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Abstract

Gromov-hyperbolic graphs (or, hyperbolic graphs for short) are a non-trivial interesting
classes of non-expander graphs. Originally conceived by Gromov in 1987 in a different con-
text while studying fundamental groups of a Riemann surface, the hyper bolicity measure
for graphs has recently been a quite popular measure in the network science community
in quantifying curvature and closeness to a tree topology for a given network, and ma ny
real-world networks have been empirically observed to be hyperbolic.

In this paper, we provide constructive non-trivial bounds on node expansions and cut-
sizes for hyperbolic graphs, and show that witnesses for such non- expansion or cut-size
can in fact be computed efficiently in polynomial time. We also provide so me algorithmic
consequences of these bounds and their related proof techniques for a few pro blems related
to cuts and paths for hyperbolic graphs, such as the existence of a large family of s-t cuts with
small number of cut-edges for when s and t are at least logarithmically far apart, efficient
approximat ion of hitting sets of size-constrained cuts, and a polynomial-time solution for
a type of small-set expansion problem originally proposed by Arora, Barak and Steurer.
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1 Introduction

Useful insights for many complex systems such as the world-wide web, social networks, metabolic
networks, and protein-protein interaction networks can often be obtained by representing them as
parameterized networks and analyzing them using graph-theoretic tools. Some standard measures
used for such analyses include degree based measures (e.g., maximum/minimum/average degree or
degree distribution) connectivity based measures (e.g., clustering coefficient, largest cliques or densest
sub-graphs), and geodesic based measures (e.g., diameter or betweenness centrality). In this paper
we consider a combinatorial measure called Gromov-hyperbolicity (or, hyperbolicity for short) for fi-
nite undirected unweighted graphs that has recently received significant attention from researchers in
both the graph theory and the network science community. The hyperbolicity measure was originally
conceived in a somewhat different group-theoretic context by Gromov in 1987 [18] from an observa-
tion that many results concerning the fundamental group of a Riemann surface hold true in a more
general context. The measure was first defined for infinite continuous metric space with bounded
local geometry via properties of geodesics [9], but was later also adopted for finite graphs. Off late,
there has been a surge of theoretical and empirical works measuring and analyzing the hyperbolic-
ity of networks, and many real-world networks have been reported to be hyperbolic. For example,
preferential attachment scale-free networks were reported to be hyperbolic with appropriate scaling
(normalization) in [19], networks of high power transceivers in a wireless sensor network were empir-
ically observed to be hyperbolic in [2], communication networks at the IP layer and at other levels
were empirically observed to be hyperbolic in [25], an assorted set of biological and social networks
were empirically observed to be hyperbolic in [1], and extreme congestion at a small number of nodes
in a large traffic network using the shortest-path routing was shown in [21] to be caused due to hyper-
bolicity of the network. On the other hand, theoretical investigations have revealed that expanders,
vertex-transitive graphs and classical Erdös-Rényi random graphs are not hyperbolic [6–8, 23].

In this paper, we further expand on the non-expander properties of hyperbolic networks shown
in [6, 23] and provide constructive proofs of various kinds of witnesses (subsets of nodes) of small
expansion or small cut-size. We also provide some algorithmic consequences of these bounds and
their related proof techniques for a few problems related to cuts and paths for hyperbolic graphs.

Basic Notations and Assumptions

We will use the following notations and terminologies throughout the paper. We will simply write
log to refer to logarithm base 2. Our basic input is an ordered triple 〈G, d, δ〉 denoting the given
connected undirected unweighted graph G = (V,E) having m edges and n nodes of hyperbolicity δ in
which every node has a degree of at most d > 2. Throughout the paper, we assume that n is always
sufficiently large. For notational convenience, we will ignore floors and ceilings of fractional
values in our theorems and proofs, e.g., we will simply write D/3 instead of ⌊D/3⌋ or ⌈D/3⌉, since
this will have no effect on the asymptotic nature of the bounds. We will also make no serious
effort to optimize the constants that appear in the bounds in our theorems and proofs.
In addition, the following notations will be used throughout the paper:

• |P| is the length (number of edges) of a path P.

• u, v is a shortest path between nodes u and v. In our proofs, any shortest path can be selected but,
once selected, the same shortest path must be used in the remaining part of the analysis.

• distH(u, v) is the distance (number of edges in a shortest path) between u and v in a graph H (or
∞ if there is no path between u and v in H).
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• D(H) = maxu,v∈V ′ {distH(u, v)} is the diameter D of a graph H = (V ′, E′). Thus, in particular,
for our input graph G there exists two nodes p and q such that distG(p, q) = D(G) ≥ logd n.

• For a subset S of nodes of the graph H = (V ′, E′), the boundary ∂H(S) of S is the set of nodes in
V \S that are connected to at least one node in S, i.e., ∂H(S) = {u ∈ V ′ \ S | v ∈ S& {u, v} ∈ E′}.

• BH(u, r) = {v | distH(u, v) ≤ r} is the set of nodes contained in a ball of radius r centered at node
u in a graph H.

Definitions of Gromov-hyperbolicity

Often the hyperbolicity measure is introduced via the thin geodesic triangles in the following manner.

Definition 1 (δ-hyperbolic graphs)1 A graph G has a (Gromov) hyperbolicity of δ, or simply is
δ-hyperbolic, if and only if for every three ordered triple of shortest paths (u, v, u,w, v, w), u, v lies in
a δ-neighborhood of u,w ∪ v,w, i.e., for every node x on u, v, there exists a node y on u,w or v,w
such that distG(x, y) ≤ δ. A δ-hyperbolic graph is simply called a hyperbolic graph if δ is a constant.

There is another alternate but equivalent (“up to a constant multiplicative factor”) way of defining
hyperbolicity of graphs via 4-node conditions.

Definition 2 (equivalent definition of δ-hyperbolic graphs via 4-node conditions) For a set
of four nodes u1, u2, u3, u4, let π = (π1, π2, π3, π4) be a permutation of {1, 2, 3, 4} denoting a rear-
rangement of the indices of nodes such that S = duπ1 ,uπ2

+ duπ3 ,uπ4
≤ M = duπ1 ,uπ3

+ duπ2 ,uπ4
≤

L = duπ1 ,uπ4
+ duπ2 ,uπ3

, and let ρu1,u2,u3,u4 = L−M
2 . Then, a graph G is δ-hyperbolic if and only if

δ = max
u1,u2,u3,u4∈V

{
ρu1,u2,u3,u4

}
.

It is well-known [9] that the two above definitions of hyperbolicity are equivalent in the sense
that they are related by a constant factor, i.e., there is a constant c > 0 such that if a graph
G is δ1-hyperbolic and δ2-hyperbolic via Definition 1 and Definition 2, respectively, then 1

c δ1 ≤
δ2 ≤ cδ1. Since constant factors are not optimized in our proofs, we will use either of the two
definitions of hyperbolicity in the sequel as deemed more convenient. Using Definition 2 and casting
the resulting computation as a (max,min) matrix multiplication problem allows one to compute δ and
a 2-approximation of δ in O

(
n3.69

)
and in O

(
n2.69

)
time, respectively [15]. Several routing-related

problems or the diameter estimation problem become easier if the network is hyperbolic [10–12, 17].
The hyperbolicity property enjoys many non-trivial topological characteristics. For example,

adding a single node or edge can increase/decrease the value of δ abruptly (e.g., a cycle of n nodes
has δ = ⌈n/4⌉ but removing a node or an edge has a value of δ = 0 for the resulting graph). Examples
of hyperbolic graphs include trees, chordal graphs, cactus of cliques, AT-free graphs, link graphs of
simple polygons, and any class of graphs with a fixed diameter, whereas examples of non-hyperbolic
graphs include expanders, a simple cycle, and Erdös-Rényi random graphs for some parameter ranges.

Note that if G is δ-hyperbolic then G is also δ′-hyperbolic for any δ′ > δ (cf. Definition 1). In this
paper, to avoid division by zero in terms involving 1/δ, we will assume δ > 0. In other words, we will
treat a 0-hyperbolic graph (a tree) as a 1

2 -hyperbolic graph in the analysis. Alternatively, one can
also replace such a division by a sufficiently large positive value.

1Often the definition of a hyperbolic space assumes a bounded local geometry (i.e., the degree of nodes is uniformly
bounded) [9, 20].
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2 Overview of Our Results and Proof Techniques

Before proceeding with formal theorems and proofs, we first provide a informal non-technical intuitive
overview of our results and proof techniques.

Overview of Results

⋆⋆⋆ Our three results in Section 3 provide non-trivial upper bounds for node expansions for the triple
〈G, d, δ〉 as a function of n, D(G), d, and δ. The first result, namely, Theorem 3, provides an absolute
bound and shows that a witness (subset of nodes) of small expansion can in fact be found efficiently in
polynomial time. The next two results, namely Theorems 5 and 6, generalize Theorem 3 (sometimes
at the expense of slightly worse expansion bounds) to show that in fact many such witnesses can be
found in polynomial time even satisfying criteria such as

• the witnesses (subsets) form a nested (laminar) family, or

• the witnesses (subsets) have limited overlap in the sense that every subset has a certain number
of nodes not contained in any other subset.

These bounds also imply in an obvious manner corresponding upper bounds for the edge-expansion
of G and for the smallest non-zero eigenvalue of the Laplacian of G.

To illustrate the non-trivialness of these bounds, suppose that the maximum degree d and the
hyperbolicity value δ grows asymptotically very slowly2 with respect to the number of nodes n, and
the diameter D to be of the order of the minimum possible value of logd n. In Remark 1, we provide an
explanation of the asymptotics of these bounds in comparison to expander-type graphs. In particular,

if δ is fixed (i.e., G is hyperbolic) then d has to be increased to at least 2
Ω
(√

log logn/ log log logn
)

to get
a positive non-zero Cheeger constant, whereas if d is fixed then δ need to be at least Ω (log n) to get
a positive non-zero Cheeger constant (this last implication also follows from the results in [6, 23]).

