Approximability of Combinatorial Optimization Problems on Power Law Networks

Mikael Gast

Dept. of Computer Science and B-IT Research School, University of Bonn

Ph.D. Thesis Defense

September 4, 2013

First Observation

- Real world networks are not random, they have very small diameter and they possess a power law distribution of node degrees

Biological Networks

Example:
 Protein interactions of
 Arabidopsis Thaliana

Biological Networks

Example:

Protein interactions of Arabidopsis Thaliana

Technological Networks

Example:
 Network of Internet Routers

Technological Networks

Example:

Network of Internet Routers

Social Networks (Disease Spreading)

Example:

Airport Network in the United States

Social Networks (Disease Spreading)

Example:

Airport Network in the United States

Social Networks (Info Spreading)

Example:

Contact Network of karate club members

Social Networks (Info Spreading)

Example:

Contact Network of karate club members

Power Law Degree Distribution

- Uniform random graph vs. power law random graph - Number of nodes y_{i} having degree $i: y_{i} \sim c \cdot i^{-\beta}$

Erdős-Rényi Random Graph

Power Law Graph (PLG)

Power Law Degree Distribution

■ Uniform random graph vs. power law random graph ■ Number of nodes y_{i} having degree $i: y_{i} \sim c \cdot i^{-\beta}$

Power Law Degree Distribution

■ Uniform random graph vs. power law random graph
■ Number of nodes y_{i} having degree $i: y_{i} \sim c \cdot i^{-\beta}$

Motivation

- The study of combinatorial optimization problems on real world networks is motivated by applications

Example: Dominating Set Problem

Minimum dominating set problem in real world networks:

Example: Dominating Set Problem

Example: Dominating Set Problem

Minimum dominating set problem in real world networks:

■ Optimal sensor or server placement in wireless mobile networks

■ Search for key players or nodes in social networks

Other Properties

- Real world networks display a number of other unique and characteristic topological properties

Small Worlds

■ Real world networks behave like "Small Worlds"

- Existence of bridging links across the network

Small Worlds

■ Real world networks behave like "Small Worlds" ■ Existence of bridging links across the network

Clustering Coefficients

■ Real world networks have large clustering coefficients

- Clustering coefficient measures cliquishness

Clustering Coefficients

■ Real world networks have large clustering coefficients
■ Clustering coefficient measures cliquishness

$$
C_{v}=0 \underset{\text { Increasing Clustering Coefficient } C_{v}}{ } C_{v}=1
$$

Hyperbolicity

■ Real world networks have embedded hyperbolic geometries

- Relates to Gromov's four-point condition for δ-hyperbolicity of a metric space

Hyperbolicity

■ Real world networks have embedded hyperbolic geometries

- Relates to Gromov's four-point condition for δ-hyperbolicity of a metric space

Spherical

Euclidean
Hyperbolic

Decreasing Curvature K

$\rightarrow K<0$

Modeling

- There exists a large number of generating models for power law graphs

Preferential Attachment

Evolving random model for PLG's:

The Preferential Attachment Model (Barabási and Albert, 1999)

Preferential Attachment

Evolving random model for PLG's:

- The Preferential Attachment Model (Barabási and Albert, 1999)

After adding u, probability that u connects to some vertex v :

$$
\operatorname{Pr}(\{u, v\})= \begin{cases}\operatorname{deg}(v) / \sum_{i} \operatorname{deg}\left(v_{i}\right)-1 & u \neq v \\ 1 / \sum_{i} \operatorname{deg}\left(v_{i}\right)-1 & u=v\end{cases}
$$

Static Degree Sequences

Static random model for PLG's:

Ensures power-law degree distribution by fixing a degree sequence $\left(y_{1}, y_{2}, \ldots, y_{\Delta}\right)$ via two parameters α, β and then taking the space of random multigraphs with this degree sequence

Static Degree Sequences

Static random model for PLG's:

■ The $\mathcal{G}_{\alpha, \beta}$ Model or ACL Model (Aiello, Chung, and Lu, 2001)

Ensures power-law degree distribution by fixing a degree sequence $\left(y_{1}, y_{2}, \ldots, y_{\Delta}\right)$ via two parameters α, β and then taking the space of random multigraphs with this degree sequence

ACL Model for PLG's

Definition of the ACL Model $\mathcal{G}_{\alpha, \beta}$:

