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First Observation

— Real world networks are not random, they
have very small diameter and they possess a
power law distribution of node degrees
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Biological Networks

Example:
Protein interactions of
Arabidopsis Thaliana
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Technological Networks

Example:
Network of Internet
Routers
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Social Networks (Disease Spreading)

Example:
Airport Network in the
United States
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Social Networks (Info Spreading)

Example:
Contact Network of
karate club members
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Power Law Degree Distribution

Uniform random graph vs. power law random graph

Number of nodes yi having degree i: yi ∼ c · i−β

Erdős-Rényi Random Graph Power Law Graph (PLG)
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Motivation

— The study of combinatorial optimization
problems on real world networks is motivated
by applications

Introduction Combinatorial Optimization on Real World Networks 8 / 42



Example: Dominating Set Problem

Minimum dominating
set problem in real
world networks:

Optimal sensor or
server placement
in wireless mobile
networks

Search for key
players or nodes
in social networks
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Other Properties

— Real world networks display a number of
other unique and characteristic topological
properties
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Small Worlds

Real world networks behave like “Small Worlds”

Existence of bridging links across the network

Regular Ring Graph Small-World Graph Random Graph

p = 0 p = 1
Increasing Rewiring Probability p
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Clustering Coefficients

Real world networks have large clustering
coefficients

Clustering coefficient measures cliquishness

vvv

Cv = 0 Cv = 1
Increasing Clustering Coefficient Cv
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Hyperbolicity

Real world networks have embedded hyperbolic
geometries

Relates to Gromov’s four-point condition for
δ-hyperbolicity of a metric space

HyperbolicEuclideanSpherical

K > 0 K < 0
Decreasing Curvature K
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Modeling

— There exists a large number of generating
models for power law graphs

Introduction Power Law Graph Models 14 / 42



Preferential Attachment

Evolving random model for PLG’s:

The Preferential Attachment Model (Barabási and

Albert, 1999)

v

u

After adding u, probability that u connects to some
vertex v:

Pr({u, v}) =

deg(v)/
∑

i deg(vi) − 1 u 6= v

1/
∑

i deg(vi) − 1 u = v
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Static Degree Sequences

Static random model for PLG’s:

The Gα,β Model or ACL Model (Aiello, Chung, and Lu,

2001)

Ensures power-law degree distribution by fixing a degree
sequence (y1, y2, . . . , y∆) via two parameters α,β and
then taking the space of random multigraphs with this
degree sequence

Introduction Power Law Graph Models 16 / 42
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ACL Model for PLG’s

Definition of the ACL Model Gα,β:

For each 1 6 i 6 ∆ =
⌊
eα/β

⌋
,

yi =


⌊eα

iβ
⌋

if i > 1 or
∑∆

i=1

⌊eα
iβ
⌋

is even

beαc+ 1 otherwise

α is the logarithm of the network size, β is the
log-log growth rate
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ACL Model for PLG’s

Number of vertices:

n =

∆∑
i=1

⌊
eα

iβ

⌋
≈


ζ(β) eα if β > 1

α eα if β = 1
eα/β
1−β if 0 < β < 1

Number of edges:

m =
1
2

∆∑
i=1

i
⌊

eα

iβ

⌋
≈


1
2ζ(β− 1) eα if β > 2
1
4α eα if β = 2
1
2

e2α/β

2−β if 0 < β < 2
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ACL Random Model

The distribution of graphs G ∈ Gα,β over a sequence
(y1, y2, . . . , y∆) or (deg(v1), deg(v2), . . . , deg(vn)) is
generated as follows:

Preliminaries ACL Model for Power Law Graphs 19 / 42



ACL Random Model

1 Generate set L of deg(v) distinct copies for each
vertex v ∈ V(G)

2 M := random matching on the elements of L
3 For u, v ∈ V(G) number of edges {u, v} equals

number of edges m ∈M that join copies of u and v

. . . . . . . . .

deg(v) = 1 deg(v) = 2 deg(v) = 3

V(G)

L

Preliminaries ACL Model for Power Law Graphs 20 / 42
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Overview of Main Results



Overview of Results

Presented here:

Approximation lower bounds for Minimum

Dominating Set (Min-DS) in connected PLG’s

Approximation upper bounds for Minimum Vertex

Cover (Min-VC) in random PLG’s

Techniques:

Connected Embedding Approximation-Preserving
(CEAP) reductions

Transforming hardness results for bounded
occurrence CSP’s and Set Cover

Overview Main Results 22 / 42
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Techniques and Paradigms Used



Techniques and Paradigms Used

Lower bound technique:

CEAP reductions (high level view)
Embed bounded occurrence CSP and Set Cover

reduction instances G ′ into PLG Gα,β ∈ Gα,β

Achieve connectivity with reasonable cut sizes
between G ′ and Gα,β \ G ′

Preserve hardness of approximation in the
embedding construction
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Bounded Occurrence CSP Paradigm

Method: Bounded degree amplifier graphs
(Berman and Karpinski, 1999)

v

Basic Idea:

Replace nodes corre-
sponding to variables
by 3-regular amplifier
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Bounded Occurrence CSP Paradigm

From bounded occurrence CSP’s to vertex covers:
Reduce bounded occurrence Hybrid (equations
with 2 and 3 variables) to Min-VC on degree d
bounded graphs (d-Min-VC)

I Yields explicit lower bounds of 103
102 for d = 3 and 55

54 for
d = 4, 5 (Berman and Karpinski, 2003)

I For larger d assuming UGC: 2 − (2 + o(1)) log log d
log d

(Austrin, Khot, and M. Safra, 2009)

d-Min-VC serves as starting point for our CEAP
reduction to Min-VC on PLG’s
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Set Cover Paradigm

From set covering to dominating sets:

A Set Cover
instance (U, S)

A Min-DS
instance GU,S

GU,S instances will serve as starting point for our
CEAP reduction to Min-DS on PLG’s
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Approximation Lower Bounds for

Minimum Dominating Set on

Connected Power Law Graphs



Minimum Dominating Set

Definition (Min-DS)
Input: A graph G = (V, E)

Output: A subset D ⊆ V such that for each vertex
v ∈ V either v ∈ D or D∪N(v) 6= ∅

Objective: Minimize |D|

Main Results Approximation Lower Bounds for Min-DS on PLG’s 29 / 42
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Previous Results

Approximability on PLG’s:

For all β > 0, NP-hard on simple disconnected
PLG’s (Ferrante, Pandurangan, and Park, 2008)

For all β > 1, APX-hard on disconnected power law
multigraphs (Shen et al., 2012)

I Explicit inapproximability factors for 1 < β 6 2:

Simple PLG’s General PLG’s

1 +
1

390(2ζ(β)3β − 1)
1 +

1
3120ζ(β)3β

Main Results Approximation Lower Bounds for Min-DS on PLG’s 30 / 42
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Hardness of Min-DS on PLG’s

Open Questions
Is Minimum Dominating Set NP-hard and
APX-hard on connected PLG’s?

Can we close the gap between the constant lower
bounds on PLG’s and the general logarithmic lower
bound?

Can we extend the results to the range β ∈ [0, 1]?

Theorem (Gast, Hauptmann, and Karpinski, 2012)

For all β ∈ [0 + ε, 2] and ε > 0, Min-DS is hard to
approximate within Ω(ln(n) − cβ) on connected PLG’s

Main Results Approximation Lower Bounds for Min-DS on PLG’s 31 / 42
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Reduction

Embedding technique (CEAP reduction):
Map GU,S to Gα,β via scaling construction
connecting to a multigraph wheel W

I Number of edges between GU,S and W is
O(min{|GU,S|, |W|})

Vertex set Γ separates GU,S from Gα,β \ GU,S
I Hardness on maximal component GU,S is preserved

Maintain small set X to dominate all vertices in W
I Min-DS is polynomially solvable on W

Main Results Approximation Lower Bounds for Min-DS on PLG’s 32 / 42
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I Number of edges between GU,S and W is
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The Reduction

Γ ⊆ V2

GU,S

W

X
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Phase Transitions

Observation
For β > 2, Min-DS on Gα,β PLG’s is in APX

Analysis of the phase transition:

Study of functional case βf = 2 + 1
f (n)

I Hard to approximate within Ω(ln(n) − cβ) for
f (n) = ω(log(n))

I In APX for f (n) = o(log(n)) (!)
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Approximation Upper Bounds for

Minimum Vertex Cover on

Random Power Law Graphs



Minimum Vertex Cover Problem

Definition (Min-VC)
Input: A graph G = (V, E)

Output: A subset C ⊆ V such that each edge
{u, v} ∈ E has at least one endpoint in C

Objective: Minimize |C|
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Output: A subset C ⊆ V such that each edge
{u, v} ∈ E has at least one endpoint in C

Objective: Minimize |C|

Approximability on general graphs:

Upper bound: 2 −Θ(1/
√

log n) (Karakostas, 2009)

Lower bounds:
I 2 − ε assuming UGC (Khot and Regev, 2008)
I 1.3606 assuming P 6= NP (Dinur and S. Safra, 2005)
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Previous Results

Approximability on PLG’s:

Observation
There exists practical evidence that Min-VC is easier to
approximate on PLG’s

The greedy algorithm often outperforms the
2-approximation algorithm (Park and Lee, 2001)

Achieves average ratios of ∼ 1.02 on real world
network topologies (M. O. Da Silva, Gimenez-Lugo, and

M. V. G. Da Silva, 2013)
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Approximation of Min-VC on PLG’s

Open Question
Can we give provable guarantees that Min-VC is easier
to approximate on PLG’s?

Theorem (Gast and Hauptmann, 2012)

There exists an approximation algorithm for Min-VC on
random Gα,β PLG’s with expected approximation ratio

ρ 6 2 −
ζ(β) − 1 − 1

2β

2βζ(β− 1)ζ(β)
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Half Integral Solutions

Consider the following LP-Relaxation for Min-VC:
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Half Integral Solutions

minimize
n∑

i=1

wixi,

subject to xi + xj > 1, for all edges e = {vi, vj},

xi > 0, for all vertices vi ∈ V

There always exists optimal solution which is
half-integral, i.e. ∀i : xi ∈ {0, 1/2, 1} and
vi ∈ V0, V1/2, V1, respectively

A half-integral solution can be computed in
polynomial time (using algorithm for Min-VC or
Perfect Matching in bipartite graphs)
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Approximation Algorithm

Start with half-integral
solution x : V → {0, 1/2, 1}

Apply new deterministic
rounding algorithm to x

Prove that algorithm achieves
ratio of 3/2 on subset V ′ ⊆

V of low-degree vertices
and their neighborhood

Overall approximation ratio as
convex combination of ratio 3/2

on V ′ and ratio 2 on V \ V ′

Prove lower bounds on x(V ′)
and upper bounds on x(V)

to determine the effect of the
rounding on global solution
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Open Problems and Further Research

Still improving on the presented results
I Investigating the gap between upper and lower

approximation bound for Min-VC on PLG’s
I Improving upper bounds for Min-DS on PLG’s when
β 6 2 (in random or quasi-random models)

Exploit network hyperbolicity in biological and
Internet based network design problems

Computational complexity of node and edge
deletion problems and information spreading in
dynamic networks (especially in biological settings)

Applicability of graph limit theory in order to gather
topological information of PLG generating processes

�
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Thank you!
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