⋆⋆⋆ Our result in Section 4, namely Theorem 7, deals with the absolute size of s-t cuts in hyperbolic
graphs, and shows that a large family of s-t cuts having at most dO(1) cut-edges can be found in
polynomial time in hyperbolic graphs when every node other than s and t has a maximum degree of
d and the distance between s and t is at least Ω(log n). This result was instrumental in designing the
approximation algorithm for size-constrained hitting set problem in Section 5.1 (Theorem 10).

⋆⋆⋆ In Section 5 we discuss some applications of these bounds in designing improved approximation
algorithms for hyperbolic graphs for several combinatorial problems.

• We first show in Section 5.1 that our bounds can be used to give a logarithmic approximation
for size-constrained cuts which otherwise is provably much more harder to approximate.

• We then show in Section 5.2 that the problem of identifying vulnerable edges by minimizing
shared edges can be cast as a hitting set problem for size-constrained cuts, thereby extending
the previous logarithmic approximation to this problem as well.

• Finally, in Section 5.3 we provide a polynomial-time solution for a type of small-set expansion
problem originally proposed by Arora, Barak and Steurer [3] if the given graph is hyperbolic.

2As we remarked before, often the definition of a hyperbolic graph assumes d is fixed [9, 20].
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Figure 1: Effect of node removal in a hyperbolic graph. (a) All shortest paths between s and t must
intersect the shaded region around umid. (b) By growing the shaded region in (a) and removing
nodes in its boundary, one can selectively extract longer paths in the graph. Translating the region
somewhat does not change this property much.

Proof Techniques

⋆⋆⋆ One key ingredient in many of the proofs is the process extraction of longer paths in a hyperbolic
graph in a systematic manner by removing “not too many” nodes, a slightly stronger but special
version of which appears in Fact 1, and a slightly weaker but more general version of which appears
in Fact 2. To illustrate the process, consider the situations depicted in Fig. 1. By removing the
boundary of a specific subset of nodes (the figure shows a cylinder and a ball, but other subsets are
possible) around the middle node of the shortest path between nodes s and t of the correct size, one
can in effect destroy every shortest path between s and t (see Fig. 1 (a)). As illustrated in Fig. 1 (b),
enlarging the shaded region appropriately allows us to extract longer paths in the given hyperbolic
graph and small translations of the region does not significantly alter this property.
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Figure 2: Divergence of geodesic rays. (aaa) Geodesic rays may continue to follow each other closely.
(bbb) Once geodesic rays diverge sufficiently, they cannot connect back without using a sufficiently long
path.
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⋆⋆⋆ Another important property that is used especially in the proof of Theorem 7 on small-size cuts
is the so-called “exponential divergence property of geodesic rays emanating from the same node”3,
namely the property that once geodesic rays emanating from the same node move sufficiently far
apart they continue to keep diverging at an exponential rate and shortest paths between them tends
to bend “inwards” towards the emanating node (see Fig. 2). This type of behavior of geodesics seems
crucial in designing small-size cuts as in Theorem 7.

3 Node Expansion Bounds for Hyperbolic Graphs

The three results in this section is related to the node expansion ratios of a hyperbolic graph. The
node expansion ratio hH(S) of a subset S of at most |V ′|/2 nodes of a graph H = (V ′, E′) is defined
as hH(S) = | ∂H (S) |

|S | . Let hH = min
S⊂V ′ : |S|≤|V ′|/2

{hH(S)} be the minimum node expansion ratio of H.

Since any subset S containing exactly |V ′|/2 nodes has | ∂H(S) | ≤ |V ′|/2, hH satisfies 0 < hH ≤ 1 for
any graph H.

The edge expansion ratio of a graph is also defined in a similar manner. For any subset S of
nodes of a graph H, define cutH(S) as the set of edges that have exactly one end-point in S. The
edge expansion ratio gH(S) of a subset S of at most |V ′|/2 nodes of a graph H = (V ′, E′) is defined as

gH(S) = | cutH (S) |
|S | . Obviously gH(S) ≤ dhH(S) and thus the bounds in Theorems 3 5 and 6 for node

expansions translate to some bounds of the edge expansions as well.

3.1 Bound for Minimum Node Expansion and a Polynomial-Time Witness

Theorem 3 For any constant4 0 < µ < 1, the following results hold for 〈G, d, δ〉 with D = D(G):

• hG ≤ Λ = min

{
4 ln

(
n
2

)

D
, max

{(
1

D

)1−µ

,
360 log n

D 2
Dµ

7 δ log(2d)

}}

• A subset of nodes S such that hG(S) ≤ Λ can be found in O
(
n2 log n+mn

)
.

Corollary 4 Since D > logn
log d , the bound in Theorem 3 implies:

hG < max

{(
log d

log n

)1−µ

,
360 log d

2
logµ n

7 δ log1+µ(2d)

}

Remark 1 The following observations may help the reader to understand the asymptotic nature of
the bound in Corollary 4.

(a) The first component of the bound is O (1/log1−µ n) for fixed d, and is Ω(1) only when d = Ω(n).

(b) To better understand the second component of the bound, consider the following cases (note that
an expander has a constant value for hG):

• Suppose that the given graph is a hyperbolic graph of constant maximum degree, i.e., both δ and
d are constants. In that case,

360 log d

2
logµ n

7 δ log1+µ(2d)

= O

(
1

2O(1) logµ n

)
= O

(
1

polylog(n)

)

3Indeed, some texts define a hyperbolic space as one having such a property.
4Actually, this proof (and that of Theorems 5 and 6) works even if o(1) ≤ µ ≤ 1− o(1) where o(1) is a sufficiently

slowly decreasing function of n, i.e., 1
log∗ n

for o(1) suffices.
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• Suppose that the given graph is a hyperbolic graph but the maximum degree d is arbitrary. In
that case,

360 log d

2
logµ n

7 δ log1+µ(2d)

= O

(
log d

2
O(1) logµ n

log1+µ d

)
= O

(
log d

polylog(n)
1

log2 d

)

and thus d has to be increased to at least 2
Ω
(√

log log n
log log log n

)

to get a constant upper bound.

• Suppose that the given graph has a constant maximum degree but not necessarily hyperbolic (i.e.,
δ is arbitrary). In that case,

360 log d

2
logµ n

7 δ log1+µ(2d)

= O

(
1

2O(1) log
µ n
δ

)

and thus δ need to be at least Ω (logµ n) to get a constant upper bound.

Proof. The bound of hG <
4 ln(n

2 )
D holds for any graph. Obviously, the bound is non-trivial only

if D > 4 ln
(
n
2

)
and in that case it follows easily from standard results in spectral graph theory

that relates the diameter to the smallest non-zero eigenvalue λ1 of the Laplacian of the graph (e.g.,
Theorem 3.1 in [13]), and using the standard Cheeger inequality that states that hG ≤ √

2λ1. Here
we give an elementary proof. Let p and q be two nodes such that distG(p, q) = D. Assume, without
loss of generality, that

∣∣BG

(
p, D2

) ∣∣ ≤ min
{ ∣∣BG

(
p, D2

) ∣∣ ,
∣∣BG

(
q, D2

) ∣∣ } ≤ n/2. Consider the sequence
of balls BG(p, r) for r = 0, 1, 2 . . . ,D/2. Thus it follows that

n

2
>

∣∣∣∣BG

(
p,

D

2

) ∣∣∣∣ ≥ (1 + hG)
D/2

⇒ ln
(n
2

)
>

D

2
ln (1 + hG) ≥

(
D

2

)(
hG

1 + hG

)
≥ DhG

4
⇒ hG <

4 ln
(
n
2

)

D

Such a bound for hG is realized by a ball BG (p, r) for some 0 ≤ r ≤ D/2 and therefore can be found
within the desired time complexity bound.

Thus, in the remaining part of the proof, we concentrate on the other two bounds only. First,
assume that D(n) = c for any some constant c ≥ 1 (independent of n). Then, since δ ≥ 1/2 and
d > 1, we have

360 log n

D 2
Dµ

7 δ log(2d)

>
360 log n

c 2 cµ
> 1 (since n is sufficiently large)

and the claimed bound is trivially true for any subset of n/2 nodes.
Otherwise, assume that D(n) = ω(1), i.e., lim

n→∞
D(n) > c for any constant c. We reuse the same

analysis as in [23] which improves upon the analysis in [6]. Let p and q be two nodes such that
distG(p, q) = D. Let p′, q′ be nodes on a shortest path between p and q such that distG(p, p

′) =
distG(p

′, q′) = distG(q
′, q) = D/3. Set 0 < α < 1/4 to be as follows:

α =
1

7D1−µ log(2d)
(1)

Let C be set of nodes at a distance of ⌊αD⌋ > αD − 1 of a shortest path p′, q′ between p′ and q′.
Thus,

C =
{
u | ∃ v ∈ p′, q′ : distG(u, v) = ⌈αD⌉

}
⇒ |C | ≤ D

3
d ⌊αD⌋ <

D

3
dαD (2)
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Let G−C be the graph obtained from G by removing the nodes in C. We recall the following fact
proved in [23].

Fact 1 (Cylinder removal around a geodesic) [23] Assume that G is a δ-hyperbolic graph. Let
p and q be two nodes of G such that distG(p, q) = β > 6, and let p′, q′ be nodes on a shortest path
between p and q such that distG(p, p

′) = distG(p
′, q′) = distG(q

′, q) = β/3. For any 0 < α < 1/4, let C
be set of nodes at a distance of αβ − 1 of a shortest path p′, q′ between p′ and q′, i.e.,

C =
{
u | ∃ v ∈ p′, q′ : distG(u, v) = αβ − 1

}

Let G−C be the graph obtained from G by removing the nodes in C. Then, distG−C
(p, q) ≥ β

60 2
αβ/δ.

