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Abstract

We prove the first logarithmic lower bounds for the approximability of the Minimum Dom-
inating Set problem for the case of connected (α, β)-power law graphs for α being a size
parameter and β the power law exponent. We give also a best up to now upper approximation
bound for this problem in the case of the parameters β > 2. We develop also a new functional
method for proving lower approximation bounds and display a sharp approximation phase tran-
sition area between approximability and inapproximability of the underlying problems. Our
results depend on a method which could be also of independent interest.

Keywords: Approximation Algorithms, Inapproximability, Power Law Graphs, Combinatorial
Optimization, Dominating Set

1 Introduction

The Minimum Dominating Set problem (Min-DS) asks for a minimum size set of vertices D for
a given graph G such that each vertex in G is either contained in D or adjacent to some vertex in D.
The Min-DS problem has asymptotically the same approximation upper and lower bounds as the
Set Cover problem. It can be approximated within (1 − o(1)) ln(n) by a greedy algorithm and,
unless NP ⊆ DTIME(nO(log logn)), there is no (1− ε) ln(n)-approximation algorithm for Min-DS for
any ε > 0 [8]. Furthermore, Raz and Safra established an approximation lower bound of c · ln(n)
for some constant c under the weaker assumption that P 6= NP [20].

In this paper we give new approximation upper and lower bounds for Min-DS on power law
graphs. G is called a power law graph if the number of nodes of degree i is proportional to i−β, for
some β > 0. The parameter β is called the power law exponent and determines the log-log growth
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rate of G. The Min-DS problem on power law graphs was originally introduced in the context of
the sensor placement problems in massive social networks (cf. [7]).

Power law graphs (PLG) have been used in modeling and analyzing the real-world networks like
the graphs of the Internet and the World Wide Web (WWW), peer-to-peer networks, mobile call
networks, protein-protein interaction networks, gene regulatory networks, food webs and various
social networks. Typically, the power law exponent of these real-world networks lies within the
range 2 < β < 3 (e.g. β = 2.38 for the WWW [5], β = 2.4 for protein-protein interaction networks
[13]). There also exist examples of real-world networks with a power law exponent β ≤ 2 or β ≥ 3,
e.g. for distributional food webs (β = 1.05, [18]), statistical investigations of book sales in the US
(β = 3.51, [12, 19]) and human contact networks (β = 3.4, [17]).

A number of different random graph models were proposed in order to capture the topological
properties of real-world networks and to analyze these graphs on the basis of a so called null-model
(see [3, 15, 16, 1, 2, 6, 4]). On this basis, two different types of models have been introduced. The
evolving models define a random process where one node at a time is added and connected to the
existing graph in a random fashion—and thus are aiming to describe how power laws arise. The
static models start from a given power law degree sequence as an input and then perform a random
selection from the space of graphs with this degree sequence. The most prominent examples of
the two types are the preferential attachment model described by Barabási [3], and the ACL model
introduced by Aiello, Chung, and Lu [1, 2].

In this paper, we consider the power law model (α, β)-PLG due to Aiello, Chung, and Lu (also
called the ACL model). A (multi-)graph G with maximum degree ∆ is called an (α, β)-PLG with
size parameter α and a power law exponent β, if for each i ≤ ∆ =

⌊
eα/β

⌋
, the number of nodes of

degree i is equal to
⌊
eα/iβ

⌋
.

2 Previous Results

Ferrante, Pandurangan, and Park [9] have shown the NP-hardness of Min-DS on simple discon-
nected (α, β)-PLG for β > 0. In [21] it was shown that Min-DS on (α, β)-PLG is in APX for
β > 2. Furthermore, for β > 1, APX-hardness was shown and explicit constant approximation
lower bounds were given, namely 1 + 1

390(2ζ(β)3β−1) on (α, β)-PLG multigraphs and 1 + 1
3120ζ(β)3β

on simple (α, β)-PLG.
Eubank et al. [7] studied a relaxed version of Min-DS: In the (1 − ε)-Min-DS problem the

requirement is to dominate at least an (1 − ε)-fraction of the vertices. They show that for every
ε > 0, the (1− ε)-Min-DS problem on bipartite random PLG admits a PTAS.
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3 Our Results

In this paper, we give the first logarithmic lower approximation bounds for Min-DS on (α, β)-PLG
for the case β ≤ 2. The best up to now approximation lower bound was a constant bound [21]. We
show that in this case, unless NP ⊆ DTIME(nO(log logn)), Min-DS on connected (α, β)-PLG cannot
be approximated within an approximation ratio Ω(ln(n)). Thus our lower approximation bound is
almost tight. We also give improved approximation upper bounds for the case β > 2 and show that
in this case, Min-DS on (α, β)-PLG can be approximated within some constant approximation
ratio Rβ which converges to 1 as β →∞.

Then we take a very precise look at the phase transition point at β = 2. We consider a case when
β = 2 + 1/f(n) is a function of the size n of the graph. Here, n denotes the number of vertices of the
PLG, and f is a monotone increasing unbounded function. This is an extension of the (α, β)-PLG
model in [1], for which β was always a fixed constant. Surprisingly, we obtain a very sharp phase
transition result, between approximability and inapproximability areas depending on the order of
magnitude of the function f . We show that when f(n) = o(logn), Min-DS on (α, 2 + 1/f(n))-PLG
is still in APX. On the other hand, we give a logarithmic approximation lower bound for the case
when f(n) = ω(logn).

Our approximation lower bounds are based on a direct approximate reduction from the Set
Cover problem to the Min-DS problem combined with an embedding of the resulting graph
instances into (α, β)-PLG. Our constructions rely on precise estimates of sizes of node intervals in
(α, β)-PLG and on the available node degree inside these intervals. Table 1 summarizes our main
results in lower and upper approximation bounds for Min-DS on (α, β)-PLG.