Definition of the ACL Model $\mathcal{G}_{\alpha, \beta}$:
■ For each $1 \leqslant i \leqslant \Delta=\left\lfloor\mathrm{e}^{\alpha / \beta}\right\rfloor$,

$$
y_{i}= \begin{cases}\left\lfloor\frac{\mathrm{e}^{\alpha}}{i^{\beta}}\right\rfloor & \text { if } i>1 \text { or } \sum_{i=1}^{\Delta}\left\lfloor\frac{\mathrm{e}^{\alpha}}{i^{\beta}}\right\rfloor \text { is even } \\ \left\lfloor\mathrm{e}^{\alpha}\right\rfloor+1 & \text { otherwise }\end{cases}
$$

- α is the logarithm of the network size, β is the log-log growth rate

ACL Model for PLG's

Definition of the ACL Model $\mathcal{G}_{\alpha, \beta}$:
■ For each $1 \leqslant i \leqslant \Delta=\left\lfloor\mathrm{e}^{\alpha / \beta}\right\rfloor$,

$$
y_{i}= \begin{cases}\left\lfloor\frac{\mathrm{e}^{\alpha}}{i^{\beta}}\right\rfloor & \text { if } i>1 \text { or } \sum_{i=1}^{\Delta}\left\lfloor\frac{\mathrm{e}^{\alpha}}{i^{\beta}}\right\rfloor \text { is even } \\ \left\lfloor\mathrm{e}^{\alpha}\right\rfloor+1 & \text { otherwise }\end{cases}
$$

■ α is the logarithm of the network size, β is the log-log growth rate

ACL Model for PLG's

■ Number of vertices:

$$
n=\sum_{i=1}^{\Delta}\left\lfloor\frac{\mathrm{e}^{\alpha}}{i^{\beta}}\right\rfloor \approx \begin{cases}\zeta(\beta) \mathrm{e}^{\alpha} & \text { if } \beta>1 \\ \alpha \mathrm{e}^{\alpha} & \text { if } \beta=1 \\ \frac{\mathrm{e}^{\alpha / \beta}}{1-\beta} & \text { if } 0<\beta<1\end{cases}
$$

■ Number of edges:

ACL Model for PLG's

■ Number of vertices:

$$
n=\sum_{i=1}^{\Delta}\left\lfloor\frac{\mathrm{e}^{\alpha}}{i^{\beta}}\right\rfloor \approx \begin{cases}\zeta(\beta) \mathrm{e}^{\alpha} & \text { if } \beta>1 \\ \alpha \mathrm{e}^{\alpha} & \text { if } \beta=1 \\ \frac{\mathrm{e}^{\alpha / \beta}}{1-\beta} & \text { if } 0<\beta<1\end{cases}
$$

■ Number of edges:

$$
m=\frac{1}{2} \sum_{i=1}^{\Delta} i\left\lfloor\frac{\mathrm{e}^{\alpha}}{i^{\beta}}\right\rfloor \approx \begin{cases}\frac{1}{2} \zeta(\beta-1) \mathrm{e}^{\alpha} & \text { if } \beta>2 \\ \frac{1}{4} \alpha \mathrm{e}^{\alpha} & \text { if } \beta=2 \\ \frac{1}{2} \frac{\mathrm{e}^{2 \alpha / \beta}}{2-\beta} & \text { if } 0<\beta<2\end{cases}
$$

ACL Random Model

The distribution of graphs $G \in \mathcal{G}_{\alpha, \beta}$ over a sequence $\left(y_{1}, y_{2}, \ldots, y_{\Delta}\right)$ or $\left(\operatorname{deg}\left(v_{1}\right), \operatorname{deg}\left(v_{2}\right), \ldots, \operatorname{deg}\left(v_{n}\right)\right)$ is generated as follows:

ACL Random Model

1 Generate set L of $\operatorname{deg}(v)$ distinct copies for each vertex $v \in V(G)$
$2 M:=$ random matching on the elements of L
3 For $u, v \in V(G)$ number of edges $\{u, v\}$ equals number of edges $m \in M$ that join copies of u and v

