrence CSP and SET COVER reduction instances G' into PLG $G_{\alpha,\beta} \in \mathcal{G}_{\alpha,\beta}$
- Achieve connectivity with reasonable cut sizes between G' and G_{α,β} \ G'
- Preserve hardness of approximation in the embedding construction

Lower bound technique:

CEAP reductions (high level view)

- Embed bounded occurrence CSP and SET COVER reduction instances G' into PLG $G_{\alpha,\beta} \in \mathcal{G}_{\alpha,\beta}$
- Achieve connectivity with reasonable cut sizes between G' and G_{α,β} \ G'
- Preserve hardness of approximation in the embedding construction

Lower bound technique:

CEAP reductions (high level view)

- Embed bounded occurrence CSP and SET COVER reduction instances G' into PLG $G_{\alpha,\beta} \in \mathcal{G}_{\alpha,\beta}$
- Achieve connectivity with reasonable cut sizes between G' and G_{α,β} \ G'
- Preserve hardness of approximation in the embedding construction

Bounded Occurrence CSP Paradigm

Method: Bounded degree amplifier graphs (Berman and Karpinski, 1999)

universitätbor

Bounded Occurrence CSP Paradigm

Method: Bounded degree amplifier graphs (Berman and Karpinski, 1999)

universitätbon

- Reduce bounded occurrence HYBRID (equations with 2 and 3 variables) to MIN-VC on degree d bounded graphs (d-MIN-VC)
 - ▶ Yields explicit lower bounds of $\frac{103}{102}$ for d = 3 and $\frac{55}{54}$ for d = 4, 5 (Berman and Karpinski, 2003)
 - ► For larger *d* assuming UGC: $2 (2 + o(1)) \frac{\log \log d}{\log d}$ (Austrin, Khot, and M. Safra, 2009)
- *d*-MIN-VC serves as starting point for our CEAP reduction to MIN-VC on PLG's

- Reduce bounded occurrence HYBRID (equations with 2 and 3 variables) to MIN-VC on degree d bounded graphs (d-MIN-VC)
 - Yields explicit lower bounds of $\frac{103}{102}$ for d = 3 and $\frac{55}{54}$ for d = 4, 5 (Berman and Karpinski, 2003)
 - ► For larger *d* assuming UGC: $2 (2 + o(1)) \frac{\log \log d}{\log d}$ (Austrin, Khot, and M. Safra, 2009)
- *d*-MIN-VC serves as starting point for our CEAP reduction to MIN-VC on PLG's

- Reduce bounded occurrence HYBRID (equations with 2 and 3 variables) to MIN-VC on degree d bounded graphs (d-MIN-VC)
 - Yields explicit lower bounds of ¹⁰³/₁₀₂ for d = 3 and ⁵⁵/₅₄ for d = 4,5 (Berman and Karpinski, 2003)
 - ► For larger *d* assuming UGC: $2 (2 + o(1)) \frac{\log \log d}{\log d}$ (Austrin, Khot, and M. Safra, 2009)
- *d*-MIN-VC serves as starting point for our CEAP reduction to MIN-VC on PLG's

- Reduce bounded occurrence HYBRID (equations with 2 and 3 variables) to MIN-VC on degree d bounded graphs (d-MIN-VC)
 - Yields explicit lower bounds of ¹⁰³/₁₀₂ for d = 3 and ⁵⁵/₅₄ for d = 4, 5 (Berman and Karpinski, 2003)
 - ▶ For larger *d* assuming UGC: 2 − (2 + o(1)) log log *d* (Austrin, Khot, and M. Safra, 2009)
- *d*-MIN-VC serves as starting point for our CEAP reduction to MIN-VC on PLG's

From set covering to dominating sets:

■ *G*_{*U*,S} instances will serve as starting point for our CEAP reduction to MIN-DS on PLG's

Set Cover Paradigm

From set covering to dominating sets:

A SET COVER instance (U, S)

■ *G_{U,S}* instances will serve as starting point for our CEAP reduction to MIN-DS on PLG's

Set Cover Paradigm

From set covering to dominating sets:

• $G_{U,S}$ instances will serve as starting point for our CEAP reduction to MIN-DS on PLG's

Set Cover Paradigm

From set covering to dominating sets:

■ *G*_{*U*,S} instances will serve as starting point for our CEAP reduction to MIN-DS on PLG's

Approximation Lower Bounds for MINIMUM DOMINATING SET on Connected Power Law Graphs

universität<mark>bonn</mark>.

