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Abstract

We give the first nonconstant lower bounds for the approximability of the
Independent Set Problem on the Power Law Graphs. These bounds are of
the form nε in the case when the power law exponent satisfies β < 1. In the
case when β = 1, the lower bound is of the form log(n)ε. The embedding
technique used in the proof could also be of independent interest.

1 Introduction

In this paper we prove new inapproximability results for the Maximum Independent
Set (MIS) problem on Power Law Graphs.

The Independent Set Problem on general graph instances is equivalent to the
Max Clique Problem. In [13] it was shown that the Max Clique Problem is NP-
hard to approximate within a factor nc for some constant c > 0. A randomized
reduction from PCPs to Max Clique has been constructed in [16]. This implies that
if NP 6= ZPP, then Max Clique cannot be approximated within n1−ε for any ε > 0.
Khot [19] showed that under the Unique Games Conjecture (UGC), there exists
some γ > 0 such that Max Clique cannot be approximated within n/2(logn)1−γ .
These results have been derandomized in [22]. This implies that unless P = NP,
Max Clique cannot be approximated within n1−ε for any ε > 0. Furthermore, there
exists some γ > 0 such that, unless P̃ = NP̃, no quasi-polynomial time algorithm
approximates Max Clique within n/2(logn)1−γ .

It has been discovered recently that many real-world large scale networks have
a node degree distribution which follows a power law. This has been observed for
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the graphs of the Internet [12] and the World Wide Web (WWW) [4], peer-to-peer
networks, gene regulatory networks and protein interaction networks [8] and for
social networks ([20], [18]).

A random graph model for power law graphs has been introduced in [1],[2].
Power law graphs have the property that their node degree distribution follows a
power law, i.e. the number of nodes of degree i is proportional to i−β, for some
fixed β > 0. This parameter β is called the power law exponent.

It has been observed experimentally that some optimization problems tend to be
much easier to solve on power law graphs than on general graph instances [11]. This
rises the question on whether one can show differences in terms of approximability
or approximation hardness of several optimization problems between general graph
instances and power law graphs [21]. Ferrante et al. [14] showed the NP-hardness
of Max Clique in power law graphs for β ≥ 1 and of MIS in power law graphs for
all β > 0. Shen et al. [21] proved the APX-hardness of Max Clique and Maximum
Independent Set on power law graphs, also for β > 1. Their result is based on an
efficient embedding of bounded degree graphs into power law graphs.

We consider the Maximum Independent Set (MIS) problem in Power Law
Graphs (PLGs) for β ≤ 1. For β ∈ (0, 1) we show that the MIS problem in
(α, β)-PLGs is hard to approximate within nε, for some ε > 0 being constant. For
β = 1, we give a lower bound of ∆ε2 for some ε2 > 0, where ∆ = eα is the maximum
degree of a power law graph.

The paper is organized as follows. In Section 2 we give the formal definition of
a power law graph according to [1]. Section 3 provides an important tool which
we will use in our constructions, namely a method how to complete constructively
fragments of a given power law node degree distribution such that the maximum
independent set size of the resulting graph is small. In Section 4 we will use this
auxiliary construction to obtain our hardness result for the case when β < 1. The
case β = 1 is considered in Section 5. In Section 6 we give a summary and a
number of open questions.

2 Power Law Graphs

In this section we start with giving the formal definition of the (α, β) Power-Law
Graphs (cf. [1],[2]). We introduce also the notion of a node degree interval, which
will be of particular importance within our constructions. Informally, a node degree
interval (or just interval for short) is a subset of nodes in a graph whose node
degrees are all within a given interval [a, b]. In the subsequent sections we will be
concerned with the construction of embeddings of a given graph G into some node
degree interval of a power law graph. In this section we provide estimates for sizes
and volumes (i.e. sums of node degrees) of intervals in (α, β) Power-Law Graphs
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(PLGs).

Definition 2.1 [3] An undirected multigraph G = (V,E) with self loops is called
an (α, β) Power-Law Graph if the following conditions hold:

• The maximum degree is ∆ = beα/βc.

• For i = 1, . . . ,∆, the number yi of nodes of degree i in G satisfies

yi =

⌊
eα

iβ

⌋
The following estimates for the number n of vertices of an (α, β) Power-Law Graph
are well known (cf. [3]):

n ≈


eα/β

1−β for 0 < β < 1,

α · eα for β = 1,
ζ(β) · eα for β > 1.

m ≈


1
2
e2α/β

2−β for 0 < β < 2,
1
4
αeα for β = 2,

1
2
ζ(β − 1)eα for β > 2.