By Fact 1,

distG−C
(p, q) ≥ D

60
2αD/δ (3)

For a ball BG(p, r) of radius r centered at node p in G with | BG(p, r) | ≤ n/2, we have :

| BG(p, 0) | = 1 and
|BG(p, r)|

|BG(p, r − 1)| ≥ 1 + hG ⇒ |BG(p, r) | ≥ (1 + hG)
r (4)

Assume without loss of generality that5

∣∣∣∣BG−C

(
p,

distG−C
(p, q)

2

) ∣∣∣∣ ≤
∣∣∣∣BG−C

(
q,

distG−C
(p, q)

2

) ∣∣∣∣

⇒
∣∣∣∣BG−C

(
p,

distG−C
(p, q)

2

) ∣∣∣∣ ≤

∣∣∣BG−C

(
p,

distG−C
(p,q)

2

) ∣∣∣+
∣∣∣BG−C

(
q,

distG−C
(p,q)

2

) ∣∣∣
2

≤ n− |C|
2

<
n

2
(5)

Define ℏ as

ℏ = min
0≤ r≤ dG−C

(p,q)/2

{
hG

(
BG−C

(p, r)
)}

≥ hG (6)

If ℏ ≤ (1/D)1−µ then hG ≤ ℏ ≤ (1/D)1−µ, and there exists a subset of nodes S = BG−C
(p, r′) for some

r′ (with |S| ≤ n/2) such that hG (S) ≤ (1/D)1−µ.
Otherwise, assume that ℏ > (1/D)1−µ. Let rp be the least integer such that BG−C

(p, rp) =
BG−C

(p, rp + 1). Since G is a connected graph and

∀ r ≤ D

3
− αD : BG(p, r) ∩ C = ∅ ≡ BG−C

(p, r) = BG(p, r) ⇒ BG−C
(p, r) > (1 + ℏ)r (7)

we have rp ≥ D
3 − αD.

We first show that our choice of α ensures that rp > distG−C
(p, q)/2. Suppose for the sake of

contradiction that rp ≤ distG−C
(p, q)/2. Then,

∣∣BG−C
(p, rp)

∣∣ >
∣∣∣∣BG−C

(
p,

D

3
− αD

) ∣∣∣∣
since rp ≥ D

3
− αD

=
by (7)

∣∣∣∣BG

(
p,

D

3
− αD

) ∣∣∣∣ ≥ (1 + ℏ)
D
3
−αD

by (4)

5Note that if there is no path between nodes p and q in G−C then dG−C
(p, q) = ∞ and hence BG−C

(

p,
dG−C

(p,q)

2

)

and BG−C

(

q,
dG−C

(p,q)

2

)

contains all the nodes reachable from p and q, respectively, in G−C .
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∣∣ ∂G−C

(
BG−C

(p, rp)
) ∣∣ = 0 ⇒

∣∣ ∂G
(
BG−C

(p, rp)
) ∣∣ ≤ | C | <

by (2)

D

3
dαD

hG
(
BG−C

(p, rp)
)
=

∣∣ ∂G
(
BG−C

(p, rp)
) ∣∣

∣∣BG−C
(p, rp)

∣∣ <
D
3 d

αD

(1 + ℏ)
D
3
−αD

By our choice of α in (1):

dαD = d
Dµ

7 log(2d) <
(
d
1/log d

)Dµ/7
= 2Dµ/7

D

3
− αD =

D

3
− Dµ

7 log(2d)
>

D

4
, since µ < 1 and n (and hence D) is sufficiently large

(1 + ℏ)
D
3
−αD > (1 + ℏ)

D
4 =

[
(1 + ℏ)

1/ℏ
] ℏD

4
> 2

ℏD
4

since 0 < ℏ ≤ 1

> 2

1
D1−µ D

4 = 2D
µ/4

hG
(
BG−C

(p, rp)
)
<

D
3 d

αD

(1 + ℏ)
D
3
−αD

<
D
3 2

Dµ/7

2Dµ/4
<

D/3

2Dµ/14
<

1

D1−µ
, since µ > 0 and n (and

hence D) is sufficiently large

(8)

Inequality (8) contradicts the fact that hG
(
BG−C

(p, rp)
)
≥ ℏ > (1/D)1−µ.

Thus, for the remaining proof, we assume that rp > distG−C
(p, q)/2. We want to ensure that

removal of nodes in C does not decrease the expansion of the balls BG−C
(p, r) in the new graph G−C

by more than a factor of 2, i.e., the reduced expansion must be at least ℏ/2. If r ≤ D
3 − αD this is

not a problem since by (7)

∀ r < D

3
− αD : hG−C

(
BG−C

(p, r)
)
= hG (BG(p, r)) ≥ ℏ

For D
3 − αD < r ≤ distG−C

(p, q)/2 we will need to ensure the following:

hG−C

(
BG−C

(p, r − 1)
)
≥ ℏ

2

≡
∣∣ ∂G−C

(
BG−C

(p, r − 1)
) ∣∣

∣∣BG−C
(p, r − 1)

∣∣ =

∣∣ ∂G
(
BG−C

(p, r − 1)
) ∣∣ −

∣∣ ∂G
(
BG−C

(p, r − 1)
)
∩ C

∣∣
∣∣BG−C

(p, r − 1)
∣∣ ≥ ℏ

2

⇐
∣∣ ∂G

(
BG−C

(p, r − 1)
) ∣∣ − |C|∣∣BG−C

(p, r − 1)
∣∣ ≥ ℏ

2
≡
∣∣ ∂G

(
BG−C

(p, r − 1)
) ∣∣

∣∣BG−C
(p, r − 1)

∣∣ − |C|∣∣BG−C
(p, r − 1)

∣∣ ≥
ℏ

2

≡ hG
(
BG−C

(p, r − 1)
)
− |C|∣∣BG−C

(p, r − 1)
∣∣ ≥

ℏ

2

⇐ ℏ − |C|∣∣BG−C
(p, r − 1)

∣∣ ≥
ℏ

2
, since hG

(
BG−C

(p, r − 1)
)
≥ ℏ by definition of ℏ

≡ |C|
ℏ/2

≤
∣∣BG−C

(p, r − 1)
∣∣

⇐ |C|
ℏ/2

≤ (ℏ+ 1)
D
3
−αD, since

∣∣BG−C
(p, r − 1)

∣∣ ≥
∣∣∣∣BG−C

(
p,

D

3
− αD

) ∣∣∣∣

=

∣∣∣∣BG

(
p,

D

3
− αD

) ∣∣∣∣ ≥ (ℏ+ 1)
D
3
−αD

⇐
(
D

3
dαD

)(
2

ℏ

)
≤ (ℏ+ 1)

D
3
−αD, since |C| < D

3
dαD by (2)

9



≡ D

3
− αD ≥ logD + αD log d− log 3 + log

(
2
ℏ

)

log(1 + ℏ)

≡ α ≤
D
3 log(1 + ℏ)− logD + log 3− log

(
2
ℏ

)

D log
(
d (1 + ℏ)

)

⇐ α ≤
D
3 log(1 + ℏ)− logD + log 3− log

(
2
ℏ

)

D log(2d)
, since ℏ ≤ 1 (9)

Since ℏ >
(
1
D

)1−µ
and n (and hence D) is sufficiently large, we have:

D

3
log(1 + ℏ)− logD + log 3− log

(
2

ℏ

)

>
D

3
log(1 + ℏ)− logD + log ℏ,

>
Dℏ log e

6
− logD + log ℏ, since log(ℏ+ 1) = (log e) (ln(ℏ+ 1)) and ln(ℏ+ 1) ≥ ℏ

1+ℏ
≥ ℏ

2

>
Dµ log e

6
− 2 logD, since ℏ > 1/D1−µ

>
Dµ

7
, since D is sufficiently large

Thus, Inequality (9) is satisfied by our selection of α =
1

7D1−µ log(2d)
in (1).

For D
3 − αD < r ≤ distG−C

(p,q)

2 , the number of nodes in the ball BG−C
(p, r) is given by:

∣∣BG−C
(p, r)

∣∣ ≥ (ℏ+ 1)
D
3
+αD

(
ℏ

2
+ 1

)r−D
3
−αD

>

(
ℏ

2
+ 1

)r

Thus, using (3) and (5), we get

n

2
>

∣∣∣∣BG−C

(
p,

distG−C
(p, q)

2

) ∣∣∣∣ >
(
ℏ

2
+ 1

)dG−C
(p,q)/2

≥
(
ℏ

2
+ 1

) D
120

2αD/δ

⇒ n

2
>

(
ℏ

2
+ 1

) D
120

2αD/δ

=

(
ℏ

2
+ 1

) D
120

2Dµ/(7 δ log(2d) )

≡ log

(
ℏ

2
+ 1

)
<

120(log n− 1)

D 2Dµ/(7 δ log(2d) )
<

120 log n

D 2Dµ/(7 δ log(2d) )

⇒ ℏ <
360 log n

D 2Dµ/(7 δ log(2d) )
, using ℏ

3 ≤
ℏ

2

1+ ℏ

2

= 1− 1
1+ ℏ

2

≤ ln
(
ℏ

2 + 1
)

Thus, there must exist a subset of nodes BG−C
(p, r′) for some 0 ≤ r′ ≤ distG−C

(p, q)/2 such that

hG
(
BG−C

(p, r′)
)
≤ max

{(
1

D

)1−µ

,
360 log n

D 2Dµ/(7 δ log(2d) )

}
. Algorithmically, such a subset of nodes

can be found as follows:

• Find two nodes p and q such that distG(p, q) = D in O
(
n2 log n+mn

)
time.

• Using breadth-first-search (BFS), find the two nodes p′, q′ as in the proof in O(m+ n) time.

• Compute α and using BFS find the set of nodes C in O
(
n2 +mn

)
time.

10



• Compute G−C in O(m+ n) time.

• Using BFS, compute BG−C
(p, r) for every 0 ≤ r ≤ distG−C

(p, q)/2 in O(m+ n) time.