Definition (MIN-DS)

Input: A graph G = (V, E)

Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$

Objective: Minimize |D|

Input: A graph G = (V, E)Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$

Objective: Minimize |D|

Input: A graph
$$G = (V, E)$$

Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$

Objective: Minimize |D|

Input: A graph G = (V, E)

Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$

Objective: Minimize |D|

Approximability on general graphs:

■ Upper bound: ln n (Johnson, 1974; Lovász, 1975)
■ Lower bound: (1 − o(1)) ln n (Feige, 1998)

Input: A graph G = (V, E)

Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$

Objective: Minimize |D|

Approximability on general graphs:

■ Upper bound: ln *n* (Johnson, 1974; Lovász, 1975)
■ Lower bound: (1 − o(1)) ln *n* (Feige, 1998)

Input: A graph
$$G = (V, E)$$

Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$

Objective: Minimize |D|

Approximability on general graphs:

- Upper bound: ln *n* (Johnson, 1974; Lovász, 1975)
- Lower bound: $(1 o(1)) \ln n$ (Feige, 1998)

- For all β > 0, NP-hard on simple disconnected PLG's (Ferrante, Pandurangan, and Park, 2008)
- For all β > 1, APX-hard on disconnected power law multigraphs (Shen et al., 2012)
 - Explicit inapproximability factors for $1 < \beta \leq 2$:

- For all β > 0, NP-hard on simple disconnected PLG's (Ferrante, Pandurangan, and Park, 2008)
- For all β > 1, APX-hard on disconnected power law multigraphs (Shen et al., 2012)
 - Explicit inapproximability factors for $1 < \beta \leq 2$:

- For all β > 0, NP-hard on simple disconnected PLG's (Ferrante, Pandurangan, and Park, 2008)
- For all β > 1, APX-hard on disconnected power law multigraphs (Shen et al., 2012)

- For all β > 0, NP-hard on simple disconnected PLG's (Ferrante, Pandurangan, and Park, 2008)
- For all β > 1, APX-hard on disconnected power law multigraphs (Shen et al., 2012)
 - Explicit inapproximability factors for $1 < \beta \leq 2$:

Simple PLG's	General PLG's
$1+\frac{1}{390(2\zeta(\beta)3^\beta-1)}$	$1+\frac{1}{3120\zeta(\beta)3^{\beta}}$

Open Questions

- Is MINIMUM DOMINATING SET NP-hard and APX-hard on connected PLG's?
- Can we close the gap between the constant lower bounds on PLG's and the general logarithmic lower bound?
- Can we extend the results to the range $\beta \in [0, 1]$?

heorem (Gast, Hauptmann, and Karpinski, 2012)

Open Questions

- Is MINIMUM DOMINATING SET NP-hard and APX-hard on connected PLG's?
- Can we close the gap between the constant lower bounds on PLG's and the general logarithmic lower bound?

• Can we extend the results to the range $\beta \in [0, 1]$?

heorem (Gast, Hauptmann, and Karpinski, 2012)

Open Questions

- Is MINIMUM DOMINATING SET NP-hard and APX-hard on connected PLG's?
- Can we close the gap between the constant lower bounds on PLG's and the general logarithmic lower bound?
- Can we extend the results to the range $\beta \in [0, 1]$?

heorem (Gast, Hauptmann, and Karpinski, 2012)

Open Questions

- Is MINIMUM DOMINATING SET NP-hard and APX-hard on connected PLG's?
- Can we close the gap between the constant lower bounds on PLG's and the general logarithmic lower bound?
- Can we extend the results to the range $\beta \in [0, 1]$?

I heorem (Gast, Hauptmann, and Karpinski, 2012)

- Map $G_{U,S}$ to $G_{\alpha,\beta}$ via scaling construction connecting to a multigraph wheel W
 - ► Number of edges between G_{U,S} and W is O(min{|G_{U,S}|, |W|})

• Vertex set Γ separates $G_{U,\delta}$ from $G_{\alpha,\beta} \setminus G_{U,\delta}$

- Hardness on maximal component G_{U,S} is preserved
- \blacksquare Maintain small set X to dominate all vertices in W
 - Mm-DS is polynomially solvable on W

- Map $G_{U,S}$ to $G_{\alpha,\beta}$ via scaling construction connecting to a multigraph wheel W
 - ► Number of edges between G_{U,S} and W is O(min{|G_{U,S}|, |W|})
- Vertex set Γ separates G_{U,S} from G_{α,β} \ G_{U,S}
 Hardness on maximal component G_{U,S} is preserved
- Maintain small set X to dominate all vertices in W
 - MIN-DS is polynomially solvable on W

- Map $G_{U,S}$ to $G_{\alpha,\beta}$ via scaling construction connecting to a multigraph wheel W
 - ► Number of edges between G_{U,S} and W is O(min{|G_{U,S}|, |W|})