Here ζ(β) =
∑∞

i=1 i
−β is the Riemann Zeta Function.

Given an (α, β) Power-Law Graph G = (V,E) with n vertices and maximum
degree ∆ and two integers 1 ≤ a ≤ b ≤ ∆, an interval [a, b] is defined as the subset
of V

[a, b] = {v ∈ V |a ≤ degG(v) ≤ b} (1)

If U ⊆ V is a subset of vertices, the volume vol(U) of U is defined as the sum of
node degrees of nodes in U . We have the following estimates for sizes and volumes
of node intervals in (α, β)-PLGs (cf. [15]).

Theorem 2.1 [15] For 0 < β < 1, we have

|[x∆, y∆]| ∈
[

∆
1−β (y1−β − x1−β)−

(
1
xβ
− 1

yβ

)
, ∆

1−β (y1−β − x1−β)
]

|[x∆,∆]| ∈
[

∆
1−β (1− x1−β)−

(
1
xβ
− 1
)
, ∆

1−β (1− x1−β)
]

vol([x∆,∆])≥∆2
(

1−x2−β
2−β −

1
2

+ x2

2

)
−∆

(
1− x1−β − 1

2
+ x

2

)
For β = 1, we have

|[x∆, y∆]| ∈
[
eα ·

(
ln
(

1
x

)
− ln

(
1
y

))
− (y − x)eα, eα ·

(
ln
(

1
x

)
− ln

(
1
y

))]
vol([x∆, y∆]) ∈

[
eα(y − x)∆−

(
y∆(y∆+1)

2
− x∆(x∆+1)

2

)
, eα(y − x)∆

]
These estimates will be used in subsequent sections where we construct efficient
reductions from the general Maximum Independent Set (MIS) problem to MIS in
(α, β)-PLGs for β ≤ 1. In particular we will be concerned with the embedding of
the node degree distribution of a given graph G into an interval of the form [x∆,∆]
of a power law node degree distribution with parameters α and β.
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3 An Auxiliary Graph Construction

We start with an auxiliary problem.
Our hardness results for the MIS problem in Power Law Graphs rely on the

construction and analysis of embeddings of a given class of graphs G, namely a
class of instances on which the MIS problem is known to be hard to approximate
into (α, β)-PLG. Such an instance G will be mapped to a node degree interval of
the form [x∆,∆], where the parameter α (and hence ∆ = eα/β) has been chosen
appropriately. Then the task will be to construct the remaining part of the power
law graph, which consists of a subgraph corresponding to the interval [1, x∆ − 1]
and the rest of the interval [x∆,∆]. This leads us to the following construction
problem. We are given a sequence of node degrees d = (d1, . . . , dn). We want to
construct a multigraph Gd with n vertices such that d is the degree sequence of Gd

and furthermore, the size IS(Gd) of a maximum independent set in Gd is as small
as possible. In particular we have to consider the case when the degree sequence d
corrsponds to an interval [a, b] of a power law distribution with 1 ≤ a ≤ b ≤ ∆ =
beα/βc. This means that for each a ≤ i ≤ b, the sequence d contains b eα

iβ
c entries

all equal to i. We may assume that the sequence d is always sorted, i.e. the entries
in d are in increasing order d1 ≤ . . . ≤ dn.

The idea of the construction is as follows. We cover the vertices of the auxiliary
graph Gd by a small number nc of cliques, in increasing order by their node degrees.
Then dn/nce is an upper bound for IS(Gd). Let us now describe this construction
in more detail.

We consider the following situation. We are given a node degree interval [a, b]
with 1 ≤ a < b ≤ ∆ =

⌊
eα/β

⌋
. We want to construct a graph Ga,b such that the

degree distribution of this graph is precisely equal to the part of the power law node
degree distribution corresponding to this interval. Moreover, we want to achieve
that, informally, the size IS(Gab of a maximum independent set in the graph Ga,b

is sufficiently small.
Let us now describe our construction in detail. From the node degree in-

terval [a, b] we first construct the associated degree sequence (d1, . . . , dm) with

m =
∑b

j=a

⌊
eα

jβ

⌋
. The set of vertices is

Va,b = {v1, . . . , vm} for m =
∑b

j=a

⌊
eα

jβ

⌋
The degree sequence (d1, . . . , dm) has the following form:

d1 = . . . = dbeα/aβc = a,
dbeα/aβc+1 = . . . = dbeα/aβc+eα/(a+1)βc = a+ 1

and in general, if j is the last index of a node of degree i, then the nodes with
indices j + 1, . . . , j + beα/(i+ 1)βc are of degree i+ 1.
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We generate the set of edges as follows:

• We take the first d1 + 1 nodes v1, . . . , vd1+1 and connect them by a clique.