• Compute hG
(
BG−C

(p, r)
)

for every 0 ≤ r ≤ distG−C
(p, q)/2 in an obvious manner in O(n2+mn)

time, and select the subset of node with a minimum expansion.

❑

3.2 Nested Family of Witnesses of Small Node Expansion

In previous section we were able to find one subset of nodes with a small node expansion ratio. In
this section, our goal is to find many such subsets of nodes that form a nested family.

Let p and q be two nodes of G such that distG(p, q) = D(G). Recall that a cut S of G = (V,E)
that “separates p from q” is a subset S of nodes containing p but not containing q, and the set of cut
edges cutG(S, p, q) corresponding to the cut S is the set of edges with exactly one end-point in S,
i.e.,

cutG(S, p, q) =
{{

u, v
}
| p, u ∈ S and q, v ∈ V \ S

}

Our results in this section show that there exists a nested family of cuts S1 ⊂ S2 ⊂ . . . of small node
expansion for a hyperbolic graph G, and all of these cuts either contain p or all of them contain q.

Theorem 5 Let p and q be two nodes of G such that distG(p, q) = D. Then, for any constant

0 < µ < 1, there exists t = max
{

Dµ

56 log d , 1
}

distinct subsets of nodes ∅ ⊂ S1 ⊂ S2 ⊂ · · · ⊂ St ⊂ V

such that the following properties hold:

• ∀ j ∈ {1, 2, . . . , t} : hG (Sj) ≤ min

{
8 ln

(
n
2

)

D
, max

{(
1

D

)1−µ

,
500 ln n

D 2
Dµ

28 δ log(2d)

}}
.

• Each subset Sj has at most n/2 nodes, and can be found in O
(
n2 log n+mn

)
time.

• Either all the subsets S1, S2, . . . , St contain the node p, or all of them contain the node q.

Remark 2 The expansion bounds in Theorem 5 are of the same asymptotic nature as those in The-
orem 3. Thus, these bounds also follow the interpretation in Remark 1.

Remark 3 The claim in Theorem 5 actually holds for any pair of nodes u and v provided one replaced
D in the claim by distG(u, v).

Proof. The bound of hG (Sj) <
8 ln(n

2 )
D again holds for any graph. Let p and q be two nodes such that

distG(p, q) = D. Assume, without loss of generality, that
∣∣∣BG

(
p, D2

)∣∣∣ ≤ min
{ ∣∣∣BG

(
p, D2

)∣∣∣,
∣∣∣BG

(
q, D2

)∣∣∣
}
≤

n/2. Consider the sequence of balls BG(p, r) for r = 0, 1, 2 . . . ,D/2. Thus it follows that

n

2
>

∣∣∣∣BG

(
p,

D

2

) ∣∣∣∣ ≥
D
2
−1∏

ℓ=0

(
1 + hG (BG (p, ℓ) )

)
≥

D
2
−1∏

ℓ=0

e
hG(BG(p,ℓ) )/2 = e

1
2

D
2 −1
∑

ℓ=0
hG(BG(p,ℓ) )

⇒ ln
(n
2

)
>

1

2

D
2
−1∑

ℓ=0

hG (BG (p, ℓ) ) ⇒
∑D

2
−1

ℓ=0 hG (BG (p, ℓ) )

D/2
<

4 ln
(
n
2

)

D

11



By a simple averaging argument, there must now exist D
4 > max

{
Dµ

56 log d , 1
}

distinct balls (subsets

of nodes) BG (p, r1) ,BG (p, r2) , . . . ,BG

(
p, rD/4

)
such that | BG (p, rj) | <

8 ln(n
2 )

D for j = 1, 2, . . . ,D/4,
and these balls can be easily found within the desired time complexity bound.

Thus, in the remaining part of the proof, we concentrate on the other two bounds only. We will
reuse the same construction as in the proof of Theorem 3 with appropriately modified calculations.
If D(n) = c for any some constant c ≥ 1 (independent of n) then, since δ ≥ 1/2 and d > 1, we have

500 ln n

D 2
Dµ

28 δ log(2d)

>
500 ln n

D 2 (1/14)Dµ > 1 (since n is sufficiently large)

Thus, any subset of n/2 nodes containing p satisfies the claimed bound, and the number of such

subsets is

(n
2 − 1

n− 2

)
> t.

Otherwise, assume that D(n) = ω(1), i.e., limn→∞D(n) > c for any constant c. To provide

some intuition behind our proof, let hhh(p, j)
def
=

∑j−1
ℓ=0 BG(p, ℓ)

j
. Equation (4) regarding the size of

| BG(p, r) | now becomes:

| BG(p, 0) | = 1 and
|BG(p, r)|

|BG(p, r − 1)| = 1 + hG (BG(p, r − 1))

⇒ |BG(p, r) | =
r−1∏

j=0

(1 + hG (BG(p, j))) ≥
r−1∏

j=0

e
hG(BG(p,j))/2 = e

1
2

r−1
∑

j=0
hG(BG(p,j))

= e
r hhh(p,r)/2 (10)

Note that the value (1 + hG)
r = e

r ln(1+hG) is approximately e
r hG/2, and thus one would expect the

moving average hhh values to play the same role in the analysis as hG provided the average was taken
over at least Dµ

56 log d distinct sets. In the remaining analysis, we will show that this can be done.

First, suppose that there exists a set of t = Dµ

56 log d distinct indices {i1, i2, . . . , it} ⊆
{
0, 1, 2, . . . ,

distG−C
(p,q)

2

}

such that:
∀ 1 ≤ s ≤ t : hG (BG(p, is) ) = hG

(
BG−C

(p, is)
)
≤ (1/D)1−µ

Then, our claim is obviously true and these subsets can be found in the same manner as in Theorem 3.
Otherwise, we have

D
3
−αD−1∑

ℓ=0

hG (BG(p, ℓ)) >

(
distG−C

(p, q)

2
− (t− 1)

)
(1/D)1−µ >

(
D

3
− αD − t

)
(1/D)1−µ >

Dµ

4
(11)

Handling the case(s) corresponding to rp ≤ distG−C
(p, q)/2 is a bit more involved now. Let us write

rp as rp,αD to show its dependence on αD and let α1 = 1
14D1−µ log(2d)

be asymptotically similar to

choice of α shown in (1). Consider the sequence of values rp, α1D, rp, α1D−1, . . . , rp,α1D/2 as the value
of αD is decremented from α1D = Dµ

14 log(2d) to α1D
2 = Dµ

28 log(2d) in steps of −1. Let Cα1D−ℓ be the set
of nodes in C when αD is set equal to α1D − ℓ.

Proposition 1 Cα1D−j 6= Cα1D−j′ for any j 6= j′.

Proof. Assume j < j′ and let u be the node on a shortest path between p and q that goes through
p′ and q′ such that dG (p′, u) = α1D − j′ − 1. Then u belongs to Cα1D−j′ but does not belong to
Cα1D−j. ❑

12



Suppose first that removal of each of the α1D
2 + 1 set of nodes Cα1D, Cα1D−1, Cα1D−2, . . . , Cα1D/2

disconnects p from q in the corresponding graphs G−Cα1D
, G−Cα1D−1

, G−Cα1D−2
, . . . , G−Cα1D/2

, respec-
tively. Then, for any 0 ≤ ℓ ≤ α1D/2, we have

rp,α1D−ℓ = α1D − ℓ− 1 ≥ D

3
− α1D + ℓ ≥ D

3
− α1D

∣∣∣BG−Cα1D−ℓ
(p, rp,α1D−ℓ)

∣∣∣ >
∣∣∣∣BG−Cα1D

(
p,

D

3
− α1D

) ∣∣∣∣ ≥ e

1
2

D
3 −αD−1
∑

j=0
hG(BG(p,j))

by (10)

> e
Dµ/8

by (11)

∣∣∣ ∂G−Cα1D−ℓ

(
BG−Cα1D−ℓ

(p, rp,α1D−ℓ)
) ∣∣∣ = 0 ⇒

∣∣∣ ∂G
(
BG−Cα1D−ℓ

(p, rp,α1D−ℓ)
) ∣∣∣ ≤ | Cα1D−ℓ | ≤ | Cα1D | < D

3
dα1D

hG

(
BG−Cα1D−ℓ

(p, rp,α1D−ℓ)
)
=

∣∣∣ ∂G
(
BG−Cα1D−ℓ

(p, rp,α1D−ℓ)
) ∣∣∣

∣∣∣BG−Cα1D−ℓ
(p, rp,α1D−ℓ)

∣∣∣
<

D
3 d

α1D

e
Dµ/8

dα1D = d
Dµ

14 log(2d) <
(
d
1/log d

)Dµ/14
= 2Dµ/14 < e

Dµ/14

hG

(
BG−Cα1D−ℓ

(p, rp,α1D−ℓ)
)
<

D
3 d

α1D

e
Dµ/8

<
D
3 e

Dµ/14

e
Dµ/8

<
D/3

2D
µ/20

<

(
1

D

)1−µ

, since µ > 0 and n (and
hence D) is sufficiently large

The last inequality implies that there exists a set of α1D
2 +1 = Dµ

28 log(2d) +1 > Dµ

56 log d subsets of nodes

BG−Cα1D
(p, rp,α1D) ,BG−Cα1D−1

(p, rp,α1D−1) ,BG−Cα1D−2
(p, rp,α1D−2) , . . . ,BG−Cα1D/2

(
p, rp,α1D/2

)
such

that each such subset BG−Cα1D−ℓ
(p, rp,α1D−ℓ) has hG

(
BG−Cα1D−ℓ

(p, rp,α1D−ℓ)
)

< (1/D)1−µ. This

proves our claim. Algorithmically, these subsets can be found in the same manner as in Theorem 3.
Otherwise, there exists an index 0 ≤ t ≤ α1D/2 such that the removal of the set of nodes in