• Vertex set Γ separates $G_{U,\delta}$ from $G_{\alpha,\beta} \setminus G_{U,\delta}$

- Hardness on maximal component $G_{U,S}$ is preserved
- \blacksquare Maintain small set X to dominate all vertices in W
 - MIN-DS is polynomially solvable on W

- Map $G_{U,S}$ to $G_{\alpha,\beta}$ via scaling construction connecting to a multigraph wheel W
 - ► Number of edges between G_{U,S} and W is O(min{|G_{U,S}|, |W|})
- Vertex set Γ separates $G_{U,\delta}$ from $G_{\alpha,\beta} \setminus G_{U,\delta}$
 - Hardness on maximal component $G_{U,S}$ is preserved
- Maintain small set X to dominate all vertices in W
 MIN-DS is polynomially solvable on W

- Map $G_{U,S}$ to $G_{\alpha,\beta}$ via scaling construction connecting to a multigraph wheel W
 - ► Number of edges between G_{U,S} and W is O(min{|G_{U,S}|, |W|})
- Vertex set Γ separates $G_{U,\delta}$ from $G_{\alpha,\beta} \setminus G_{U,\delta}$
 - Hardness on maximal component $G_{U,S}$ is preserved
- Maintain small set X to dominate all vertices in W

MIN-DS is polynomially solvable on W

- Map $G_{U,S}$ to $G_{\alpha,\beta}$ via scaling construction connecting to a multigraph wheel W
 - ► Number of edges between G_{U,S} and W is O(min{|G_{U,S}|, |W|})
- Vertex set Γ separates $G_{U,\delta}$ from $G_{\alpha,\beta} \setminus G_{U,\delta}$
 - Hardness on maximal component $G_{U,S}$ is preserved
- Maintain small set X to dominate all vertices in W
 - MIN-DS is polynomially solvable on W

The Reduction

For $\beta > 2$, MIN-DS on $\mathcal{G}_{\alpha,\beta}$ PLG's is in \mathcal{APX}

- Study of functional case $\beta_f = 2 + \frac{1}{f(n)}$
 - Hard to approximate within $\Omega(\ln(n) c_b)$ for
 - $f(n) = \omega(\log(n))$
 - In APX for $f(n) = o(\log(n))$ (!)

For $\beta > 2$, MIN-DS on $\mathcal{G}_{\alpha,\beta}$ PLG's is in \mathcal{APX}

- Study of functional case $\beta_f = 2 + \frac{1}{f(n)}$
 - Hard to approximate within $\Omega(\ln(n) c_{\beta})$ for $f(n) = \omega(\log(n))$
 - In APX for $f(n) = o(\log(n))$ (!)

For $\beta > 2$, MIN-DS on $\mathcal{G}_{\alpha,\beta}$ PLG's is in \mathcal{APX}

- Study of functional case $\beta_f = 2 + \frac{1}{f(n)}$
 - Hard to approximate within Ω(ln(n) c_β) for f(n) = ω(log(n))
 - In APX for $f(n) = o(\log(n))$ (!)

For $\beta > 2$, MIN-DS on $\mathcal{G}_{\alpha,\beta}$ PLG's is in \mathcal{APX}

- Study of functional case $\beta_f = 2 + \frac{1}{f(n)}$
 - Hard to approximate within $\Omega(\ln(n) c_{\beta})$ for $f(n) = \omega(\log(n))$
 - In APX for $f(n) = o(\log(n))$ (!)

Approximation Upper Bounds for MINIMUM VERTEX COVER on Random Power Law Graphs

- Input: A graph G = (V, E)
- Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C
- Objective: Minimize |C|

- Input: A graph G = (V, E)
- Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C
- Objective: Minimize |C|

- Input: A graph G = (V, E)
- Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C
- Objective: Minimize |C|

- Input: A graph G = (V, E)
- Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C

Objective: Minimize |C|

Approximability on general graphs:

- Upper bound: 2 − Θ(1/√log n) (Karakostas, 2009)
 Lower bounds:
 - 2 ε assuming UGC (Khot and Regev, 2008)
 1.3606 assuming P ≠ NP (Dinur and S. Safra, 2005)

- Input: A graph G = (V, E)
- Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C

Objective: Minimize |C|

Approximability on general graphs:

• Upper bound: $2 - \Theta(1/\sqrt{\log n})$ (Karakostas, 2009)

Lower bounds:

2 − ε assuming UGC (Khot and Regev, 2008)
 1.3606 assuming P ≠ NP (Dinur and S. Safra, 2005)