Power Law Exponent Approx. Lower Bound
0 < β < 1 Ω

(
ln(n)− ln

(
1

1−β
))

β = 1 Ω (ln(n))
1 < β < 2 Ω (ln(n)− ln(ζ(β)))
β = 2 Ω (ln(n)− ln(ζ(β)))

β = 2 + 1
f(n) , f(n) = ω(logn) Ω (ln(n)− ln(ζ(β)))

Power Law Exponent Approx. Upper Bound
β = 2 + 1

f(n) , f(n) = o(logn) APX
2 < β ≤ 2.729 ζ(β)−1

ζ(β)−
∑d−1

j=1 j
−β

β > 2.729 ζ(β−1)−2ζ(β)
ζ(β−1)−2

Table 1: Summary of the main results: Approximation lower bounds and approximation upper
bounds for Min-DS on (α, β)-PLG for certain ranges of the parameter β. The precise choice of the
parameter d is described in Theorem 4.

3



4 Organization of the Paper

In Section 5, we are giving an outline of the proof methods and the simulating constructions on
which our reductions are based. In Section 6, we use the original reduction of Feige [8] from 5Occ-
Max-E3-Sat (5 Occurrence Maximum E3-Sat) to the Set Cover problem and the reduction
from the Set Cover to Min-DS. As a result of this section, we obtain sufficient information
about the degree distribution of the resulting Min-DS instances GU,S . In Section 7 we give new
lower bounds on the approximability of Min-DS on (α, β)-PLG. The case 0 < β < 1 is treated
in Section 7.1, based on a precise rounding error analysis for the terms that determine the lower
approximation bound. A similar analysis is used for the case β = 1 in Section 7.2. The Section 7.3
deals with the case 1 < β ≤ 2. Especially, we describe how to rescale the degree distribution of
instances GU,S in order to embed them into an (α, β)-PLG. In Section 8 we present new upper
bounds for the case of β > 2 and provide a detailed comparison of the previous and new upper
bounds in terms of the parameter β. In Section 9 we consider the functional case when βf = 2+ 1

f(n)
is a function of the graph size n which converges from above to 2.

5 Outline of the Method

We are going to give an outline of our methods and the underlying constructions. In order to obtain
logarithmic approximation lower bounds for the Min-DS problem on (α, β)-power law graphs, we
construct reductions from Min-DS in graphs, the problem which is basically as hard to approximate
as the Set Cover problem. It is well known (cf. [14]) that Set Cover instances (U,S) with
universe U and set system S can be translated into instances GU,S of Min-DS in graphs, where
GU,S contains a vertex for every element of U and vertices for the sets S ∈ S. Element vertices
are connected to set vertices of those sets in which they are contained, and two set vertices are
connected by an edge if and only if the two sets have a non-empty intersection.

In our reduction we want to embed a Min-DS instance GU,S into an (α, β)-PLG instance Gα,β
such as to carry over the logarithmic inapproximability from Min-DS to the special case of Min-
DS in power law graphs. We will construct Gα,β in such a way that it contains GU,S as an induced
subgraph and such that Min-DS(Gα,β) = (1 + o(1))Min-DS(GU,S). Here, Min-DS(G) denotes the
size of a minimum dominating set in the graph G. In particular Gα,β will contain a set of vertices
X which dominates all the vertices in Gα,β \GU,S and is of size o(Min-DS(GU,S)).

In order to construct a power law graph Gα,β for a given Min-DS instance GU,S , we need
to know the degree distribution in the graph GU,S . In Section 6 we use the original construction
from [8], and obtain upper and lower bounds for the degrees of nodes in the graph GU,S , where
(U,S) is a Set Cover instance. We apply our construction only to those Set Cover instances
(U,S) = FSC(ϕ) where ϕ is a 5Occ-Max-E3-Sat instance and FSC is Feige’s reduction from
[8]. We show that the resulting Min-DS instances GU,S have the following property: There exist
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constants 0 < a < b < 1 such that for every (U,S) with (U,S) = FSC(ϕ), the node degrees of all
vertices in GU,S are contained in the interval

[
Na, N b

]
, where N is the number of vertices of the

graph GU,S .

Intervals and Volumes. In our construction of a power law graph Gα,β for a given graph GU,S ,
we choose X to be the set of all nodes in Gα,β whose degree is within an interval [x∆, y∆]. Here,
∆ = beα/βc is the maximum degree of Gα,β, and 0 < x < y ≤ 1 are parameters of our construction.
In the subsequent sections we will show how to choose x and y for the different subcases (0 < β <

1, β = 1 and 1 < β ≤ 2) of the power law distribution.
Let us now properly introduce the notions of node intervals and volumes (= sums of node

degrees) of such vertex subsets. Let Gα,β = (V,E) be an (α, β)-power law graph with n nodes.
Thus, we have n = ∑∆

i=1
⌊
eα

iβ

⌋
. Let m = |E| = 1

2
∑∆
i=1 i

⌊
eα

iβ

⌋
be the number of edges of Gα,β.

According to [1, 2], the parameters n,m,α and β are related roughly as follows:

n ≈


ζ(β)eα if β > 1

αeα if β = 1
e
α
β

1−β if 0 < β < 1

and m ≈


1
2ζ(β − 1)eα if β > 2
1
4αe

α if β = 2
1
2
e

2α
β

2−β if 0 < β < 2

An interval of nodes in Gα,β is a set [a, b] = {v ∈ V | a ≤ deg(v) ≤ b}, where 1 ≤ a ≤ b ≤ ∆ =⌊
eα/β

⌋
. Let |[a, b]| be the number of nodes inside the interval [a, b]. The volume of an interval [a, b]

is defined as vol([a, b]) = ∑b
j=a j

⌊
eα

jβ

⌋
, the sum of node degrees of nodes inside the interval.

Embedding Technique. We will now describe in detail how to embed a given graph GU,S into an
(α, β)-PLG Gα,β. Let GU,S = (VU,S , EU,S) and let N = |VU,S | be the number of vertices. As we will
show in Section 6, the graphs GU,S have the following property: There exist constants 0 < a < b < 1
such that for all v ∈ VU,S , Na ≤ degU,S(v) ≤ N b, where degU,S(v) is the degree of vertex v in the
graph GU,S . The power law graph Gα,β = (Vα,β, Eα,β) has the vertex set Vα,β = VU,S ∪X ∪W ∪ Γ,
with its components defined as follows:

• for i = 1, 2, Vi is the set of degree i nodes in Gα,β,

• Γ ⊆ V2 is the set of neighbors of VU,S in Gα,β \GU,S ,

• X is a set of size |X| = o(Min-DS(GU,S)) which dominates all the vertices in Gα,β \GU,S ,

• W is a set of nodes which are used in the implementation of the power law distribution.