• We compute residual degrees accordingly.

• We take the next dd1+2 nodes, connect them by a clique, keep track of residual
degrees and iterate.

So in each iteration i, we construct a clique of size dp(i) + 1 on the set of nodes
{vp(i), . . . , vp(i)+dp(i)}. The function p(·) satisfies:

• p(1) = 1

• p(i+ 1) = p(i) + dp(i) + 1

We give an upper bound on the size of an independent set in this graph Ga,b. If
we would cover each set Vi = {v ∈ V (Ga,b)|deg(v) = i} separately, the number of
cliques needed for Vi would be bounded by⌈⌊

eα

iβ

⌋
i

⌉
≤

⌊
eα

iβ

⌋
+ i

i
≤

eα

iβ
+ i

i
=

eα + iβ+1

iβ+1
(2)

Thus the size of a maximum independent set in this graph is bounded by

b∑
i=a

eα + iβ+1

iβ+1
≤

∫ b+1

a

eα

iβ+1
dx +

eα

aβ+1
− eα

(b+ 1)β+1
+ b+ 1− a

=

[
eα

−β · xβ

]b+1

a

+
eα

aβ+1
− eα

(b+ 1)β+1
+ b+ 1− a

=
eα

β
·
(

1

aβ
− 1

(b+ 1)β

)
+

eα

aβ+1
− eα

(b+ 1)β+1
+ b+ 1− a

The number of nodes of the graph Ga,b is
∑b

i=a

⌊
eα

iβ

⌋
, which is contained in the

interval[
∆

1− β

((
b

∆

)1−β

−
( a

∆

)1−β
)
−
(

∆β

aβ
− ∆β

bβ

)
,

∆

1− β

((
b

∆

)1−β

−
( a

∆

)1−β
)]

=

[
eα

1− β

(
b1−β − a1−β − 1

aβ
+

1

bβ

)
,
eα

1− β
(
b1−β − a1−β)]

These estimates will be used in Section 4 and Section 5 in the analysis of our
embeddings of graphs into (α, β) PLGs.
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4 An Embedding of Graphs into PLGs for β < 1

In this section we show that for each β < 1, the MIS problem on (α, β)-PLGs
is NP-hard to approximate within nε for some constant ε ∈ (0, 1) which only
depends on β. This result is based on the construction of an efficiently computable
embedding of arbitrary graphs into (α, β)-PLGs for β < 1. The global structure of
this embedding is as follows. Given a graph G which we want to embed, we map
the vertices of G to a node degree interval of the form [x∆,∆] of some power law
distribution with parameters α, β, where ∆ = beα/βc. Then we make use of our
auxiliary graph construction from Section 3 in order to construct the remaining
parts of the power law graph Gα,β. By a careful choice of the parameters x and α
of this construction, we will be able to bound the size of a maximum independent
set in the residual graph Gα,β \ G such that the approximation hardness carries
over from general graph instances to (α, β)-PLGs.

Given a graph G with m nodes, we start by replacing G by the graph G′ which
contains for each node vi in G a clique of size 2 consisting of nodes vi,1, vi,2. Now
for all 1 ≤ i < j ≤ m, nodes vi,k and vj,l (k, l ∈ {1, 2}) are connected by an edge iff
G contains an edge between vi and vj. The number of nodes of G′ is n = 2m, and
we have IS(G′) = IS(G). Furthermore G′ contains a perfect matching, consisting
of edges {vi,1, vi,2} (1 ≤ i ≤ m). This will enable us to replace these edges by
multi-edges in order to fit the graph into some given part of a power law node
distribution. We will now construct an embedding of the graph G′ into an (α, β)-
PLG. In particular, the nodes of G′ will be mapped to nodes in the node interval
[x∆,∆], where x is a parameter of the construction. It turns out that we can
choose α and x in such a way that n ≥ 1

2
· |[x∆,∆]|.