Cα1D−t does not disconnect p from q in the corresponding graphs G−Cα1D−t
. This implies rp,α1D−t >

distG−Cα1D−t
(p, q)/2. For notational convenience, we will denote Cα1D−t and G−Cα1D−t

simply by C
and G−C , respectively, and let α0 = α1 − t

D such that α1D − t = α0D. Note that α1/2 ≤ α0 ≤ α1.
As in the proof of Theorem 3, we will require that removal of nodes in C decreases the expansions

of the balls around p by no more than a factor of 2. As we will verify next, steps in the proof of
Theorem 3 actually show the following result:

∀ D

3
− α0D < r ≤ distG−C(p,q)/2 :

hG
(
BG−C

(p, r − 1)
)
> (1/D)1−µ ⇒ hG−C

(
BG−C

(p, r − 1)
)
≥ 1

2
hG
(
BG−C

(p, r − 1)
)

(12)

The verification of (12) as shown below follow the same steps as in the proof of Theorem 3 with
minor modifications:

hG−C

(
BG−C

(p, r − 1)
)
≥ 1

2
hG
(
BG−C

(p, r − 1)
)

≡
∣∣ ∂G

(
BG−C

(p, r − 1)
) ∣∣ −

∣∣ ∂G
(
BG−C

(p, r − 1)
)
∩ C

∣∣
∣∣BG−C

(p, r − 1)
∣∣ ≥ 1

2
hG
(
BG−C

(p, r − 1)
)

⇐
∣∣ ∂G

(
BG−C

(p, r − 1)
) ∣∣ − |C|∣∣BG−C

(p, r − 1)
∣∣ ≥ 1

2
hG
(
BG−C

(p, r − 1)
)

≡
∣∣ ∂G

(
BG−C

(p, r − 1)
) ∣∣

∣∣BG−C
(p, r − 1)

∣∣ − |C|∣∣BG−C
(p, r − 1)

∣∣ ≥
1

2
hG
(
BG−C

(p, r − 1)
)

13



≡ hG
(
BG−C

(p, r − 1)
)
− |C|∣∣BG−C

(p, r − 1)
∣∣ ≥

1

2
hG
(
BG−C

(p, r − 1)
)

≡ 2 |C|
hG
(
BG−C

(p, r − 1)
) ≤

∣∣BG−C
(p, r − 1)

∣∣

⇐ 2 |C|
hG
(
BG−C

(p, r − 1)
) ≤ e

Dµ/8, since
∣∣BG−C

(p, r − 1)
∣∣ ≥

∣∣∣∣BG−C

(
p,

D

3
− α0D

) ∣∣∣∣

=

∣∣∣∣BG

(
p,

D

3
− α0D

) ∣∣∣∣ ≥
∣∣∣∣BG

(
p,

D

3
− α1D

) ∣∣∣∣ > e
Dµ/8

⇐
(
D

3
dα0D

)(
2

hG
(
BG−C

(p, r − 1)
)
)

≤ e
Dµ/8, since |C| < D

3
dα0D

≡ Dµ

8
≥ lnD + α0 D ln d− ln 3/2 − ln

(
hG
(
BG−C

(p, r − 1)
))

⇐ Dµ

8
≥ lnD + α1 D ln d− ln 3/2 − ln

(
hG
(
BG−C

(p, r − 1)
))

, since α0 ≤ α1

≡ α1 ≤
Dµ

8 − lnD + ln 3/2 + ln
(
hG
(
BG−C

(p, r − 1)
))

D ln d

⇐ α1 ≤
Dµ

8 − lnD + ln
(
hG
(
BG−C

(p, r − 1)
))

D ln d
(13)

If hG
(
BG−C

(p, r − 1)
)
> (1/D)1−µ then since n (and hence D) is sufficiently large, we have:

Dµ

8
− lnD + ln

(
hG
(
BG−C

(p, r − 1)
))

>
Dµ

8
− lnD − (1− µ) lnD >

Dµ

7
since D is sufficiently large

Thus, Inequality (13) is satisfied by our selection of α1 =
1

14D1−µ log(2d)
. This concludes the

verification of (12).

Suppose now that there exists a set of t = Dµ

56 log d distinct indices i1, i2, . . . , it ∈
{

D
3 − α0D +

1, D3 − α0D + 2, . . . ,
distG−C

(p,q)

2

}
such that

∀ 1 ≤ s ≤ t : hG
(
BG−C

(p, is)
)
≤ (1/D)1−µ (14)

Then, the existence of the subsets of nodes BG−C
(p, i1),BG−C

(p, i2), . . . ,BG−C
(p, it) prove our claim.

Algorithmically, these subsets can be found in the same manner as in Theorem 3. Otherwise, assume
that there are no sets of t indices that satisfy (14). This implies that there exists a set of

ξ =

(
distG−C

(p, q)

2
− D

3
+ α0D

)
− (t− 1)

distinct indices j1, j2, . . . , jξ ∈
{

D
3 − α0D + 1, D3 − α0D + 2, . . . ,

distG−C
(p,q)

2

}
such that

∀ 1 ≤ s ≤ ξ : hG
(
BG−C

(p, js)
)
> (1/D)1−µ ⇒ ∀ 1 ≤ s ≤ ξ : hG−C

(
BG−C

(p, js)
)
≥ 1

2
hG
(
BG−C

(p, js)
)

by (12)

(15)
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This implies

∣∣∣∣BG−C

(
p,

distG−C
(p, q)

2

) ∣∣∣∣ >




D
3
−α0D−1∏

j=0

(
1 + hG

(
BG−C

(p, j)
) )






D
3
−α0D+ξ−1∏

j=D
3
−α0D

(
1 +

1

2
hG
(
BG−C

(p, j)
) )



using (15)

>




D
3
−α0D−1∏

j=0

e

hG

(

BG−C
(p,j)

)

/ 2







D
3
−α0D+ξ−1∏

j=D
3
−α0D

e

hG

(

BG−C
(p,j)

)

/ 4




=

(
e

1
2

D
3 −α0D−1
∑

j=0
hG

(

BG−C
(p,j)

)) (
e

1
4

D
3 −α0D+ξ−1
∑

j=D
3 −α0D

hG

(

BG−C
(p,j)

))

> e

1
4

D
3 −α0D+ξ−1
∑

j=0
hG

(

BG−C
(p,j)

)

(16)

n

2
>

∣∣∣∣BG−C

(
p,

distG−C
(p, q)

2

) ∣∣∣∣ > e

1
4

D
3 −α0D+ξ−1
∑

j=0
hG

(

BG−C
(p,j)

)

⇒
D
3
−α0D+ξ−1∑

j=0

hG
(
BG−C

(p, j)
)
< 4 ln n (17)

Suppose that there exists no set of t = Dµ

56 log d distinct indices i1, i2, . . . , it ∈
{
0, 1, . . . , D3 −α0D+ξ−1

}

such that

∀ 1 ≤ s ≤ t : hG
(
BG−C

(p, is)
)
≤ 500 ln n

D 2
Dµ

28δ log(2d)

(18)

Together with (17) this implies:

4 lnn >

D
3
−α0D+ξ−1∑

j=0

hG
(
BG−C

(p, j)
)
>

(
D

3
− α0D + ξ − Dµ

56 log d
+ 1

)
500 ln n

D 2
Dµ

28δ log(2d)

⇒
(
distG−C

(p, q)

2
− Dµ

28 log d

)
500 ln n

D 2
Dµ

28δ log(2d)

< 4 lnn

⇒
(

D

120
2

α1D
2δ − Dµ

28 log d

)
500 ln n

D 2
Dµ

28δ log(2d)

< 4 ln n, by (3) and since α1
2 ≤ α0

≡ D2
Dµ

28δ log(2d) <
3000Dµ

28 log d
(19)

Inequality (19) is false since 2
Dµ

28δ log(2d) > 1, µ < 1 and D is sufficiently large. Thus, there must exist a
set of t distinct indices i1, i2, . . . , it such that (18) holds and the corresponding sets BG−C

(p, i1) ,BG−C
(p, i2) , . . . ,BG−C

prove our claim. Algorithmically, these subsets again can be found in the same manner as in Theo-
rem 3. ❑

3.3 Family of Small Node Expansion Witnesses With Limited Mutual Overlaps

The result in the previous section provided a nested family of cuts that separated node p from node q.
However, pairs of subsets in this family may differ by as few as just one node. In some applications,
one may need to generate a family of cuts that are sufficiently different from each other, i.e., they
are either disjoint or have limited overlap. This can be done as stated below.
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Theorem 6 For any constant 0 < µ < 1 and for any positive integer (42 δ log(2d) log(2D) )
1/µ

D ≤ τ ≤ D/4
there exists ⌊τ/4⌋ distinct subsets of nodes ∅ ⊂ V1, V2, . . . , V⌊τ/4⌋ ⊂ V such that the following results
hold for 〈G, d, δ〉 with D = D(G):

• ∀ j ∈ {1, 2, . . . , ⌊τ/4⌋} : hG (Vj) ≤ max





(
1

(D/τ)

)1−µ

,
360 log n

(D/τ) 2
(D/τ)µ

7 δ log(2d)



.

• Each subset Vj has at most n/2 nodes, and can be found in O
(
n2 log n+mn

)
time.

• (limited overlap claim) For every distinct pair of subsets Vi and Vj, either Vi ∩ Vj = ∅ or at
least D

2 τ nodes in each subset do not belong to the other subset.

Remark 4 Consider a bounded-degree hyperbolic graph, i.e., assume that δ and d are constants.

Setting τ =
√
D gives Ω(

√
D ) subsets of nodes of maximum node expansion (1/D)

1−µ
2 such that every

pairwise non-disjoint subsets have Ω(
√
D ) private nodes.