The set Γ is to enforce any reasonable dominating set in Gα,β to contain a dominating set of the
graph GU,S . This means nodes in GU,S will be dominated by nodes from GU,S and not by nodes
from Gα,β \GU,S .
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The set X is a subset of the node interval [x∆, y∆] = { v ∈ Vα,β | x∆ ≤ degα,β(v) ≤ y∆ } for
some parameters 0 < x < y ≤ 1. W is the set of remaining nodes which serves to implement the
power law distribution. The power law graph Gα,β is constructed in such a way that each node in
VU,S has precisely one neighbor in Γ ⊆ V2, and every u ∈ Γ has precisely one neighbor in VU,S .
Furthermore, each node w ∈ W is adjacent to at least one node in X, whereas each v ∈ X has
at least one degree 1 neighbor in W . In order to guarantee that the graph Gα,β is connected, we
include all the edges of a spanning tree on X. From this construction it follows that the set X
dominates every vertex in W ∪ Γ (cf. Figure 1).

Γ ⊆ V2

GU,S

W

W

X

Figure 1: The main construction for the embedding of a Min-DS (Set Cover) instance GU,S into
a (α, β)-PLG. In the resulting graph the nodes ∈ X are dominating the sets W ∪ V1, separating
the dominating set in GU,S from the dominating set in Gα,β \GU,S .

The graph Gα,β will be constructed as follows. First the set of nodes Vα,β = VU,S ∪X ∪W ∪ Γ
is generated. To each node v ∈ Vα,β we assign a value degα,β(v), its node degree in the graph
Gα,β. Then we generate the edges of the graph. During the construction, we keep track of residual
degrees degr(v) of nodes v ∈ V , where in each step of the construction, degr(v) is equal to degα,β(v)
minus the current number of edges incident to v.

The algorithm ConstructPLG (Figure 2 on page 7) gets as an input the graph GU,S for a given
Set Cover instance (U,S) and constructs the associated power law graph Gα,β. The procedure
Fill_Wheel (Figure 3 on page 8) gets as an input a set of nodes V with residual degrees degr(v) >
0, v ∈ V and generates the missing edges degree-wise in a cyclic order. Let vj,1, . . . , vj,nj be
the nodes of degree degr(vj,l) = j in the set V , then the following invariant will be maintained.
In every stage of the construction, for every j ∈ {1, . . . ,∆}, degr(vj,1) ≤ · · · ≤ degr(vj,nj ) and
degr(vj,nj ) − degr(vj,1) ≤ 1. A previous version of the procedure Fill_Wheel has been used in
[11]. Figure 4 shows how the node intervals with the same residual degree are filled and how
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Algorithm 1: ConstructPLG
Input: GU,S = (VU,S , EU,S) with |VU,S | = N .
Output: Power law graph Gα,β = (Vα,β, Eα,β) with Vα,β = VU,S ∪X ∪W ∪ Γ, |Vα,β| = n and

EU,S ⊆ Eα,β.
choose parameters α, x, y such that vol([x∆, y∆]) ≥ n and |[Na, N b]| ≥ N ;
/* In the subsequent sections we will describe in detail how to choose the

parameters α, x, y for the various subcases of β */
let VU,S = {u1, . . . , uN};
set Vα,β := VU,S ∪X ∪W ∪ Γ, where X = [x∆, y∆] and Γ = {γ1, . . . , γn};
assign degrees degα,β(v), v ∈ Vα,β:

Nodes ui ∈ VU,S get node degree degα,β(ui) = degU,S(ui) + 1;
Nodes γi ∈ Γ get node degree degα,β(γi) = 2;
For each x∆ ≤ j ≤ y∆, X contains

⌊
eα

jβ

⌋
nodes xj,l of node degree degα,β(xj,l) = j;

W contains the remaining nodes from Vα,β, with node degrees assigned accordingly;
for each v ∈ Vα,β, set degr(v) := degα,β(v);
add matching M := {{γi, ui}|i ≤ N} to Eα,β, decrease residual degrees in Γ ∪ VU,S by 1;
add edges of a spanning tree for X to Eα,β, update residual degree of nodes in X;
for each xi,j ∈ X add an edge to some node w ∈ V1 of nonzero residual degree;
for each v ∈ Vα,β \ (X ∪ VU,S)

add an edge from v to some node xi,j ∈ X of nonzero residual degree;
update degr(v), degr(xi,j);

Fill_Wheel(W ∪X); /* realizes residual degrees on W and X */
return Gα,β = (Vα,β, Eα,β);

Figure 2: The algorithm ConstructPLG constructs the power law graph.

the case is treated when the number of nodes contained in such an interval is odd. The set
X ⊆ [x∆, y∆] and the parameters x∆ and y∆ of the construction are chosen such that the volume
vol([x∆, y∆]) = ∑∆

j=x∆
⌊
eα

jβ

⌋
· j minimally exceeds the number of nodes in Vα,β \ X. Thus, some

nodes v ∈ X might have residual degree > 0. In this case, Fill_Wheel(X) is used to reduce
the residual degree of these nodes to 0. Furthermore, each node w ∈ W is connected to the set
X by a single edge. Since the residual degrees of nodes w ∈ W are within the interval [3,∆],
Fill_Wheel(W ) is used to reduce the residual degree of nodes w ∈W to 0.