Let us now give the details of the construction. First we choose the parameters
α and 0 < x < 1 such that

n ≤ x∆ and n ≤ |[x∆,∆]|. (3)

The first inequality in (3) will enable us to implement the node degrees within
[x∆,∆] by replacing edges {(v, 1), (v, 2)} in G′ by multi-edges. The second con-
dition ensures that the interval [x∆,∆] is sufficiently large such that G′ can be
embedded into it. Then the size of the node degree interval [x∆,∆] can be esti-
mated as follows:

|[x∆,∆]| ∈
[

∆

1− β
·
(
1− x1−β)− (x−β − 1),

∆

1− β
·
(
1− x1−β)] (4)

This means that we have to choose x such that x ≤ 1−x1−β
1−β , i.e.

(1− β)x + x1−β − 1 ≤ 0 with x ∈ (0, 1) (5)
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We observe that (5) holds provided we choose x such that

max
{

(1− β)x, x1−β} ≤ 1

2
(6)

which is equivalent to

x ≤ min

{
1

2(1− β)
,

(
1

2

) 1
1−β
}

(7)

We have (
1

2

) 1
1−β

≤ 1

2(1− β)
or equivalently 2 ≥ 21−β(1− β)1−β,

and thus if we choose x =
(

1
2

) 1
1−β , then (5) holds. This yields |[x∆,∆]| = (1 −

o(1))1
2
· ∆

1−β , and furthermore n = x∆ = (1
2
)

1
1−β ·∆. Now we have to construct the

residual graph Gα,β \G′. A straight forward approach is to construct two auxiliary
graphs G[1,x∆] and G′x∆,∆], where G[1,x∆] = Gd for d being the degree sequence of the

interval [1, x∆] and G′[x∆,∆] = Gd′ , where the sequence d′ is constructed as follows:

d′ is a degree sequence for the remaining |[x∆,∆]|−n nodes in [x∆,∆]. It turns out
that in this case, the upper bound for the size of an independent set in G′[x∆,∆] = Gd′

would be too large compared to n. Therefore we construct the residual graph
Gα,β \G′ as follows. We split the interval [1, x∆] into two parts and construct one
auxiliary subgraph G1 for the node degree interval [1, eα/(β+1)) and one subgraph
G2 for the degree sequence d consisting of the full interval [eα/(β+1), x∆−1] and the
degree sequence for the remaining |[x∆,∆]| − n nodes within the interval [x∆,∆].
This construction is also shown in Figure 1. An upper bound for IS(G2) is given by
the bound for the size of a maximum independent set of the graph G[eα/(β+1),∆] =:
G3. We have

IS(G3) ≤

⌈∑eα/β

i=eα/(β+1)

⌊
eα

iβ

⌋
eα/(β+1)

⌉
≤

eα/β∑
i=eα/(β+1)

eα·(1−
1

β+1
)

iβ

≤ eα·
β
β+1 ·

(∫ eα/β+1

eα/(β+1)

x−βdx +
1

eα
− 1

eα·
β
β+1

)
≤ e

α
β+1

1− β

Now we consider the graph G1. We obtain the following bound for the number of
nodes of G1:

|[1, x∆]| ≤ ∆

1− β
·

(
x1−β −

(
1

∆

)1−β
)

=
x1−β

1− β
·∆ − eα
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G′

e
α
β+1 x∆ =

(
1
2

) 1
1−β ∆ ∆

G1

G2

Figure 1: Construction of the embedding for the case of β < 1

The size of a maximum independent set in G1 can be bounded as follows. We
split the interval [1, x∆] into two subintervals Iy,1 = [1, y∆) and Iy,2 = [y∆, x∆],
where y has to be chosen appropriately within the interval (0, x). The size of
an independent set in the subgraph G1[Iy,1] of G1 induced by the node interval
Iy,1 = [1, y∆) is estimated as follows:

IS(G1[Iy,1]) ≤
y∆∑
i=1

⌈⌊
eα

iβ

⌋
i

⌉
≤
∑
i=1

y∆
eα

iβ+1
+ y∆

≤
[

eα

−βxβ

]y∆+1

1

+ eα
(

1− 1

(y∆ + 1)β+1

)
+ y∆

=
eα

β

(
1− 1

(y∆ + 1)β

)
+ eα

(
1− 1

(y∆ + 1)β+1

)
+ y∆

Moreover, the size of a maximum independent set in the subgraph G1[Iy,2] induced
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by the node degree interval Iy,2 can be bounded as follows:

IS(G1[Iy,2]) ≤

⌈∑x∆
i=y∆

⌊
eα

iβ

⌋
y∆

⌉
≤

x∆∑
i=y∆

eα

y · iβ · eα/β
+ 1

≤ eα·(1−1/β)

y
·
(∫ x∆+1

y∆

1

zβ
dz +

1

(y∆)β
− 1

(x∆)β

)
+ 1

≤ eα·(1−1/β)

y
·
(

(x∆)1−β

1− β
− (y∆)1−β

1− β
+

1

(y∆)β
− 1

(x∆)β

)
+ 1

= (1± o(1)) · e
α

y∆
· ∆1−β

1− β
(
x1−β − y1−β) = Θ(y−1)

Thus we obtain the following estimate for the size of a maximum independent set
in the graph G1:

IS(G1) = Θ

(
y ·∆ +

1

y

)
(8)

In order to obtain an upper bound for the right hand side in (8), we observe that

d

dy

(
1

y
+ y ·∆

)
= ∆− 1

y2
,

Thus we choose y = Θ
(

1√
∆

)
, say y = ∆−1/2. This yields IS(G1) = Θ(

√
∆).

Now we start from a graph G ∈ G 1
n1−ε
∪ G 1

nε
. We construct the graph G′. Let

n be the number of nodes of G′. Thus we have

G′ ∈ G 2ε

n1−ε
∪ G 1

21−εnε
(9)

Then we choose the parameters x and α:

x =

(
1

2

) 1
1−β

, α = β · ln
(n
x

)
(10)

We construct the graph Gα,β as described above. In particular, G′ will be embedded
into the node degree interval [x∆,∆], which is of size at least (1− o(1)) · ∆

1−β (1−
x1−β).

Altogether we obtain the following result.

Theorem 4.1 For every β ∈ (0, 1), for every ε > 0 the Maximum Independent Set
Problem on (α, β)-PLGs is NP-hard to approximate within n1−ε.
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5 The Case β = 1

Now we consider the case when the power law exponent is equal to 1. First, we
observe that in this case, there is a simple O(ln(n))-approximation algorithm for
the Independent Set Problem in (α, 1)-PLGs. Namely, the number of nodes is αeα,
and we have eα nodes of degree 1. Thus taking half of them yields a O(ln(n))-
approximate independent set.

We will now give a lower bound of the form ∆ε for maximum degree ∆ and some
constant ε > 0 for the Independent Set Problem in (α, 1)-PLGs. As in the previous
case β < 1, we want to proceed as follows: We start from a class G of graphs for
which the Independent Set Problem is hard to approximate. Then we construct
a polynomial time reduction which embeds every G ∈ G into an (α, 1)-PLG Gα,1.
Since the upper bound is O(log n), we should choose G appropriately such that the
approximation lower bound for Independent Set restricted to graphs from G is at
most logarithmic.

In [5] it was shown that the Independent Set Problem on graphs of degree
bounded by ∆ is hard to approximate within ∆ε for some fixed ε > 0. This
result also holds for ∆ = Θ(log n). We will embed those graphs into (α, 1)-PLGs
Gα,1. The construction in [5] starts from a class of graphs G = Ga ∪ Gb, where
α(G) ≤ a · n for G ∈ Ga and α(G) ≥ b · n for all G ∈ Gb and 0 < a < b < 1 are
constant. Given a graph G ∈ G with n vertices, a degree d-bounded Ramanujan

graph H on n vertices is chosen, and the graph D̃G
k

is constructed as follows.

The vertices of D̃G
k

are walks (v1, . . . , vk) of length k in H. Two such vertices
v = (v1, . . . , vk) and u = (u1, . . . , uk) are connected by an edge iff the vertex subset
{v1, . . . , vk, u1, . . . , uk} is not an independent set in G. In [5], Theorem 2.1 it is

shown that α(D̃G
k
) is within the interval[

α(G)dk−1
(
α(G)
n

+ λn−1

(
1− α(G)

n

))k−1

, α(G)dk−1
(
α(G)
n

+ λ1

(
1− α(G)

n

))k−1
]

where A is the transition matrix of the random walk on the Ramanujan graph H,
λ0 ≥ . . . ≥ λn−1 are the eigenvalues of A (note that A is symmetric and has only
real eigenvalues) and we have λ0 = 1, λ := max{λ1, |λn−1|} ≤ 2

√
d− 1/d.