Proof. Let p and q be two nodes such that distG(p, q) = D(G) = D. Let (p = p1, p2, . . . , pτ+1 = q)
be an ordered sequence of τ +1 nodes such that distG (pi, pi+1) =

D
τ for i = 1, 2, . . . , τ . Applying the

proof of Theorem 3 and using Remark 3 for each pair (pi, pi+1), we get a subset ∅ ⊂ Si ⊂ V of nodes
such that

hG (Si) ≤ max





(
1

(D/τ)

)1−µ

,
360 log n

(D/τ) 2
(D/τ)µ

7 δ log(2d)





Thus, in all, we have τ such subsets of nodes. The subset Si of nodes were constructed in Theo-
rem 3 in the following manner. Let ℓi and ri be two nodes on a shortest path pi, pi+1 such that
distG (pi, ℓi) = distG (ℓi, ri) = distG (ri, pi+1) = 1

3 distG (pi, pi+1). For α = 1
7 (D/τ)1−µ log(2d)

< 1/4, we
constructed the graphs G−Ci obtained by removing the set of nodes Ci which are exactly at a distance
of ⌈α distG (pi, pi+1)⌉ from some node of the shortest path ℓi, ri. The subset Si is then the set of

nodes in the ball BG−Ci
(yi, ai) for some ai ∈

[
0, distG−Ci

(pi, pi+1)/2
]

and for some yi ∈ {pi, pi+1}. If

yi = pi then we call Si “left handed”, otherwise we call Si “right handed”. Consider the following two
collection of subset of nodes:

P = {Si | i is even and Si is left handed }
Q = {Si | i is even and Si is right handed }

One of these collections has at least ⌊τ/4⌋ sets. Suppose that P has at least ⌊τ/4⌋ sets (the other case
is similar). We show below that subsets in P satisfy the limited overlap claim. Consider two sets in
P of the form Si = BG−Ci

(pi, ai) and Sj = BG−Cj
(pj, aj) with i ≤ j − 2. Let Ci denote the interior

of the closed cylinder of nodes in G which are at a distance of at most ⌈α distG (pi, pi+1)⌉ from some
node of the shortest path ℓi, ri, i.e.,

Ci =
{
u | ∃ v ∈ ℓi, ri : distG(u, v) ≤ ⌈α distG (pi, pi+1)⌉

}

Proposition 2 If i 6= j then Ci ∩ BG−Cj

(
pj ,

D
2 τ

)
= ∅.

Proof. Assume for the sake of contradiction that Ci ∩ BG−Cj

(
pj,

D
2 τ

)
6= ∅, and let u ∈ Ci ∩

BG−Cj

(
pj,

D
2 τ

)
. Since u ∈ Ci, there exists a node v ∈ ℓi, ri such that distG(v, u) ≤ ⌈α distG (pi, pi+1)⌉ <

1
4 distG (pi, pi+1) =

D
4 τ . Thus,
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u ∈ BG−Cj

(
pj,

D

2 τ

)
⇒ distG−Cj

(u, pj) ≤
D

2 τ
⇒ distG (u, pj) ≤

D

2 τ

⇒ distG (v, pj) ≤ distG (v, u) + distG (u, pj) <
D

4 τ
+

D

2 τ
<

D

τ

which contradicts the fact that distG (v, pj) > distG (pi+1, pj) =
D
τ . ❑

Proposition 3 Any node u ∈ Si ∩ Sj satisfies distG−Cj
(u, pj) >

D
2 τ .

Proof. Assume for the sake of contradiction that z = distG−Cj
(u, pj) ≤ D

2 τ . Since u ∈ Si =

BG−Ci
(pi, ai), this implies distG−Ci

(pi, u) ≤ ai ≤
distG−Ci

(pi,pi+1)

2 . Since u ∈ Sj = BG−Cj
(pj, aj), this

implies u ∈ BG−Cj
(pj, z). By Proposition 2, Ci ∩ BG−Cj

(pj, z) = ∅, and therefore

D

2 τ
≥ z = distG−Cj

(u, pj) = distG−Ci∪Cj
(u, pj) ≥ distG−Ci

(u, pj)

which in turn implies

distG−Ci
(pi, pj) ≤ distG−Ci

(pi, u) + distG−Ci
(u, pj) ≤

distG−Ci
(pi, pi+1)

2
+

D

2 τ

Since the Hausdorff distance between the two shortest paths ℓi, ri and pj, pj+1 is at least D
3 τ >

⌈α distG (pi, pi+1)⌉, we have

distG−Ci
(pj, pi+1) = (j − i)

D

τ
< D

⇒ distG−Ci
(pi, pi+1) ≤ distG−Ci

(pi, pj) + distG−Ci
(pj , pi+1) ≤

distG−Ci
(pi, pi+1)

2
+

D

2 τ
+D

⇒ distG−Ci
(pi, pi+1) ≤

D

τ
+ 2D (20)

On the other hand, by Fact 1:

distG−Ci
(pi, pi+1) ≥

D

60 τ
2

αD
τδ =

D

60 τ
2

Dµ τµ

7 δ log(2d) (21)

Inequalities (20) and (21) together imply

D

60 τ
2

Dµ τµ

7 δ log(2d) <
D

τ
+ 2D

⇒ Dµ τµ < 7 δ log(2d) log(60 + 120 τ) < 42 δ log(2d) log(2D)
since τ ≤ D/2

τ <
(42 δ log(2d) log(2D) )

1/µ

D
(22)

Inequality (22) contradicts the assumption on the range of τ . ❑

To complete the proof, suppose that Sj ∩ Sj 6= ∅ and let u ∈ Sj ∩ Sj 6= ∅. Proposition 3 implies
that Sj ⊃ BG−Cj

(
pj,

D
2 τ

)
, u /∈ BG−Cj

(
pj,

D
2 τ

)
, and thus there are at least D

2 τ node on a shortest path

in G−Cj from pj to a node at a distance of D
2 τ from pj that are not part of Si. The corresponding

proof for Si with respect to Sj is similar. ❑

17



4 Large Family of Small-Size Mutually Disjoint Cuts

Recall that, given two distinct nodes s, t ∈ V of a graph G = (V,E), a cut in G that separates s
from t (or, simply a “s-t cut”) cutG(S, s, t) is a subset of nodes S that disconnects s from t. The
cut-edges EG(S, s, t) (resp., cut-nodes VG(S, s, t)) corresponding to this cut is the set of edges with
one end-point in S (resp., the end-points of these cut-edges that belong to S), i.e.,

EG(S, s, t) = { {u, v} |u ∈ S, v ∈ V \ S, {u, v} ∈ E }
VG(S, s, t) = {u |u ∈ S, v ∈ V \ S, {u, v} ∈ E }

Theorem 7 Suppose that the following holds for our given graph G:

• s and t are two nodes of G such that distG(s, t) > 120 δ + 80 δ log n, and

• d is the maximum degree of any node except s and t (degrees of s and t may be arbitrary).

Then, there exists a set of at least

⌊
distG(s, t)− 8 δ log n

30max {δ, 1/2}

⌋
= Ω(distG(s, t)) (node and edge) disjoint

cuts such that each such cut has at most d 12δ+1 cut edges.

Remark 5 Suppose that G is hyperbolic ( i.e., δ is a constant), d is a constant, and s and t be two
nodes such that distG(s, t) > 120δ + 80δ log n = Ω(log n). Theorem 7 then implies that there are
Ω (distG(s, t)) s-t cuts each having O(1) edges.

Proof. The result is trivially true when δ = 0 (the resulting graph is either a tree or the complete
graph Kn), thus we assume in the sequel that δ ≥ 1/2. We start by doing a BFS starting from node
s. Let Li be the sets of nodes at the ith level (i.e., ∀u ∈ Li : distG (s, u) = i); obviously t belongs
to LdistG(s,t). To handle arbitrary paths between s and t that may not be shortest or approximately
shortest, we recall the following well-known result about the exponential divergence of geodesic rays
emanating from a node (e.g., see [1, 9] among others).

Fact 2 (Exponential divergence of geodesic rays) [Simplified reformulation of [1, Theo-
rem 10] in our notations] Suppose that we are given the following:

• three integers k ≥ 4, α > 0, r > 3kδ,

• four nodes u1, u2, u3, u4 such that:

– u1, u2 ∈ Lr with distG(u1, u2) ≥ 3kδ,

– u3, u4 ∈ Lr+α with distG(u1, u4) = distG(u2, u3) = α.

Then, the following statements hold:

(a) For any shortest path P between u3 and u4, the middle node v of P is contained in Lj for
some j ≤ r + δ − 3

2kδ, i.e., distG(s, v) ≤ r + δ − 3
2kδ (this obviously implies distG(u3, u4) ≥ 2 ×(

(r + α) −
(
r + δ − 3

2kδ
) )

= 2α + (3k − 2)δ).

(b) Consider any path Q between u3 and u4 that does not involve a node in
⋃

0≤ j≤ r+αLj. Then,

the length |Q| of the path Q satisfies |Q | > 2
α
6 δ

+k+1.

An arbitrary path between s and t visits at least one node in each of the levels L1,L2, . . . ,LdistG(s,t)−1

(and, possibly some nodes other than t in levels LdistG(s,t) and beyond).
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Lemma 8 Assume distG(s, t) > 13 δ+8 δ log n, and consider two arbitrary paths P1 and P2 between
s and t passing through two nodes v1, v2 ∈ Lj for some 13 δ ≤ j ≤ distG(s, t) − 7 δ log n. Then,
distG (v1, v2) < 12 δ.

Proof. For the sake of contradiction, suppose that distG (v1, v2) ≥ 12δ. Let v′1 and v′2 be the first
node in level Lj+6δ logn visited by P1 and P2, respectively. Since both P1 and P2 are paths between s
and t and j+6 δ log n < distG(s, t) implies Lj+6δ logn+1 6= ∅, there must be a path P3 between v′1 and
v′2 through t using nodes not in

⋃
0≤ ℓ≤ j+6 δ logn Lℓ. We show that this is impossible by Fact 2(b).

Set the parameters in Fact 2 in the following manner:

• k = 4, α = 6δ log n, r = j > 12 k δ = 48 δ;

• u1 = v1, u2 = v2, u4 = v′1, and u3 = v′2.