ACL Random Model

1 Generate set L of $\operatorname{deg}(v)$ distinct copies for each vertex $v \in V(G)$

- $M:=$ random matching on the elements of L
s For $u, v \in V(G)$ number of edges $\{u, v\}$ equals number of edges $m \in M$ that join copies of u and v

$$
\operatorname{deg}(v)=1 \quad \operatorname{deg}(v)=2 \quad \operatorname{deg}(v)=3
$$

ACL Random Model

1 Generate set L of $\operatorname{deg}(v)$ distinct copies for each vertex $v \in V(G)$
】 $M:=$ random matching on the elements of L
3 For $u, v \in V(G)$ number of edges $\{u, v\}$ equals number of edges $m \in M$ that join copies of u and v

Overview of Main Results

Overview of Results

Presented here:
■ Approximation lower bounds for Minimum Dominating Set (Min-DS) in connected PLG's

- Approximation upper bounds for Minimum Vertex Cover (Min-VC) in random PLG's

Techniques:
■ Connected Embedding Approximation-Preserving (CEAP) reductions

- Transforming hardness results for bounded occurrence CSP's and Set Cover

Overview of Results

Presented here:

- Approximation lower bounds for Minimum Dominating Set (Min-DS) in connected PLG's
■ Approximation upper bounds for Minimum Vertex Cover (Min-VC) in random PLG's

Techniques:

- LP-relaxation and deterministic rounding algorithm
- Upper and lower bounds on the size of half-integral solutions in random PLG's

Overview of Results

Presented here:

- Approximation lower bounds for Minimum Dominating Set (Min-DS) in connected PLG's
■ Approximation upper bounds for Minimum Vertex Cover (Min-VC) in random PLG's

Further results:

- Approximation lower bounds for Min-VC in connected PLG's
- Approximation upper bounds for Min-DS for $\beta>2$

Overview of Results

Presented here:

- Approximation lower bounds for Minimum Dominating Set (Min-DS) in connected PLG's
■ Approximation upper bounds for Minimum Vertex Cover (Min-VC) in random PLG's

Further results:

- Approximation lower bounds for Min-VC in connected PLG's
- Approximation upper bounds for Min-DS for $\beta>2$

Techniques and Paradigms Used

Techniques and Paradigms Used

Lower bound technique:

CEAP reductions (high level view)
■ Embed bounded occurrence CSP and Set Cover reduction instances G^{\prime} into PLG $G_{\alpha, \beta} \in \mathcal{G}_{\alpha, \beta}$

- Achieve connectivity with reasonable cut sizes between G^{\prime} and $G_{\alpha, \beta} \backslash G^{\prime}$
- Preserve hardness of anproximation in the embedding construction

Techniques and Paradigms Used

Lower bound technique:

CEAP reductions (high level view)

- Embed bounded occurrence CSP and Set Cover reduction instances G^{\prime} into PLG $G_{\alpha, \beta} \in \mathcal{G}_{\alpha, \beta}$
- Achieve connectivity with reasonable cut sizes between G^{\prime} and $G_{\alpha, \beta} \backslash G^{\prime}$
- Preserve hardness of approximation in the embedding construction

Techniques and Paradigms Used

Lower bound technique:

CEAP reductions (high level view)

- Embed bounded occurrence CSP and Set Cover reduction instances G^{\prime} into PLG $G_{\alpha, \beta} \in \mathcal{G}_{\alpha, \beta}$
- Achieve connectivity with reasonable cut sizes between G^{\prime} and $G_{\alpha, \beta} \backslash G^{\prime}$
- Preserve hardness of approximation in the embedding construction

Bounded Occurrence CSP Paradigm

Method: Bounded degree amplifier graphs
(Berman and Karpinski, 1999)

Bounded Occurrence CSP Paradigm

Method: Bounded degree amplifier graphs (Berman and Karpinski, 1999)

Basic Idea:

Replace nodes corresponding to variables by 3 -regular amplifier

Bounded Occurrence CSP Paradigm

From bounded occurrence CSP's to vertex covers:
■ Reduce bounded occurrence Hybrid (equations with 2 and 3 variables) to Min-VC on degree d bounded graphs (d-Min-VC)

Bounded Occurrence CSP Paradigm

From bounded occurrence CSP's to vertex covers:
■ Reduce bounded occurrence Hybrid (equations with 2 and 3 variables) to Min-VC on degree d bounded graphs (d-Min-VC)