In the subsequent sections, we will show how to choose the parameters x and y of the construc-
tion depending on the power law exponent β in such a way that the set X becomes sufficiently
small. It follows directly from the construction that for each dominating set D in GU,S , the set
X ∪D is a dominating set in Gα,β. Moreover, for β ≤ 2 we will be able to choose x and y such that
|X| = o(OPT(GU,S)). Since OPT(GU,S) is a lower bound for the size of a dominating set in Gα,β,
this will yield a logarithmic approximation lower bound for MIN-DS on (α, β)-PLG.
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Algorithm 2: Fill_Wheel
Input: Set of nodes V with residual degrees degr(v) ≥ 0, v ∈ V .
Output: A multigraph W = (V,E) such that each node v ∈ V has degree degr(v) in W .
for j = 1, . . . ,∆ let vj,1, . . . , vj,nj be the nodes of degree degr(vj,l) = j in V ;
/* We may assume that both n1 and

∑
i≥2 i · ni are even */

generate a matching on v1,1, . . . , v1,n1 and update residual degrees accordingly;
for j = 2, . . . ,∆ do

while degr(vj,nj ) > 0 do
choose l min such that degr(vj,l) is max;
if l < nj then

generate edge {vj,l, vj,l+1};
degr(vj,l) := degr(vj,l)− 1;
degr(vj,l+1) := degr(vj,l+1)− 1;

else if l = nj , degr(vj,1) > 0 then
generate edge {vj,l, vj,1};
degr(vj,l) := degr(vj,l)− 1;
degr(vj,1) := degr(vj,1)− 1;

else if l = nj , degr(vj,1) = 0, j < ∆ then
generate edge {vj,l, vj+1,1};
degr(vj,l) := degr(vj,l)− 1;
degr(vj+1,1) := degr(vj+1,1)− 1;

Figure 3: The procedure Fill_Wheel reduces the residual degrees of a node set to 0.

6 Node Degrees and Lower Bound for Set Cover

In order to go on with our proof we need the following constructions. We start with Feige’s [8]
logarithmic lower bound for the approximability of the Set Cover problem. For each Set Cover
instance (U,S) we embed the associated Min-DS instance GU,S into an (α, β)-PLG Gα,β. In order
to implement the power law node-degree distribution, we need to know the degree distribution
of the graph GU,S . Therefore we briefly review the construction from [8]. This construction is
based on a k-prover proof system for the problem 5Occ-Max-E3-Sat. Consider a 3CNF formula
ϕ with n variables such that each variable occurs at most 5 times in ϕ. One can assume that
either the formula is satisfiable, or no assignment satisfies more than an ε fraction of the clauses
simultaneously. The k-prover proof system works as follows: It chooses k codewords of length
l = Θ(log logn), weight l/2 and pairwise Hamming distance ≥ l/3. The verifier picks l clauses
C1, . . . , Cl from ϕ independently uniformly at random. Independently, from each such clause Ci it
picks one variable xi of Ci uniformly at random. For each 1 ≤ i ≤ k, the verifier sends to the prover
i those l/2 clauses Cj for which the associated bit of prover i’s codeword is 1 and those l/2 variables
xj for which the associated bit of prover i’s codeword is 0. The provers return their answers, and
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degree i
degree i+ 1

degr
ee i

+ 2

Figure 4: Procedure Fill_Wheel realizes the residual degrees on the wheel nodes in W and X.

based on this the verifier determines its output. The construction of the associated Set Cover
instances makes use of some combinatorial building blocks called partition systems.

Following [8], we define a partition system B(m,L, k, d) to consist of a ground set B of car-
dinality |B| = m and L partitions p1, . . . , pL of B into k disjoint subsets pj,h ⊂ B. The defining
property of these partition systems is that each cover of B by subsets pj,h which uses sets from
pairwise different partitions must consist of at least d subsets. [8] gives a randomized construction
of such partition systems with L ≈ (logm)c, k being any number smaller than ln(m/3) · ln ln(m) and
d = (1− f(k)) · k · ln(m) with some function f(k) with f(k) −→ 0 as k −→∞. That construction
yields partitions for which with high probability all the sets have the same size. We show that the
same result is obtained by making use of random permutations. But now, for each partition pj ,
the sets pj,h always have the same size m/k (provided k|m). Namely, choose a random permutation
πj ∈R Sm and let pj,h = {πj((h−1)m/k+1), . . . , πj(k ·m/k)}. Suppose now we cover B with d subsets
pj1,h1 , . . . , pjd,hd from pairwise different partitions. Then for a given point v ∈ B, the probability
that v is covered by at least one of them is

P (point v ∈ B is covered by at least one of these d sets)

= 1−
d∏
i=1

P (v is not in position 1, . . . ,m/k in permutation πj) = 1−
(m−1

m/k

) · (mk )! · (m− m
k

)
!

m!

d

= 1−
(

(m− 1)! · (m− m
k

)
!(

m− 1− m
k

)
! ·m!

)d
= 1−

m ·
(
1− 1

k

)
m

d = 1−
(

1− 1
k

)d
.

This is precisely the property of the randomized construction which has been used in [8] in the
analysis of the construction. So from now on we assume that all sets of a partition pj have the
same size m/k.

Resulting Set Cover Instances ([8]). For a given 5Occ-Max-E3-Sat formula ϕ with n vari-
ables and the property that either ϕ is satisfiable or no assignment satisfies more than an ε fraction
of the clauses, a Set Cover instance (U,S) is constructed as follows:

• R is the set of random strings used by the verifier in the k-Prover Proof System. The number
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of random strings is |R| = R = (5n)l.

• |U | = mR with m = (5n) 2l
ε , hence |U | = (5n)l(1+2/ε)

• For each r ∈ R, Br(m,L, k, d) is a partition system with L = 2l.

• Q = nl/2 ·
(

5n
3

)l/2
is the number of different queries the verifier may ask to a prover.

• S contains for every triple (q, a, i) a set Sq,a,i, where q is a query, i is (the index of) a prover
and a is the prover’s answer. The set Sq,a,i is defined as Sq,a,i = ⋃

r : (q,i)∈r B(r, ar, i).

Hence the number of sets in S is Q · k, and each set is of cardinality
√
R · m/k. We have to give

an estimate for the number of sets in which a point (an element of U) occurs. For each prover i,
for each query q, each point in Br with |Br| = m occurs in 2l sets Sq,a,i. Hence the total degree of
points (the number of occurrences of this point in sets) is 2l ·Q.