This implies that the length of P3 satisfies

| P3 | > 2logn+5 > n

which contradicts the fact that | P3 | < n. ❑

The above lemma immediately provide one hitting set in the following manner.

Lemma 9 Assume distG(s, t) > 13δ + 8δ log n, and let v be an arbitrary node in level Lj lying on a
path between s and t for some 13δ ≤ j ≤ distG(s, t)− 7δ log n. Then, BG (v, 12δ) provides an s-t cut
cutG (BG (v, 12δ) , s, t) having at most EG (BG (v, 12δ) , s, t) ≤ d 12δ+1 edges.

Proof. Consider any path P between s and t and let u be the first node in Lj visited by the
path. By Lemma 8, distG(u, v) ≤ 12δ and thus v ∈ BG (v, 12δ). Since d is the maximum degree
of any node other than s and t and s, t /∈ BG (v, 12δ), it follows that EG (BG (v, 12δ) , s, t) ≤ d ×
∂G (BG (v, 12δ − 1)) ≤ d 12δ+1. ❑

Using Lemma 9 we can now finish the proof of our theorem in the following way. Assume that

distG(s, t) > 120δ + 80δ log n. Consider the levels Lj for j ∈
{
30δ, 60δ, 90δ, . . . ,

⌊
distG(s,t)−8δ logn

30δ

⌋}
.

For each such level Lj, select a node vj that is on a path between s and t and consider the subset of
edges cutG (BG (vj , 12δ) , s, t). By Lemma 9, cutG (BG (vj , 12δ) , s, t) is a valid s-t cut. The number

of such cuts is at least
⌊
distG(s,t)−8δ logn

30δ

⌋
. To see why these cuts are node and edge disjoint, note that

EG (BG (vj , 12δ) , s, t)∩EG (BG (vℓ, 12δ) , s, t) = ∅ and VG (BG (vj , 12δ) , s, t)∩VG (BG (vℓ, 12δ) , s, t) = ∅
for any j 6= ℓ since distG (vj , vℓ) > 30δ. ❑

5 Applications in Designing Improved Algorithms

Our results in the preceding sections show that hyperbolic graphs have many subsets of nodes of
small expansion or small number of cut edges. Intuitively, such subsets of nodes should be useful in
problems related to cuts and paths. In this section, we consider three such problems.

5.1 Hitting Sets for Size Constrained Cuts

The edge and node hitting set problems for size constrained s-t cuts can be defined as follows:

Problem name : edge hitting set for size constrained cuts (Ehssc).
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(resp., node hitting set for size constrained cuts (Nhssc) ).

Input : a graph G = (V,E), two nodes s, t ∈ V , and a positive integer 0 < κ ≤ |E|.
Valid solution : a hitting set Ẽ of all EG(S, s, t)’s satisfying | EG(S, s, t) | ≤ κ, i.e.,

Ẽ ⊆ E satisfying ∀ s ∈ S ⊂ V \{t} : | EG(S, s, t) | ≤ κ ⇒ EG(S, s, t)∩ Ẽ 6= ∅.
(resp., a hitting set Ṽ of all VG(S, s, t)’s satisfying | VG(S, s, t) | ≤ κ, i.e.,

Ṽ ⊆ V satisfying ∀ s ∈ S ⊂ V \ {t} : | VG(S, s, t) | ≤ κ ⇒ VG(S, s, t)∩ Ṽ 6= ∅ ).

Objective : minimize | Ẽ | (resp., minimize | Ṽ | ).

Notation : EEhssc(G, s, t, κ) (resp., VNhssc(G, s, t, κ) ) is an optimal hitting set having
OPTEhssc(G, s, t, κ) edges (resp., OPTNhssc(G, s, t, κ) nodes).

The following results for the Ehssc and Nhssc problems are implied by known results:

• Nhssc is NP-hard even if every node other then s and t has a degree of at most 5 (use [24,
Theorem 2] with restricted instance of set cover and note that the reduction works for Nhssc

even if all edges are undirected).

• Ehssc on a graph of n nodes does not admit a 2log
1−ε n-approximation for any constant ε > 0

unless NP⊆DTIME
(
nlog logn

)
.

• Ehssc on a graph of n nodes and m edges admits a O
(
min

{
n3/4, m1/2

})
-approximation. Thus,

in particular, if m = O(n) then Hssc admits a O
(
n1/2
)
-approximation.

Of course, both Ehssc and Nhssc have obvious exponential-size LP-relaxations since they are after
all hitting set problems. For example, a exponential size LP-relaxation of Ehssc is as follows:

minimize
∑
e∈E

xe

subject to ∀ s ∈ S ⊂ V \ {t} such that | EG(S, s, t) | ≤ κ :
∑

e∈EG(S,s,t)

xe ≥ 1

∀ e ∈ E : 0 ≤ xe ≤ 1

Intuitively, there are at least two reasons why such a LP-relaxation may not be of sufficient
interest. Firstly, known results may imply a large integrality gap. Secondly, it is even not very clear
if the LP-relaxation can be solved exactly in a time efficient manner.

Our main result for Ehssc and Nhssc shows that if the given graph is a bounded degree hyper-
bolic graph then these problems admit a O (log n)-approximation, improving upon the currently best
approximation ratio of O

(
n1/2
)
.

Theorem 10 If the given graph G is hyperbolic ( i.e., if δ is a constant) and every node other than
s and t has a constant maximum degree d then Ehssc (and consequently Nhssc) admit a O (log n)-
approximation,

Remark 6 For the general case when d or δ are not necessarily constants, our proof provides a
O
(
max

{
log n, d 12δ+1

} )
-approximation for Ehssc and a O

(
max

{
log n, d 12δ+2

} )
-approximation for

Nhssc. This improves upon the currently best O
(
n1/2
)
-approximation provided δ = o (logn/log d).

Thus, for example, for fixed d we provide improved approximation as long as δ = o(log n).

Proof. Since d is fixed, it suffices to to prove the result for Ehssc only (for the general case when
d is not fixed, the approximation factor for Ehssc gets multiplied by d for Nhssc). Since the claim
is trivial when δ = 0 (a tree or the complete graph Kn), we assume in the sequel that δ ≥ 1/2. Our
algorithm for Ehssc can be summarized as follows:
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1. If κ ≤ d 12δ+1 = O(1) then solve the problem optimally in polynomial time by enumerating all
possible

∑κ
j=1

(nd
j

)
= nO(1) subsets of at most κ edges.

(For arbitrary (not necessarily constant) δ and d, one can get a polynomial-time O
(
d 12δ+1

)
-

approximation by using the primal-dual algorithm in [4, 24]).

2. Otherwise, assume that κ > d 12δ+1. If distG(s, t) ≤ 120δ+80δ log n then return all the edges in
a shortest path between s and t as the solution. Since OPTEhssc(G, s, t, κ) ≥ 1, this provides a
(120δ + 80δ log n) = O(log n)-approximation.

3. Otherwise, assume that κ > d 12δ+1 and distG(s, t) > 120δ + 80δ log n. Use Theorem 7 to

find a collection S1, S2, . . . , Sℓ of ℓ =
⌊
distG(s,t)−8δ logn

30δ

⌋
edge and node disjoint s-t cuts. Since

EG (Sjs, t) ≤ d 12δ+1 < κ, any valid solution of Ehssc must select at least one edge from
EG (Sj, s, t). Since the cuts are edge and node disjoint, it follows that

OPTEhssc(G, s, t, κ) ≥
⌊
distG(s, t)− 8δ log n

30δ

⌋

In this case also, we return all the edges in a shortest path between s and t as the solution.
The approximation ratio achieved is therefore

distG(s, t)⌊
distG(s,t)−8δ logn

30δ

⌋ < 60δ

❑

5.2 Minimizing Bottleneck Edges

The Hssc problem can be used to characterize an optimal solution for other problems for the purpose
of designing approximation algorithms for these problems. As an example, in this section we consider
the following problem.

Problem name : unweighted uncapacitated minimum vulnerability (Uumv) [4, 24, 31].

Input : a graph G = (V,E), two nodes s, t ∈ V , and two positive integers 0 ≤ r < k.

Definition : an edge is called shared if it is in more than r paths between s and t.

Valid solution : a set of k paths between s and t.

Objective : minimize the number of shared edges.

Notation : OPTUumv (G, s, t, r, k) is the number of shared edges in an optimal solution.

Uumv has applications in several communication network design problems [29–31]. When r = 1,
the Uumv problem is known as the minimum shared edges (Mse) problem. It was shown in in [4, 24]
that, for a graph with n nodes and m edges, Mse does not admit a 2log

1−ε n-approximation for any
constant ε > 0 unless NP⊆DTIME

(
nlog logn

)
, Uumv admits a ⌊k/(r+1)⌋-approximation, and Mse

admits a min
{
⌊k/2⌋ , n3/4, m1/2

}
-approximation. The following lemma shows that Uumv (and thus

Mse) has the same approximability properties as Ehssc by characterizing optimal solutions of Uumv

in terms of optimal solutions of Ehssc.

Lemma 11 OPTUumv (G, s, t, r, k) = OPTEhssc (G, s, t, ⌈k/r⌉ − 1), and thus the approximation algo-
rithms for Ehssc in Theorem 10 and Remark 6 carry over to corresponding bounds for Uumv..
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Proof. Note that any feasible solution for Uumv must contain at least one edge from every collection
of cut-edges EG(S, s, t) satisfying | EG(S, s, t) | ≤ ⌈k/r⌉ − 1, since otherwise the number of paths
going from cutG(S, s, t) to V \ cutG(S, s, t) is at most r × ( ⌈k/r⌉ − 1 ) < k. Thus it follows that
OPTUumv (G, s, t, r, k) ≥ OPTEhssc (G, s, t, ⌈k/r⌉ − 1).