- Input: A graph G = (V, E)
- Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C

Objective: Minimize |C|

Approximability on general graphs:

- Upper bound: $2 \Theta(1/\sqrt{\log n})$ (Karakostas, 2009)
- Lower bounds:
 - 2ε assuming UGC (Khot and Regev, 2008)
 - ▶ 1.3606 assuming $P \neq NP$ (Dinur and S. Safra, 2005)

- Input: A graph G = (V, E)
- Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C

Objective: Minimize |C|

Approximability on general graphs:

- Upper bound: $2 \Theta(1/\sqrt{\log n})$ (Karakostas, 2009)
- Lower bounds:
 - 2ε assuming UGC (Khot and Regev, 2008)
 - 1.3606 assuming $\mathcal{P} \neq \mathcal{NP}$ (Dinur and S. Safra, 2005)

Observation

There exists practical evidence that M_{IN} -VC is easier to approximate on PLG's

- The greedy algorithm often outperforms the 2-approximation algorithm (Park and Lee, 2001)
- Achieves average ratios of ~ 1.02 on real world network topologies (M. O. Da Silva, Gimenez-Lugo, and M. V. G. Da Silva, 2013)

Observation

There exists practical evidence that $M{\ensuremath{{\rm IN-VC}}}$ is easier to approximate on PLG's

The greedy algorithm often outperforms the 2-approximation algorithm (*Park and Lee, 2001*)
 Achieves average ratios of ~ 1.02 on real world network topologies (*M. O. Da Silva, Gimenez-Lugo, and M. V. G. Da Silva, 2013*)

Observation

There exists practical evidence that $M{\ensuremath{{\rm IN-VC}}}$ is easier to approximate on PLG's

- The greedy algorithm often outperforms the 2-approximation algorithm (*Park and Lee, 2001*)
- Achieves average ratios of ~ 1.02 on real world network topologies (M. O. Da Silva, Gimenez-Lugo, and M. V. G. Da Silva, 2013)

Observation

There exists practical evidence that $M{\ensuremath{{\rm IN-VC}}}$ is easier to approximate on PLG's

- The greedy algorithm often outperforms the 2-approximation algorithm (*Park and Lee, 2001*)
- Achieves average ratios of ~ 1.02 on real world network topologies (M. O. Da Silva, Gimenez-Lugo, and M. V. G. Da Silva, 2013)

Open Question

Can we give provable guarantees that MIN-VC is easier to approximate on PLG's?

I heorem (Gast and Hauptmann, 2012)

There exists an approximation algorithm for MIN-VC on random $\mathcal{G}_{\alpha,\beta}$ PLG's with expected approximation ratio

$$\rho \leqslant 2 - \frac{\zeta(\beta) - 1 - \frac{1}{2^{\beta}}}{2^{\beta} \zeta(\beta - 1) \zeta(\beta)}$$

Open Question

Can we give provable guarantees that $M{\ensuremath{\rm IN-VC}}$ is easier to approximate on PLG's?

Theorem (Gast and Hauptmann, 2012)

There exists an approximation algorithm for MIN-VC on random $\mathcal{G}_{\alpha,\beta}$ PLG's with expected approximation ratio

$$\rho \leqslant 2 - \frac{\zeta(\beta) - 1 - \frac{1}{2^{\beta}}}{2^{\beta} \zeta(\beta - 1) \zeta(\beta)}$$

Consider the following LP-Relaxation for Min-VC:

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{n} w_{i} x_{i},\\ \text{subject to} & x_{i} + x_{j} \geqslant 1, \quad \text{for all edges } e = \{v_{i}, v_{j}\},\\ & x_{i} \qquad \geqslant 0, \quad \text{for all vertices } v_{i} \in V \end{array}$$

- There always exists optimal solution which is half-integral, i.e. $\forall i : x_i \in \{0, \frac{1}{2}, 1\}$ and $v_i \in V_0, V_{\frac{1}{2}}, V_1$, respectively
- A half-integral solution can be computed in polynomial time (using algorithm for MIN-VC or PERFECT MATCHING in bipartite graphs)

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^n w_i x_i,\\ \text{subject to} & x_i + x_j \geqslant 1, \quad \text{for all edges } e = \{v_i, v_j\},\\ & x_i \qquad \geqslant 0, \quad \text{for all vertices } v_i \in V \end{array}$$

There always exists optimal solution which is half-integral, i.e. $\forall i : x_i \in \{0, 1/2, 1\}$ and $v_i \in V_0, V_{1/2}, V_1$, respectively

 A half-integral solution can be computed in polynomial time (using algorithm for MIN-VC or PERFECT MATCHING in bipartite graphs)