From Set Cover to Dominating Set. Let (U,S) denote a Set Cover instance with U =
{u1, . . . , u|U |} and S =

{
S1, . . . , S|S|

}
. Let GU,S be the undirected graph with set of vertices

VU,S = U ∪ S and set of edges EU,S = { {Si, uj} | uj ∈ Si } ∪ { {Sj , Sl} | Sj ∩ Sl 6= ∅ }. We
observe that each set cover C ⊆ S is a dominating set in GU,S . On the other hand, let D ⊆ VU,S
be a dominating set in GU,S with D = DU ∪ DS , DU = D ∩ U and DS = D ∩ S. If we replace
each ui ∈ DU by an arbitrary set Sj with ui ∈ Sj , the resulting set D′ is a dominating set with
DS ⊆ D′ ⊆ S and |D′| ≤ |D|. In this way dominating sets in GU,S correspond to set covers C for
(U,S).

In the construction in [8], the parameter l satisfies l = Θ(log logn). If N0 = |U | + |S| is the
number of nodes of GU,S , then (up to logarithmic factors), N0 ≈ nl+nl(1+2/ε), the degree of element
nodes u ∈ U is ≈ nl, each set contains nl(1/2+2/ε) elements and there are ≈ nl sets. The degree of
set nodes in GU,S is bounded by the sum of the cardinality of that set and the number of sets in
the instance (U,S), which is ≈ nl(1/2+2/ε). Hence we obtain the following result we will use in the
sequel.

Lemma 1. Let FSC denote Feige’s reduction from 5Occ-Max-E3-Sat to the Set Cover problem,
and for a given Set Cover instance (U,S) = FSC(ϕ) let GU,S be the associated Min-DS instance
as described above. If N0 is the number of nodes of GU,S , then for every node v in GU,S , the node
degree of v in GU,S satisfies Na

0 ≤ degU,S(v) ≤ N b
0 , where 0 < a < b < 1 and b = (1+o(1)) · 1/2+2/ε

1+2/ε =
(1 + o(1)) · ε+4

2ε+4 .

In the next section we consider approximation lower bounds for the values of β satisfying
0 < β ≤ 2.
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7 New Lower Bounds for 0 < β ≤ 2

We will now describe our new logarithmic lower bounds for approximability of the Min-DS problem
in (α, β)-PLG. We distinguish several cases depending on the range of the parameter β. For the
cases 0 < β < 1, 1 < β < 2 and β = 2 our construction involves rescaling of the instances GU,S ,
which has the effect of shifting the degree interval

[
Na, N b

]
towards the left end of the full interval

[1,∆]. It turns out that for the case β = 1 we can omit the scaling and directly implement the
power law distribution.

Bounds on Optimums in GU,S . Let (U,S) be an instance of the Set Cover problem which
is an image (U,S) = FSC(ϕ) of some 5Occ-Max-E3-Sat instance ϕ under Feige’s reduction FSC .
Let |U | = mR be the number of points in (U,S). It is shown in [8] that if the formula ϕ is satisfiable,
then the set U can be covered by kQ subsets. If only a (1− ε) fraction of the clauses in ϕ can be
satisfied simultaneously, then at least (1− ε)kQ lnm subsets are needed in order to cover U .

Suppose now that the number of nodes of GU,S is N0 = |U | + |S|. The number of points in
the Set Cover instance is |U | = mR = (5n)l(1+2/ε). The number of sets is |S| = kQ, where
Q =

(
5
3
l/2 · nl

)
= |U |c with a constant c ∼ ε

2+ε . Furthermore, R = (5n)l = |U |cm with a constant
cm = ε

2+ε . Let OPT(GU,S) denote a minimum cardinality dominating set of GU,S . We may assume
that OPT(GU,S) consists of nodes corresponding to sets of S. Thus we obtain the following bounds:

• If the formula ϕ which we are starting from is satisfiable, then

|OPT(GU,S)| ≤ k ·N
ε

2+ε
0

• If only a (1− ε) fraction of the clauses in ϕ can be satisfied simultaneously, then

|OPT(GU,S)| ≥ (1− ε) · k ·N
ε

2+ε
0 · ε

2 + ε
·
(1

2

) ε
2+ε · (ln(N0)−O(1))

Here k is the number of provers in Feige’s k-prover proof system. Furthermore, as a result of
Lemma 1, the node degrees in GU,S are contained in the interval

[
Na

0 , N
b
0
]
with 0 < a < b < 1

being constant.

Scaling. We want to construct the power law graph Gα,β with vertex set Vα,β = VU,S∪X∪W∪Γ in
such a way that the two node intervals containing the sets VU,S and X are disjoint. This means that
VU,S ⊆

[
Na

0 , N
b
0
]
and X = [x∆, y∆] in Gα,β such that N b < x∆. Here N0 denotes the cardinality

of VU,S . Furthermore we want to guarantee that the size of X is o(OPT(GU,S)).
In the cases 0 < β < 1 and 1 < β ≤ 2 we are currently not able to achieve this directly. Therefore

we start by rescaling the node degree distribution of the graph GU,S appropriately before embedding
it into the power law graph Gα,β. More precisely, we replace GU,S by the graph GdU,S which consists

11



of Nd−1
0 disjoint copies of GU,S , where d is a parameter of the construction (cf. Figure 5). Let

N = Nd
0 be the size of GdU,S . The effect of scaling is two-fold: The node degree distribution is shifted

from the interval
[
Na

0 , N
b
0
]
to the interval

[
[Na/d, N b/d

]
. On the other hand, the size of an optimum

dominating set is shifted from the interval
[
N

ε
2+ε

0 , N
ε

2+ε
0 · log(N0)

]
to
[
N1−δ, N1−δ · log(N)

]
, where

we can choose δ arbitrary small by choosing d appropriately.

Na N b

GU,S

N a/d N b/d

0

GU,S

GU,S GU,S. . .