Now we want to choose k appropriately such that the maximum degree of D̃G
k

is logarithmic in the number of its nodes. The number of nodes of D̃G
k

is n · dk−1.
The maximum degree is dk−1 · 3k2. Thus we have to choose k such that for some
constant c > 0,

dk−1 · 3k2 ≤ c · log
(
n · dk−1

)
⇔ dk−1 · 3k2 ≤ log(n) + (k − 1) log(d) + log(c)

⇔ (k − 1) log(d) + log(3k2)≤ log log(n) + log
(

1 + (k−1) log(d)+log(c)
log(n)

)
10



We observe that for kl = log log(n)
3 ln(d)

we obtain

∆l = dk−1 · 3k2 ≈ (log n)1/3 · (log log n)2

(ln d)2
(11)

For ku = log log(n)
ln d

we obtain

∆u = dk−1 · 3k2 ≈ elog log(n) · 3 · (log log(n))2

(ln d)2
= log(n) · 3(log log n)2

(ln d)2
(12)

Thus we choose k ∈ [kl, ku] =
[

log logn
3 ln d

, log logn
ln d

]
appropriately such that ∆k = dk−1 ·

3k2 satisfies ∆k = log n. We let D denote the product graph D̃G
k
. Now we have

to choose parameters α and x such as to embed the graph D into the node degree
interval [x∆,∆], where ∆ = eα is the maximum degree of the (α, 1)-PLG Gα,1. Let
nd = n · dk−1 be the number of nodes of D. Thus we have to meet the following
conditions:

(I) nd ≤ |[x∆,∆]| ≈ eα ln
(

1
x

)
(II) log(nd) ≤ x∆

Thus we choose x = log(nd)
eα

. In order to satisfy the requirement (II), we choose
α = log(nd). Then (I) holds as well. We obtain

|[x∆,∆]| ≈ eα ln

(
1

x

)
= eα · α− eα · ln(α) = (1− o(1))αeα (13)

Now we have to give an estimate for the size of a maximum independent set in the
subgraphG1 induced by the residual set of nodes [x∆,∆]\V (G). This can be upper-
bounded by IS([x∆,∆]). Thus it remains to give an estimate for IS([x∆,∆]), the
size of a maximum independent set of a graph implementing the complete interval
[x∆,∆] of the power law distribution with parameters α and 1. If we would use
the inequality

IS([x∆,∆]) ≤

⌈∑∆
i=x∆

⌊
eα

i

⌋
x∆

⌉
, (14)

the resulting bound would be eα plus some lower order terms, which is not sufficient
for our purpose. We proceed as follows: We split the interval [x∆,∆] into L
subintervals of the form [x∆ · hj, x∆ · hj+1], j = 0, . . . L− 1 and use the estimate

IS([x∆,∆]) ≤
L−1∑
j=0


x∆·hj+1∑
i=x∆·hj

⌊
eα

i

⌋
x∆ · hj

 (15)
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where h and L are parameters of this estimate. This means that we have to choose
hL = 1

x
= eα

α
, i.e. h =

√
eα/α. The whole construction for the case β = 1 is shown

in Figure 2. Now the right hand side in (15) is

≤
L−1∑
j=0

x∆·hj+1∑
i=x∆·hj

eα

i · x∆ · hj
+ L =

L−1∑
j=0

x∆·hj+1∑
i=x∆·hj

1

x · hj · i
+ L

We approximate the inner sum by an integral. This yield that the right hand side
in (15) is bounded by

L−1∑
j=0

1

xhj
·

(∫ x∆hj+1

x∆hj

1

y
dy +

1

x∆hj+1
− 1

x∆hj

)
+ L

=
L−1∑
j=0

(1 + o(1)) · 1

xhj
·
(

ln(x∆hj+1)− ln(x∆hj) +
1

x∆hj+1
− 1

x∆hj

)
+ L

=
L−1∑
j=0

(1 + o(1)) · e
α(1− j

L
)

α1− j
L

·
(
j + 1

L
· α− j

L
· α
)

=
L−1∑
j=0

(1 + o(1))
eα(1− j

L
) · α j

L

L
= (1 + o(1))

eα

L

L−1∑
j=0

( α
eα

) j
L

= (1 + o(1))
eα

L
·

1−
(
α
eα

)L
L

1−
(
α
eα

) 1
L

= (1 + o(1))
eα

L
·

1− α
eα

1−
(
α
eα

) 1
L

Now we choose L = α. First we observe that

log
(

(
α

eα
)1/α

)
=

1

α
(log(α)− α) =

logα

α
− 1 −→ −1 (α→∞) (16)

and therefore
(
α
eα

) 1
α converges to some constant c′ ∈ (0, 1), as α tends to infinity.