- Yields explicit lower bounds of $\frac{103}{102}$ for $d=3$ and $\frac{55}{54}$ for $d=4,5$ (Berman and Karpinski, 2003)

Bounded Occurrence CSP Paradigm

From bounded occurrence CSP's to vertex covers:
■ Reduce bounded occurrence Hybrid (equations with 2 and 3 variables) to Min-VC on degree d bounded graphs (d-Min-VC)

- Yields explicit lower bounds of $\frac{103}{102}$ for $d=3$ and $\frac{55}{54}$ for $d=4,5$ (Berman and Karpinski, 2003)
- For larger d assuming UGC: $2-(2+o(1)) \frac{\log \log d}{\log d}$ (Austrin, Khot, and M. Safra, 2009)

Bounded Occurrence CSP Paradigm

From bounded occurrence CSP's to vertex covers:
■ Reduce bounded occurrence Hybrid (equations with 2 and 3 variables) to Min-VC on degree d bounded graphs (d-Min-VC)

- Yields explicit lower bounds of $\frac{103}{102}$ for $d=3$ and $\frac{55}{54}$ for $d=4,5$ (Berman and Karpinski, 2003)
- For larger d assuming UGC: $2-(2+o(1)) \frac{\log \log d}{\log d}$ (Austrin, Khot, and M. Safra, 2009)
■ d-Min-VC serves as starting point for our CEAP reduction to Min-VC on PLG's

Set Cover Paradigm

From set covering to dominating sets:

■ $G_{U, S}$ instances will serve as starting point for our CEAP reduction to Min-DS on PLG's

Set Cover Paradigm

From set covering to dominating sets:

A Set Cover instance (U, S)

0	0	0	0	0	0	0
0						
0	0	0	0	0	0	0

■ $G_{U, S}$ instances will serve as starting point for our CEAP reduction to Min-DS on PLG's

Set Cover Paradigm

From set covering to dominating sets:
A Set Cover instance (U, \mathcal{S})

\bullet	\bullet	0	\bullet	0	0	0
0						
	\bullet	\bullet	\bullet	0	0	0

A Min-DS instance $G_{U, S}$

- $G_{U, S}$ instances will serve as starting point for our CEAP reduction to Min-DS on PLG's

Set Cover Paradigm

From set covering to dominating sets:
A Set Cover instance (U, \mathcal{S})

\bullet	\bullet	0	\bullet	\bullet	\bullet	0
0	\bullet	\bullet	\bullet	0	0	0

A Min-DS instance $G_{U, S}$

- $G_{U, S}$ instances will serve as starting point for our CEAP reduction to Min-DS on PLG's

Approximation Lower Bounds for Minimum Dominating Set on Connected Power Law Graphs

Minimum Dominating Set

Definition (Min-DS)

Input: A graph $G=(V, E)$
Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$
Objective: Minimize $|D|$

Minimum Dominating Set

Definition (Min-DS)

Input: A graph $G=(V, E)$
Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$
Objective: Minimize $|D|$

Dominating Set

Minimum Dominating Set

Definition (Min-DS)

Input: A graph $G=(V, E)$
Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$
Objective: Minimize $|D|$

Dominating Set

Minimum Dominating Set

Minimum Dominating Set

Definition (Min-DS)

Input: A graph $G=(V, E)$
Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$
Objective: Minimize $|D|$

Approximability on general graphs:

- Upper bound:
ln n (Johnson, 1974; Lovász, 1975)
■ Lower bound: $(1-o(1)) \ln n($ Feige, 1998)

Minimum Dominating Set

Definition (Min-DS)

Input: A graph $G=(V, E)$
Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$
Objective: Minimize $|D|$
Approximability on general graphs:
■ Upper bound: $\ln n$ (Johnson, 1974; Lovász, 1975)

- Lower bound: $(1-o(1)) \ln n$ (Feige, 1998)

Minimum Dominating Set

Definition (Min-DS)

Input: A graph $G=(V, E)$
Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$
Objective: Minimize $|D|$
Approximability on general graphs:

- Upper bound: $\ln n$ (Johnson, 1974; Lovász, 1975)
- Lower bound: $(1-o(1)) \ln n$ (Feige, 1998)

Previous Results

Approximability on PLG's:

> - For all $\beta>0, \mathcal{N}$-hard on simple disconnected PLG's (Ferrante, Pandurangan, and Park, 2008) For all $\beta>1, A \mathcal{P} X$-hard on disconnected nower law multigraphs (Shen et al., 2012)

Previous Results

Approximability on PLG's:

- For all $\beta>0, \mathcal{N}^{\top}$-hard on simple disconnected PLG's (Ferrante, Pandurangan, and Park, 2008)

- For all $\beta>1, \mathcal{A P X}$-hard on disconnected power law multigraphs (Shen et al., 2012)

Previous Results

Approximability on PLG's:

- For all $\beta>0, \mathcal{N P}^{\top}$-hard on simple disconnected PLG's (Ferrante, Pandurangan, and Park, 2008)
■ For all $\beta>1, \mathcal{A P X}$-hard on disconnected power law multigraphs (Shen et al., 2012)

Previous Results

Approximability on PLG's:

■ For all $\beta>0, \mathcal{N P}$-hard on simple disconnected PLG's (Ferrante, Pandurangan, and Park, 2008)
■ For all $\beta>1, \mathcal{A P X}$-hard on disconnected power law multigraphs (Shen et al., 2012)

- Explicit inapproximability factors for $1<\beta \leqslant 2$:

> Simple PLG's General PLG's

Hardness of Min-DS on PLG's

Open Questions

■ Is Minimum Dominating Set $\mathcal{N P}$-hard and $\mathcal{A P X}$-hard on connected PLG's?

- Can we close the gap between the constant lower bounds on PLG's and the general logarithmic lower bound?
- Can we extend the results to the range $\beta \in[0,1]$?

Hardness of Min-DS on PLG's

Open Questions

■ Is Minimum Dominating Set \mathcal{N} P-hard and $\mathcal{A P X}$-hard on connected PLG's?

- Can we close the gap between the constant lower bounds on PLG's and the general logarithmic lower bound?
- Can we extend the results to the range $\beta \in[0,1]$?

Hardness of Min-DS on PLG's

Open Questions

■ Is Minimum Dominating Set \mathcal{N} P-hard and $\mathcal{A P X}$-hard on connected PLG's?

- Can we close the gap between the constant lower bounds on PLG's and the general logarithmic lower bound?
- Can we extend the results to the range $\beta \in[0,1]$?

Hardness of Min-DS on PLG's

Open Questions

■ Is Minimum Dominating Set \mathcal{N} P-hard and $\mathcal{A P X}$-hard on connected PLG's?

- Can we close the gap between the constant lower bounds on PLG's and the general logarithmic lower bound?
- Can we extend the results to the range $\beta \in[0,1]$?

Theorem (Gast, Hauptmann, and Karpinski, 2012)

For all $\beta \in[0+\varepsilon, 2]$ and $\varepsilon>0$, Min-DS is hard to approximate within $\Omega\left(\ln (n)-c_{\beta}\right)$ on connected PLG's

Reduction

Embedding technique (CEAP reduction):

■ Map $G_{U, S}$ to $G_{\alpha, \beta}$ via scaling construction connecting to a multigraph wheel W

■ Vertex set Γ separates $G_{U, S}$ from $G_{\alpha, \beta} \backslash G_{U, S}$

■ Maintain small set X to dominate all vertices in W

Reduction

Embedding technique (CEAP reduction):

■ Map $G_{U, S}$ to $G_{\alpha, \beta}$ via scaling construction connecting to a multigraph wheel W

- Number of edges between $G_{U, S}$ and W is $O\left(\min \left\{\left|G_{U, \mathcal{S}}\right|,|W|\right\}\right)$
- Vertex set Γ separates $G_{U, S}$ from $G_{\alpha, \beta} \backslash G_{U, S}$

■ Maintain small set X to dominate all vertices in W

Reduction

Embedding technique (CEAP reduction):

■ Map $G_{U, S}$ to $G_{\alpha, \beta}$ via scaling construction connecting to a multigraph wheel W

- Number of edges between $G_{U, S}$ and W is $O\left(\min \left\{\left|G_{U, 8}\right|,|W|\right\}\right)$
■ Vertex set Γ separates $G_{U, S}$ from $G_{\alpha, \beta} \backslash G_{U, S}$
- Hardness on maximal component $G_{U, S}$ is preserved
- Maintain small set X to dominate all vertices in W

Reduction

Embedding technique (CEAP reduction):