Nd−1
0 copies

⇒

Figure 5: Scaling by replacing the original graph GU,S by Nd−1
0 disjoint copies in order to shift

the occupied degree set towards the left end of the full interval.

Let OPT(GdU,S) denote an optimum dominating set of GdU,S . Using the bound for sizes of
optimum dominating sets in GU,S which we described above, we obtain the following bounds for
the scaled graph GdU,S :

• If the formula ϕ which we are starting from is satisfiable,

|OPT(GdU,S)| ≤ N d−1
d kN

1
d

ε
2+ε = kN

1
d(d−1+ ε

2+ε) (7.1)

• If only a (1− ε) fraction of the clauses in ϕ can be satisfied simultaneously, then

|OPT(GdU,S)| ≥ (1− ε)kN 1
d

ε
2+ε

ε

2 + ε

(1
2

) ε
2+ε (

ln
(
N

1
d

)
−O(1)

)
N

d−1
d

= kN
1
d(d−1+ ε

2+ε) ε(1− ε)
2 + ε

(1
2

) ε
2+ε (

ln
(
N

1
d

)
−O(1)

)
(7.2)

Choice of the Parameters of our Construction. Now we describe in detail how to choose
the parameters α, x, y and the scaling parameter d of our construction. Recall that we start from a
Set Cover instance (U,S) and the associated Dominating Set instance GU,S . As before, N0 denotes
the number of nodes of GU,S . The graph Gα,β has a set of vertices VU,S ∪ X ∪W ∪ Γ. We have

12



shown in Lemma 1 that the node degrees of vertices in GU,S are within the interval [Na
0 , N

b
0 ]. The

node degrees of the scaled instance Gdα,β are within
[
Na/d, N b/d

]
, where N = Nd

0 is the number of
vertices of GdU,S . We have to choose the parameters α, x, y and d of our construction in such a way
that the following constraints are met.

(1)
∣∣∣[Na/d, N b/d

]∣∣∣ ≥ N .

(2) |[x∆, y∆]| = o
(
N

d−1
d

)
, where N d−1

d is a lower bound for the size of an optimum dominating
set in GU,S .

(3)
y∆∑
j=x∆

⌊
eα

jβ

⌋
· j = vol(|x∆, y∆|) ≥ |Vα,β|.

Constraint (1) ensures that the degree distribution of GdU,S fits into the power law distribution of
Gα,β. Condition (2) enforces the set X to be sufficiently small compared to the size of a dominating
set in GdU,S . The last constraint (3) ensures that the total volume of the set X = [x∆, y∆] is large
enough such that X can dominate all vertices in Gα,β \GdU,S .

Note that constraint (1) is implied by the following stronger constraint: eα ·N−bβ/d ≥ N . In all
of the following cases, we work with this constraint instead of (1) and obtain the following bound for
the parameter α: eα ≥ N1+bβ/d. In order to minimize the value of the parameter α—and therefore
the overall graph size—we choose eα = N1+bβ/d.

7.1 The Case 0 < β < 1

Now we will give a detailed description of our lower bound construction for the case 0 < β < 1. We
start by providing estimates for the size and volumes of node intervals of the form [x∆, y∆]. Based
on that we will then describe how to choose the parameters 0 < x < y ≤ 1 such as to satisfy the
constraints (1)–(3) which we described in the previous section. Finally we will obtain the resulting
approximation lower bound for the case 0 < β < 1 in Theorem 1. The next lemma provides an
estimate for the size of the interval [x∆, y∆] and the volume vol([x∆, y∆]).

Lemma 2. Let 0 < β < 1 and X = [x∆, y∆]. We have the following bounds on the size and the
volume of the underlying interval:

|[x∆, y∆]| ∈
[ ∆

1− β
(
y1−β − x1−β

)
−
( 1
xβ
− 1
yβ

)
− (y − x+ 1), ∆

1− β
(
y1−β − x1−β

)]

vol([x∆, y∆]) ≥ ∆2

2− β
(
y2−β − x2−β

)
−∆

(
y1−β − x1−β

)
−
(
y∆(y∆− 1)

2 − x∆(x∆− 1)
2

)
Proof. We start by estimating the size of the interval [x∆, y∆]:

|[x∆, y∆]| =
y∆∑
j=x∆

⌊
eα

jβ

⌋
∈
 y∆∑
j=x∆

eα

jβ
− (y − x+ 1)∆,

y∆∑
j=x∆

eα

jβ

 ,
13



where

y∆∑
j=x∆

eα

jβ
∈

eα y∆∫
x∆

1
jβ

dj − eα
( 1

(x∆)β −
1

(y∆)β
)
, eα

y∆∫
x∆

1
jβ

dj


=

eα [ j1−β

1− β

]y∆

x∆
− eα

∆β

( 1
xβ
− 1
yβ

)
, eα

[
j1−β

1− β

]y∆

x∆


=
[
eα∆1−β

1− β
(
y1−β − x1−β

)
−
( 1
xβ
− 1
yβ

)
,
eα∆1−β

1− β
(
y1−β − x1−β

)]

=
[ ∆

1− β
(
y1−β − x1−β

)
−
( 1
xβ
− 1
yβ

)
,

∆
1− β

(
y1−β − x1−β

)]
.

In order to give a lower bound for the volume of the interval [x∆, y∆], we have to take into account
the rounding error resulting when we replace the sum ∑y∆

x∆

⌊
eα

jβ−1

⌋
by ∑y∆

x∆
eα

jβ−1 . The sum of node
degrees of nodes in [x∆, y∆] is

vol([x∆, y∆]) =
y∆∑
x∆

⌊
eα

jβ

⌋
· j ∈

[ y∆∑
x∆

eα

jβ−1 −
(
y∆(y∆− 1)

2 − x∆(x∆− 1)
2

)
︸ ︷︷ ︸

rounding error

,
y∆∑
x∆

eα

jβ−1

]
,

where

y∆∑
x∆

eα

jβ−1 ∈

eα y∆∫
x∆

j1−β dj − eα
(
(y∆)1−β − (x∆)1−β

)
, eα

y∆∫
x∆

j1−β dj


=

eα [ j2−β

2− β

]y∆

x∆
−∆

(
y1−β − x1−β

)
, eα

[
j2−β

2− β

]y∆

x∆


=
[

∆2

2− β
(
y2−β − x2−β

)
−∆

(
y1−β − x1−β

)
,

∆2

2− β
(
y2−β − x2−β

)]
.