Thus we obtain |IS([x∆,∆])| ≤ c · eα
α

for some constant c.
Now we give an upper bound for the size of an independent set within [1, x∆] =

[1, α]:

IS([1, x∆]) ≤
α∑
i=1

⌈⌊
eα

i

⌋
i

⌉
≤

α∑
i=1

eα

i2
+ α

≤ α + eα
(∫ α

1

1

y2
dy + 1− 1

α2

)
≤ α + eα

(
1− 1

α
+ 1− 1

α2

)
= (1− o(1)) · 2eα

12



Intervals [x∆hj, x∆hj+1]

∆

D′

G2

G1

x∆ = log(nd)

Figure 2: Construction for the case β = 1

Now we start from a graph G ∈ Ga ∪ Gb with n nodes. We construct the graph

D = D̃G
k

for k = log log n. Thus the maximum degree of D is ∆k = dk−1 · 3k2,
where d is the degree of the Ramanujan graph used in the construction of D. The
resulting lower bound for the approximability of Maximum Independent Set in

graphs of the form D = D̃G
k
, G ∈ Ga ∪ Gb is

bndk−1 ·
(
b+

2
√
d− 1

d

)k−1

/

(
andk−1 ·

(
a− 2

√
d− 1

d

)k−1
)

=
b

a
·
(
b− ε2
a+ ε2

)k−1

where we can choose ε2 arbitrary small by choosing d sufficiently large. Now D is
embedded into an (α, 1)-PLG Gα,1 (cf. Figure 2). The number of nodes of Gα,1 is
equal to αeα, and Gα,1 consists of the subgraphs D′, G1 and G2. We have shown
that the size of a maximum independent set in the subgraph G1 is of order 1

α
eα,

while the size of a maximum independent set in the subgraph G2 is of order eα.
Thus it remains to show that if G ∈ Gb, then this implies that IS(D′) ≥ αε · eα for
some constant ε. It suffices to show that

(b+ ε2)k−1 >
1

(log(ndk−1))1/ε
(17)

13



We let B′ = 1
b+ε2

. Now (17) is equivalent to

(log n)1/ε

(
1 +

(k − 1) log d

log(n)

)1/ε

> B′k−1, (18)

and (by taking logarithms) to 1
ε
· log log(n) · (1 + o(1)) > (k − 1) · log(B′). We

observe that for k = log log n there exists some ε > 0 such that this last inequality
holds. Thus we obtain the following result.

Theorem 5.1 For β = 1, there exists an ε ∈ (0, 1) such that the Maximum Inde-
pendent Set Problem on (α, β)-PLGs is NP-hard to approximate within (log n)ε.

Remark: In this section we have constructed an embedding of graphs G ∈ G =
Ga ∪ Gb into (α, 1)-PLGs, for 0 < a < b < 1 being constant. It combines the

construction from [5] with an embedding of the resulting MIS instances D = D̃G
k

into power law graphs for β = 1. This construction does not work for the case
of a, b being non-constant, e.g. if we try to start from the class of graphs G =
G1/n1−ε ∪ G1/nε from [22]. The reason is that in the construction from [5], a d-
regular Ramanujan graph H is used, where d > 16

(b−a)2
. For a = 1/n1−ε, b = 1/nε

this yields a non-constant lower bound for d, which implies that the graph D would
be super-polynomially larger than G.

6 Further Research

We have given new approximation lower bounds for the MIS problem in (α, β)-
PLGs for β ≤ 1. For β < 1 being constant, the lower bound is n1−ε for every
ε, while for β = 1 the lower bound is (log n)ε for some constant ε ∈ (0, 1). The
further improvements on these lower bounds are important open questions in this
area. Another question is the status of the functional cases around value β = 1,
i.e. when β is of the form βf = 1 ± 1

f(n)
for some function f(n) depending on the

size n of the graph. Another question is the approximability status of the MIS on
random PLGs in the preferential attachment model [7].
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