■ Map $G_{U, s}$ to $G_{\alpha, \beta}$ via scaling construction connecting to a multigraph wheel W

- Number of edges between $G_{U, S}$ and W is $O\left(\min \left\{\left|G_{U, \S}\right|,|W|\right\}\right)$
■ Vertex set Γ separates $G_{U, S}$ from $G_{\alpha, \beta} \backslash G_{U, S}$
- Hardness on maximal component $G_{U, 8}$ is preserved
\square

Embedding technique (CEAP reduction):

■ Map $G_{U, S}$ to $G_{\alpha, \beta}$ via scaling construction connecting to a multigraph wheel W

- Number of edges between $G_{U, S}$ and W is $O\left(\min \left\{\left|G_{U, 8}\right|,|W|\right\}\right)$
■ Vertex set Γ separates $G_{U, S}$ from $G_{\alpha, \beta} \backslash G_{U, S}$
- Hardness on maximal component $G_{U, 8}$ is preserved

■ Maintain small set X to dominate all vertices in W

Embedding technique (CEAP reduction):

■ Map $G_{U, S}$ to $G_{\alpha, \beta}$ via scaling construction connecting to a multigraph wheel W

- Number of edges between $G_{U, S}$ and W is $O\left(\min \left\{\left|G_{U, 8}\right|,|W|\right\}\right)$
■ Vertex set Γ separates $G_{U, S}$ from $G_{\alpha, \beta} \backslash G_{U, S}$
- Hardness on maximal component $G_{U, 8}$ is preserved

■ Maintain small set X to dominate all vertices in W

- Min-DS is polynomially solvable on W

The Reduction

Phase Transitions

Observation
 For $\beta>2$, Min-DS on $\mathcal{G}_{\alpha, \beta}$ PLG's is in $\mathcal{A P X}$

Analysis of the phase transition:

Phase Transitions

Observation

For $\beta>2$, Min-DS on $\mathcal{G}_{\alpha, \beta}$ PLG's is in $\mathcal{A P X}$
Analysis of the phase transition:

- Study of functional case $\beta_{f}=2+\frac{1}{f(n)}$

Phase Transitions

Observation

For $\beta>2$, Min-DS on $\mathcal{G}_{\alpha, \beta}$ PLG's is in $\mathcal{A P X}$
Analysis of the phase transition:
■ Study of functional case $\beta_{f}=2+\frac{1}{f(n)}$

- Hard to approximate within $\Omega\left(\ln (n)-c_{\beta}\right)$ for $f(n)=\omega(\log (n))$

Phase Transitions

Observation

For $\beta>2$, Min-DS on $\mathcal{G}_{\alpha, \beta}$ PLG's is in $\mathcal{A P X}$
Analysis of the phase transition:

- Study of functional case $\beta_{f}=2+\frac{1}{f(n)}$
- Hard to approximate within $\Omega\left(\ln (n)-c_{\beta}\right)$ for $f(n)=\omega(\log (n))$
- In $\mathcal{A P X}$ for $f(n)=o(\log (n))(!)$

Approximation Upper Bounds for Minimum Vertex Cover on Random Power Law Graphs

Minimum Vertex Cover Problem

Definition (Min-VC)

Input: A graph $G=(V, E)$
Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C Objective: Minimize $|C|$

Minimum Vertex Cover Problem

Definition (Min-VC)

Input: A graph $G=(V, E)$
Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C
Objective: Minimize $|C|$

Minimum Vertex Cover Problem

Definition (Min-VC)

Input: A graph $G=(V, E)$
Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C
Objective: Minimize $|C|$

Minimum Vertex Cover Problem

Definition (Min-VC)

Input: A graph $G=(V, E)$
Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C
Objective: Minimize $|C|$
Approximability on general graphs:

- Upper bound: $2-\Theta$ bounds:

Minimum Vertex Cover Problem

Definition (Min-VC)

Input: A graph $G=(V, E)$
Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C
Objective: Minimize $|C|$

Approximability on general graphs:
■ Upper bound: $2-\Theta(1 / \sqrt{\log n})$ (Karakostas, 2009)

- Lower bounds:

Minimum Vertex Cover Problem

Definition (Min-VC)

Input: A graph $G=(V, E)$
Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C
Objective: Minimize $|C|$
Approximability on general graphs:
■ Upper bound: $2-\Theta(1 / \sqrt{\log n})$ (Karakostas, 2009)