This concludes the proof of the lemma.

Now we choose y = 1 and obtain

|[x∆,∆]| ∈
[ ∆

1− β
(
1− x1−β

)
−
( 1
xβ
− 1

)
− (2− x)∆, ∆

1− β
(
1− x1−β

)]
.
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The volume of that interval is then estimated as

vol([x∆,∆]) ≥ ∆2

2− β
(
1− x2−β

)
−∆

(
1− x1−β

)
−
(

∆(∆ + 1)
2 − x2∆2 − x∆

2

)

= ∆2

2− β
(
1− x2−β

)
− ∆2

2 + x2

2 ∆2 −∆
(

1− x1−β − 1
2 + x

2

)
= ∆2

(
1− x2−β

2− β − 1
2 + x2

2

)
−∆

(
1− x1−β − 1

2 + x

2

)
.

Now we use the scaling technique with scaling parameter d. Thus we have to choose α such
that eα ≥ N

d+bβ
d . Since N d−1

d is a lower bound for the optimum in GdU,S , we have N d−1
d =

e
d−1
d+bβ ·α = e(1−δ)α, where we can choose 1 − δ arbitrary close to 1 by choosing d sufficiently large.

The size of the interval [x∆,∆] is of order ∆(1 − x1−β), hence we want to choose x such that
∆(1 − x1−β) = eα/β · ep with α/β · p < (1 − δ)α, i.e. p < (1 − δ)β. So suppose we choose x
such that p = (1 − δ′)β, where 1 − δ′ can be chosen arbitrary close to 1. Furthermore, the
interval [x∆,∆] needs to provide sufficient volume to dominate the rest of the graph, i.e. (using
Lemma 2) we require that ∆2

(
1

2−β − 1
2 − x2−β

(
1

2−β − xβ

2

))
> ∆. This yields the requirement

1
2−β − 1

2 −x2−β
(

1
2−β − xβ

2

)
> 1

∆ , which is implied by 1− 1
∆
(

1
2−β−

1
2

) > x2. Combining this with the
upper bound requirement for the size of the interval, we obtain

(
1− 1− β

e
α
(

1
β
−(1−δ′)

)) 1
1−β

≤ x <
1− 1(

1
2−β − 1

2

)
· e

α
β

 1
2

. (7.3)

We observe that 1
1−β > 1 > 1

2 for β ∈ (0, 1), and furthermore α
β − (1 − δ′)α < α

β . Hence we can
choose x such that Equation 7.3 holds. Thus for this choice of x we have |[x∆,∆]| = o

(
N

d−1
d

)
and

vol([x∆,∆]) ≥ |Gα,β|, fulfilling the constraints (2) and (3) in the graph Gα,β.

Resulting Lower Bound. In the case 0 < β < 1, we have |Gα,β| = e
α/β

1−β and we choose α
such that eα = N1+ bβ

d . We have OPT(Gα,β) = (1 + o(1))OPT(GdU,S), and furthermore N =
(|Gα,β| · (1− β))

dβ
d+bβ . Now using the inequalities 7.1 and 7.2, we obtain the following bounds on

the size of an optimum dominating set for Gα,β: If |Gα,β| · (1− β) = φ, then

|OPT(Gα,β)| ≤ k
(
φ
β(d−1+ ε

2+ε )
d+bβ

)
or

|OPT(Gα,β)| ≥ k
(
φ
β(d−1+ ε

2+ε )
d+bβ

)
(1− ε)ε

2 + ε

(1
2

) ε
2+ε

(
ln
(
φ

β
d+bβ

)
−O(1)

)
.

Altogether we obtain the following result.
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Theorem 1. For 0 < β < 1, the Min-DS problem on (α, β)-PLGs is hard to approximate within

(1− ε)ε
2 + ε

·
(1

2

) ε
2+ε ·

(
β

d+ bβ
·
(

ln(|Gα,β|)− ln
( 1

1− β

))
−O(1)

)
.

7.2 The Case β = 1

In the case β = 1, we can omit the scaling and directly embed the graph GU,S into a PLG Gα,β.
Formally this means that we choose d = 1 in the scaling construction and we have the condition
|[x∆, y∆]| = o

(
N

ε
2+ε

0

)
in constraint (2). It suffices to describe the choice of parameters x and α

for a given GU,S and to verify that the constraints (1)–(3) of the graph Gα,β are satisfied. It turns
out that if we choose x such that ln(1/x) = o(eα·

b
1+b ) and N1+b

0 = eα, we obtain the following lower
bound.

Theorem 2. For β = 1, the Min-DS problem on (α, β)-PLGs is hard to approximate within

(1− ε)ε
2 + ε

·
(1

2

) ε
2+ε ·

((1− o(1)) ln(|Gα,β|)
1 + b

−O(1)
)

.

In order to prove the theorem, we have to describe the choice of parameters x and α for a given
GU,S such as to satisfy the constraints (1)–(3). First we will provide estimates for the size and
volume of node intervals X = [x∆, y∆] in the following lemma. We will restrict ourselves to the
case y = 1.

Lemma 3. Let β = 1 and X = [x∆,∆]. We have the following bounds on the size and the volume
of the interval:

|[x∆,∆]| ∈
[
eα ln

(1
x

)
−
(1
x
− 1

)
, eα ln

(1
x

)]
and

vol([x∆,∆]) ∈
[
∆2
(

1
2 − x+ x2

2

)
− 1− x

2 ∆, (1− x)∆2
]
.