On the other hand, OPTUumv (G, s, t, r, k) ≤ OPTEhssc (G, s, t, ⌈k/r⌉ − 1) can be argued as follows.
Consider the set of edges EEhssc (G, s, t, ⌈k/r⌉ − 1) in an optimal hitting set and set the capacity c(e)

of every edge e of G as c(e) =

{
∞, if e ∈ EHssc (G, s, t, ⌈k/r⌉ − 1)
r, otherwise

. The value of the minimum

cut for G is then at least min {∞, r × ⌈k/r⌉} ≥ k which implies (by the max-flow-min-cut theorem)
the existence of k flows each of unit value. The paths taken by these k flows provide our desired k
paths for Uumv. ❑

5.3 The Small Set Expansion Problem

The small set expansion (Sse) problem was studied by Arora, Barak and Steurer in [3] (and also
by several other researchers such as [5, 16, 26–28]) in an attempt to understand the computational
difficulties surrounding the Unique Games Conjecture (UGC). of the adjacency matrix of a d-regular
graph, For uniformity we also use the standard normalized edge-expansion of a graph which can be
defined as follows [13]. For a subset of nodes S, let vol(S) denote the sum of degrees of the nodes in G.
Then, the normalized edge expansion ratio Φ(S) of a subset of nodes of at most |V ′|/2 nodes of a graph
H = (V ′, E′) is defined as ΦH(S) = cutH(S)

vol(S) . Since we will deal with only d-regular graphs in this

subsection, ΦH(S) simplifies to ΦH(S) = cutH (S)
d |S| . Note that hH(S) ≤ ε implies ΦH(S) ≤ d hH (S)

d ≤ ε.

Definition 12 ((Sse Problem) [ a case of [3, Theorem 2.1], rewritten as a problem ] Suppose
that we are given a d-regular graph G = (V,E) for some fixed d, and suppose G has a subset of at
most ζn nodes S (for some constant 0 < ζ < 1/2) such that ΦG(S) ≤ ε (or, gG(S) ≤ ε) for some
constant 0 < ε ≤ 1. Then, find as efficiently as possible a subset S′ of at most at most ζn nodes such
that ΦG(S) ≤ η ε (or, gG(S) ≤ η ε) for some “universal constant” η > 0.

In general, computing a very good approximation of the Sse problem seems to be quite hard; the
approximation ratio of the algorithm presented in [27] roughly deteriorates proportional to

√
log(1/ζ),

and a O(1)-approximation described in [5] works only if the graph excludes two specific minors. The
authors in [3] showed how to design a sub-exponential time (i.e., O (2 c n) time for some constant
c < 1) algorithm for the above problem. As they remark, expander like graphs are somewhat easier
instances of Sse [3] for their algorithm, and it takes some non-trivial technical effort to handle the
”non-expander” graphs. Note that the class of hyperbolic graphs (i.e., when the hyperbolicity δ is a
constant) is a non-trivial proper subclass of non-expander graphs. We show that Sse (as defined in
Definition 12) can be solved efficiently for this proper subclass of non-expanders.

Theorem 13 (Sse for hyperbolic graphs is polynomial-time solvable) Suppose that G is a
d-regular graph that is also hyperbolic (i.e., δ is a constant). Then the Sse problem for G can be
solved in polynomial time even for a wider range of parameter than Definition 12 suggests6, i.e., when

d ≤ c log log n, ζ ≥ 1

c log n
, and ε ≥ 1

c 3
√
log n

for any sufficiently large constant c > 0.

Remark 7 Our proof is quite similar to that used for Theorems 3 and 5. But, instead of looking for
smallest possible non-expansion bounds, we now relax the search and allow us to consider subsets of

6Better combinations of parameter ranges are possible; our intention here was to state that these parameters need
not be constants.
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nodes whose expansion is just enough to satisfy the requirement. This relaxation helps us to ensure
the size requirement of the subset we need to find.

Proof. Since d = O(log log n), one can easily verify (by setting the parameter µ to a value slightly
higher than 1/2) that it suffices to prove the result for hG. We will use the proofs of Theorem 3
and Theorem 5 in this proof, so we urge the readers to familiarize themselves with the details of
these proofs before reading the current proof. Instead of choosing two nodes p and q that are furthest
apart, we now chose them such that distG(p, q) = logd n = logn

log d (cf. Remark 3). For convenience at the
expense of slight misuse of notations, we let D = distG(p, q) instead of D being the actual diameter
of G. For concreteness, set the constant µ to be 1/2 in the proofs of Theorem 3 and Theorem 5. Note
that 360 logn

D 2
Dµ

7 δ log(2d)

<
(
1
D

)1−µ
since

360 log n

D 2
Dµ

7 δ log(2d)

<

(
1

D

)1−µ

⇐ 360 log d

2
(log n)1/2

14 δ (log d)3/2

<

(
log d

log n

)1/2

≡ 360 (log n)1/2 <
2

(log n)1/2

14 δ (log d)3/2

(log d)1/2

⇐ 1

2
log log n+ 9 <

(log n)1/2

14 δ (log log log n+ log c)3/2
− 1

2
log log log n− 1

2
log c

and the last inequality holds since δ and c are constants.
First, suppose that there exists 0 ≤ r ≤ D

3 − αD such that hG
(
BG−C

(p, r)
)
= hG (BG(p, r)) ≤ ε.

We return S′ = BG(p, r) as our solution, To verify the size requirement, note that

| BG(p, r) | ≤
∣∣∣∣BG

(
p,

D

3
− αD

) ∣∣∣∣ <
∣∣∣∣BG

(
p,

D

3

) ∣∣∣∣ <
D/3∑

i=0

d i < d
D
3
+1 = dn1/3 < ζ n (23)

where the last inequality follows since d ≤ c log log n and ζ ≥ 1
c logn .

Otherwise, no such r exists, and this implies
∣∣∣∣BG

(
p,

D

3
− αD

) ∣∣∣∣ ≥ (1 + ε)
D
3
−αD > (1 + ε)

D
4 ≥ e

εD
8 = e

ε logd n

8 = n
ε logd e

8

Now there are two major cases as follows.

Case 1: there exists at least one path between p and q in G−C .

We know that distG−C
(p, q) ≥ D

602
αD/δ and (by choice of p)

∣∣∣BG−C

(
p,

distG−C
(p,q)

2

) ∣∣∣ < n
2 . Let

p = u0, u1, . . . , ut−1, ut = q be the nodes in successive order on a shortest path from p to q of
length t = distG−C

(p, q). Perform a BFS starting from p in G−C , and let Li be the sets of nodes

at the ith level (i.e., ∀u ∈ Li : distG−C
(p, u) = i). Note that

∣∣∣
⋃ t/2

j=0Lj

∣∣∣ ≤ n
2 . Consider the levels

L0,L1, . . . ,Lt/2, and partition the ordered sequence of integers 0, 1, 2, . . . , t/2 into consecutive blocks
∆0,∆1, . . . ,∆(1+ t

2)/κ−1 each of length κ = 8
ε lnn, i.e.,

0, 1, 2, . . . , κ− 1︸ ︷︷ ︸
∆0

, κ, κ + 1, κ + 2, . . . , 2κ− 1︸ ︷︷ ︸
∆1

, . . . . . . ,
t

2
− κ+ 1,

t

2
− κ+ 2, . . . ,

t

2︸ ︷︷ ︸
∆(1+ t

2)/κ−1

We claim that for every ∆i, there exists an index i∗ within ∆i (i.e., there exists an index i κ ≤ i∗ ≤
i κ+κ− 1) such that hG (Li∗) ≤ ε. Suppose for the sake of contradiction that this is not true. Then,
it follows that
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∀ i κ ≤ j ≤ i κ+ κ− 1 : hG−C
(Lj) ≥

hG (Lj)

2
>

ε

2

⇒ hG−C
(Li κ+κ−1) > | Li κ |

(
1 +

ε

2

)κ
≥
(
1 +

ε

2

) 8
ε
lnn

≥ e
( ε
4) (

8
ε
lnn) = n2 > n

and the last inequality contradicts the fact that
∣∣∣
⋃ t/2

j=0Lj

∣∣∣ ≤ n
2 . Since

(1+ t
2)/κ−1∑
i=0

| Li∗ | < n
2 , there exists

a set Lk∗ such that hG (Lk∗) ≤ ε and

| Lk∗ | <
n/2
1+ t

2
κ

=
nκ

2 + t
<

8n lnn

ε D
60 2

D1/2

7 δ log(2d)

≤ 480 c n ln log n 3
√
log n

2

√
log n

14 δ (log log log n+log c)3/2

<
n

c log n
≤ ζ n

where we use the fact that δ and c are constants.

Case 2: there is no path between p and q in G−C .
In this case, we return BG−C

(
p, D3 − αD

)
= BG

(
p, D3 − αD

)
as our solution. The size re-

quirement follows since we showed in (23) that
∣∣BG

(
p, D3 − αD

) ∣∣ < ζ n. Note that nodes in
BG

(
p, D3 − αD

)
can only be connected to nodes in C, and thus

hG

(
BG

(
p,

D

3
− αD

))
≤ | C |∣∣BG

(
p, D3 − αD

) ∣∣ ≤
D
3 d

αD

n
ε logd e

8

<
log n

(
c log log n

) √
log n

14 (log log log n+log c)3/2

3 log 3 n
1

8 c 3√log n (ln log log n+ln c)

<
1

c 3
√
log n

≤ ε

where the penultimate inequality follows since c is a constant.
In all cases, the required subset of nodes can be found in O

(
n2 log n

)
time. ❑

Concluding Remarks

Computing the minimum node expansion ratio of a graph is in general NP-hard and is in fact Sse-
hard to approximate within a ratio of C

√
hG log d for some constant C > 0 [22]. Since we show

that Sse is polynomial-time for hyperbolic graphs, the hardness result of [22] does not directly apply
for this case, and thus additional arguments may be needed to establish similar hardness results for
hyperbolic graphs.
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