- Lower bounds:
- $2-\varepsilon$ assuming UGC (Khot and Regev, 2008)

Minimum Vertex Cover Problem

Definition (Min-VC)

Input: A graph $G=(V, E)$
Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C
Objective: Minimize $|C|$
Approximability on general graphs:
■ Upper bound: $2-\Theta(1 / \sqrt{\log n})$ (Karakostas, 2009)

- Lower bounds:
- $2-\varepsilon$ assuming UGC (Khot and Regev, 2008)
- 1.3606 assuming $\mathcal{P} \neq \mathcal{N P}$ (Dinur and S. Safra, 2005)

Previous Results

Approximability on PLG's:

Observation
 There exists practical evidence that Min-VC is easier to

Previous Results

Approximability on PLG's:

Observation

There exists practical evidence that Min-VC is easier to approximate on PLG's

Previous Results

Approximability on PLG's:

Observation

There exists practical evidence that Min-VC is easier to approximate on PLG's

- The greedy algorithm often outperforms the 2-approximation algorithm (Park and Lee, 2001)
- Achieves average ratios of ~ 1.02 on real world network topologies (M. O. Da Silva, Gimenez-Lugo, and M. V. G. Da Silva, 2013)

Previous Results

Approximability on PLG's:

Observation

There exists practical evidence that Min-VC is easier to approximate on PLG's

- The greedy algorithm often outperforms the 2-approximation algorithm (Park and Lee, 2001)
■ Achieves average ratios of ~ 1.02 on real world network topologies (M. O. Da Silva, Gimenez-Lugo, and M. V. G. Da Silva, 2013)

Approximation of Min-VC on PLG's

Open Question

Can we give provable guarantees that Min-VC is easier to approximate on PLG's?

Theorem (Gast and Hauptmann, 2012)
There exists an approximation algorithm for Min-VC on random $\mathcal{G}_{\alpha, \beta}$ PLG's with expected approximation ratio

Approximation of Min-VC on PLG's

Open Question

Can we give provable guarantees that Min-VC is easier to approximate on PLG's?

Theorem (Gast and Hauptmann, 2012)
There exists an approximation algorithm for Min-VC on random $\mathcal{G}_{\alpha, \beta}$ PLG's with expected approximation ratio

$$
\rho \leqslant 2-\frac{\zeta(\beta)-1-\frac{1}{2^{\beta}}}{2^{\beta} \zeta(\beta-1) \zeta(\beta)}
$$

Half Integral Solutions

Consider the following LP-Relaxation for Min-VC:

Half Integral Solutions

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i=1}^{n} w_{i} x_{i}, \\
\text { subject to } & x_{i}+x_{j} \geqslant 1, \quad \text { for all edges } e=\left\{v_{i}, v_{j}\right\}, \\
& x_{i} \geqslant 0, \quad \text { for all vertices } v_{i} \in V
\end{aligned}
$$

Half Integral Solutions

$\operatorname{minimize} \sum_{i=1}^{n} w_{i} x_{i}$,
subject to $\quad x_{i}+x_{j} \geqslant 1, \quad$ for all edges $e=\left\{v_{i}, v_{j}\right\}$,
$x_{i} \quad \geqslant 0, \quad$ for all vertices $v_{i} \in V$

■ There always exists optimal solution which is half-integral, i.e. $\forall i: x_{i} \in\{0,1 / 2,1\}$ and $v_{i} \in V_{0}, V_{1 / 2}, V_{1}$, respectively

- A half-integral solution can be computed in polynomial time (using algorithm for Min-VC or Perfect Matching in bipartite graphs)

Half Integral Solutions

$\operatorname{minimize} \sum_{i=1}^{n} w_{i} x_{i}$,
subject to $\quad x_{i}+x_{j} \geqslant 1, \quad$ for all edges $e=\left\{v_{i}, v_{j}\right\}$,
$x_{i} \quad \geqslant 0, \quad$ for all vertices $v_{i} \in V$

■ There always exists optimal solution which is half-integral, i.e. $\forall i: x_{i} \in\{0,1 / 2,1\}$ and $v_{i} \in V_{0}, V_{1 / 2}, V_{1}$, respectively