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^n w_i x_i,\\ \text{ubject to} & x_i + x_j \geqslant 1, \quad \text{for all edges } e = \{v_i, v_j\},\\ & x_i \qquad \geqslant 0, \quad \text{for all vertices } v_i \in V \end{array}$$

- There always exists optimal solution which is half-integral, i.e. $\forall i : x_i \in \{0, 1/2, 1\}$ and $v_i \in V_0, V_{1/2}, V_1$, respectively
- A half-integral solution can be computed in polynomial time (using algorithm for MIN-VC or PERFECT MATCHING in bipartite graphs)

S

Start with half-integral solution $x : V \rightarrow \{0, 1/2, 1\}$

Approximation Algorithm

Start with half-integral solution $x : V \rightarrow \{0, 1/2, 1\}$

Apply new deterministic rounding algorithm to *x*

Approximation Algorithm

Start with half-integral solution $x : V \rightarrow \{0, \frac{1}{2}, 1\}$

Apply new deterministic rounding algorithm to x

Prove that algorithm achieves ratio of 3/2 on subset $V' \subseteq V$ of low-degree vertices and their neighborhood

Approximation Algorithm

Start with half-integral solution $x : V \rightarrow \{0, \frac{1}{2}, 1\}$

Apply new deterministic rounding algorithm to x

Prove that algorithm achieves ratio of 3/2 on subset $V' \subseteq V$ of low-degree vertices and their neighborhood Prove lower bounds on x(V')and upper bounds on x(V)to determine the effect of the rounding on global solution

universität<mark>ho</mark>

Start with half-integral solution $x : V \rightarrow \{0, 1/2, 1\}$

Apply new deterministic rounding algorithm to x

Prove that algorithm achieves ratio of 3/2 on subset $V' \subseteq V$ of low-degree vertices and their neighborhood Overall approximation ratio as convex combination of ratio 3/2on V' and ratio 2 on $V \setminus V'$

Prove lower bounds on x(V')and upper bounds on x(V)to determine the effect of the rounding on global solution

Open Problems and Further Research

Still improving on the presented results

- Investigating the gap between upper and lower approximation bound for MIN-VC on PLG's
- Improving upper bounds for MIN-DS on PLG's when $\beta \leqslant 2$ (in random or quasi-random models)
- Exploit network hyperbolicity in biological and Internet based network design problems
- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)
- Applicability of graph limit theory in order to gather topological information of PLG generating processes

Open Problems and Further Research un

Still improving on the presented results

- Investigating the gap between upper and lower approximation bound for MIN-VC on PLG's
- Improving upper bounds for MIN-DS on PLG's when $\beta \leqslant 2$ (in random or quasi-random models)
- Exploit network hyperbolicity in biological and Internet based network design problems
- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)
- Applicability of graph limit theory in order to gather topological information of PLG generating processes
- Investigating the gap between upper and lower approximation bound for MIN-VC on PLG's
- Improving upper bounds for MIN-DS on PLG's when $\beta \leq 2$ (in random or quasi-random models)
- Exploit network hyperbolicity in biological and Internet based network design problems
- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)
- Applicability of graph limit theory in order to gather topological information of PLG generating processes

- Investigating the gap between upper and lower approximation bound for MIN-VC on PLG's
- Improving upper bounds for MIN-DS on PLG's when $\beta \leqslant 2$ (in random or quasi-random models)
- Exploit network hyperbolicity in biological and Internet based network design problems
- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)
- Applicability of graph limit theory in order to gather topological information of PLG generating processes

- Investigating the gap between upper and lower approximation bound for MIN-VC on PLG's
- Improving upper bounds for MIN-DS on PLG's when $\beta \leqslant 2$ (in random or quasi-random models)
- Exploit network hyperbolicity in biological and Internet based network design problems
- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)
- Applicability of graph limit theory in order to gather topological information of PLG generating processes

- Investigating the gap between upper and lower approximation bound for MIN-VC on PLG's
- Improving upper bounds for MIN-DS on PLG's when $\beta \leqslant 2$ (in random or quasi-random models)
- Exploit network hyperbolicity in biological and Internet based network design problems
- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)
- Applicability of graph limit theory in order to gather topological information of PLG generating processes

- Investigating the gap between upper and lower approximation bound for MIN-VC on PLG's
- Improving upper bounds for MIN-DS on PLG's when $\beta \leqslant 2$ (in random or quasi-random models)
- Exploit network hyperbolicity in biological and Internet based network design problems
- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)
- Applicability of graph limit theory in order to gather topological information of PLG generating processes

Thank you!