- A half-integral solution can be computed in polynomial time (using algorithm for Min-VC or Perfect Matching in bipartite graphs)

Start with half-integral solution $x: V \rightarrow\{0,1 / 2,1\}$

Start with half-integral solution $x: V \rightarrow\{0,1 / 2,1\}$

Apply new deterministic rounding algorithm to x

Approximation Algorithm

> Start with half-integral solution $x: V \rightarrow\{0,1 / 2,1\}$

Apply new deterministic rounding algorithm to x

Prove that algorithm achieves ratio of $3 / 2$ on subset $V^{\prime} \subseteq$ V of low-degree vertices and their neighborhood

Approximation Algorithm

> Start with half-integral solution $x: V \rightarrow\{0,1 / 2,1\}$

Apply new deterministic rounding algorithm to x

Prove that algorithm achieves ratio of $3 / 2$ on subset $V^{\prime} \subseteq$ V of low-degree vertices

Prove lower bounds on $x\left(V^{\prime}\right)$ and upper bounds on $x(V)$ to determine the effect of the rounding on global solution

Approximation Algorithm

Start with half-integral
solution $x: V \rightarrow\{0,1 / 2,1\}$

Apply new deterministic rounding algorithm to x

Prove that algorithm achieves ratio of $3 / 2$ on subset $V^{\prime} \subseteq$ V of low-degree vertices and their neighborhood

Overall approximation ratio as convex combination of ratio $3 / 2$ on V^{\prime} and ratio 2 on $V \backslash V^{\prime}$

Prove lower bounds on $x\left(V^{\prime}\right)$ and upper bounds on $x(V)$ to determine the effect of the rounding on global solution

Open Problems and Further Research

■ Still improving on the presented results

- Investigating the gap between upper and lower approximation bound for Min-VC on PLG's
- Improving upper bounds for Min-DS on PLG's when $\beta \leqslant 2$ (in random or quasi-random models)
- Exploit network hyperbolicity in biological and Internet based network design problems
- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)
- Applicability of graph limit theory in order to gather topological information of PLG generating processes

Open Problems and Further Research

■ Still improving on the presented results

- Investigating the gap between upper and lower approximation bound for Min-VC on PLG's
- Improving upper bounds for Min-DS on PLG's when $\beta \leqslant 2$ (in random or quasi-random models)
- Exploit network hyperbolicity in biological and Internet based network design problems
- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)
- Applicability of graph limit theory in order to gather topological information of PLG generating processes

Open Problems and Further Research

- Still improving on the presented results
- Investigating the gap between upper and lower approximation bound for Min-VC on PLG's
- Improving upper bounds for Min-DS on PLG's when $\beta \leqslant 2$ (in random or quasi-random models)

Open Problems and Further Research

- Still improving on the presented results
- Investigating the gap between upper and lower approximation bound for Min-VC on PLG's
- Improving upper bounds for Min-DS on PLG's when $\beta \leqslant 2$ (in random or quasi-random models)
- Exploit network hyperbolicity in biological and Internet based network design problems

- Applicability of graph limit theory in order to gather topological information of PLG generating processes

Open Problems and Further Research

■ Still improving on the presented results

- Investigating the gap between upper and lower approximation bound for Min-VC on PLG's
- Improving upper bounds for Min-DS on PLG's when $\beta \leqslant 2$ (in random or quasi-random models)
■ Exploit network hyperbolicity in biological and Internet based network design problems

■ Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)

- Applicability of graph limit theory in order to gather topological information of PLG generating processes

Open Problems and Further Research

■ Still improving on the presented results

- Investigating the gap between upper and lower approximation bound for Min-VC on PLG's
- Improving upper bounds for Min-DS on PLG's when $\beta \leqslant 2$ (in random or quasi-random models)
■ Exploit network hyperbolicity in biological and Internet based network design problems

■ Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)
■ Applicability of graph limit theory in order to gather topological information of PLG generating processes

Open Problems and Further Research

■ Still improving on the presented results

- Investigating the gap between upper and lower approximation bound for Min-VC on PLG's
- Improving upper bounds for Min-DS on PLG's when $\beta \leqslant 2$ (in random or quasi-random models)
■ Exploit network hyperbolicity in biological and Internet based network design problems
- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)
- Applicability of graph limit theory in order to gather topological information of PLG generating processes

Thank you!