Proof. For a given x ∈ [0, 1], the size of the interval [x∆,∆] = { v ∈ V (Gα,β) | x∆ ≤ degα,β(v) ≤ ∆ }
satisfies

|[x∆,∆]| ∈
[
eα∑
xeα

eα

j
− (1− x)eα,

eα∑
xeα

eα

j

]

⊆
[
eα (ln(eα)− ln(xeα))− eα( 1

x
− 1) · 1

eα
, eα · ln

(1
x

)]
=
[
eα ln

(1
x

)
−
(1
x
− 1

)
, eα ln

(1
x

)]
.
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The volume of that interval is

vol([x∆,∆]) ∈
 ∆∑
x∆

eα − j,
∆∑
x∆

eα


⊆
[
eα(1− x)∆−

(∆(∆ + 1)
2 − x∆(x∆ + 1)

2

)
, eα(1− x)∆

]
=
[
∆2
(

1
2 − x+ x2

2

)
− 1− x

2 ∆, (1− x)∆2
]
.

Proof of Theorem 2. From Lemma 3, we obtain that for every x < 1 being bounded away from 1,
the volume of the interval [x∆,∆] is ω(|Gα,1|). Recall that in order to achieve N0 ≤

∣∣∣[Na
0 , N

b
0
]∣∣∣, it

suffices to choose α sufficiently large such that N0 ≤ eα

Nbβ
0

= eα

Nb
0
. Hence suppose we have N1+b

0 = eα.

This implies eα

Nb
0

= eα·
1

1+b . Thus it suffices to choose x such that ln
(

1
x

)
= o

(
eα·

b
1+b
)
. The size of

the PLG is |Gα,β| = αeα, and from N1+b
0 = eα we obtain N0 = e

α
1+b =

( |Gα,β |
ln(|Gα,β |)

) 1
1+b . Hence, we

obtain the same lower bound as for the case 0 < β < 1 stated in Theorem 1. This concludes the
proof of Theorem 2.

7.3 The Case 1 < β ≤ 2

In this section we consider the case 1 < β ≤ 2. Again we start with giving sufficiently strong
estimates of interval sizes and volumes for node intervals of the form [x∆, y∆]. Then we will show
how to choose the parameters x and y such that the reduction from the Set Cover Problem works.
We start with the sub-case 1 < β < 2. The following lemma provides estimates for the sizes and
volumes of node intervals of the form [x∆, y∆] for the special case y = 1.

Lemma 4. Let 1 < β < 2 and X = [x∆,∆]. We have the following bounds on the size and the
volume of the interval:

|[x∆,∆]| ≤ ∆1− x
xβ

and

vol([x∆,∆]) ≥ (1− o(1))∆2 · β − 2x2−β + (2− β)x2

2 · (2− β) .
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Proof. For 1 < β < 2, we have the following estimate for the size of a node interval [x∆, y∆]:

|[x∆, y∆]| =
x∆∑
j=y∆

⌊
eα

jβ

⌋
∈
[
eα

∆β
(y − x)∆ 1

yβ
− (y − x)∆, e

α

∆β
(y − x)∆ 1

xβ

]

=
[
∆(y − x)

( 1
yβ
− 1

)
, ∆y − x

xβ

]
.

The volume vol(|x∆, y∆|) = ∑y∆
j=x∆

⌊
eα

jβ

⌋
· j can be estimated as follows:

vol(|x∆, y∆|) ≥ eα
y∆∑
j=x∆

j1−β − rβ

= (1− o(1))eα ·
y∆∫
x∆

j1−β dj − rβ

= (1− o(1))eα ·
[
j2−β

2− β

]y∆

x∆
− rβ

= (1− o(1))eα · eα
2−β
β · y

2−β − x2−β

2− β − rβ

= (1− o(1))∆2 · y
2−β − x2−β

2− β − rβ,

where rβ = ∆2(y2−x2)
2 + ∆(y+x)

2 is an upper bound for the rounding error. We conclude that
vol([x∆, y∆]) = ω(|Gα,β|), provided we choose x and y in such a way that y2−β−x2−β

2−β − rβ > 0. Let
us choose y = 1. Then, we have

y2−β − x2−β

2− β − rβ = 1− x2−β

2− β − 1− x2

2 − o(1) = β − 2x2−β + (2− β)x2

2 · (2− β) − o(1).

Now we want to make use of the estimates provided in the previous lemma. We have to choose
the parameter x of our construction in such a way that the constraints (1)–(3) are satisfied. In order
to satisfy (3), it suffices to choose x ∈ (0, 1) such that β − 2x2−β + (2− β)x2 > 0. This inequality
holds for x < (β/2)

1
2−β , since β

2 < 1. For our choice of α, we have that N d−1
d = e

α· d−1
d+bβ , and hence

constraint (2) holds if the following constraint is satisfied: ∆ · y−x
xβ

= y−x
xβ
· e

α
β = o(eα·

d−1
d+bβ ). Hence,

for our choice of y = 1 and x < (β/2)
1

2−β , this last constraint is satisfied if αβ < α · d−1
d+bβ , i. e. when

d > (b+1)β
β−1 .

We proceed similarly in the case β = 2 and obtain the following version of Lemma 4.

Lemma 5. Let β = 2 and X = [x∆, y∆]. We have the following bounds on the size and the volume
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of the interval:

|[x∆, y∆]| ∈
[√

eα · y − x
yβ

,
√
eα · y − x

xβ

]
and vol([x∆, y∆]) = (1− o(1))eα

(
ln
(1
x

)
− ln

(1
y

))
.

Proof. We give an estimate of the size of the interval [x∆, y∆] and of the volume of that interval.
We have that

|[x∆, y∆]| ∈
[
∆y − x

yβ
,∆y − x

xβ

]
=
[√

eα · y − x
yβ

,
√
eα · y − x

xβ

]
.

The value vol([x∆, y∆]) of the interval is (1 − o(1))∑y∆
j=x∆

eα

jβ
j = (1 − o(1))eα (ln(y∆)− ln(x∆))

= (1− o(1))eα
(
ln
(

1
x

)
− ln

(
1
y

))
.

Now we use these estimates in order to choose parameters x and y for the case β = 2. First we
choose y = 1. Thus we obtain

vol([x∆, y∆]) = (1− o(1))
y∆∑
j=x∆

eα

jβ
· j = (1− o(1))eα

(
ln
(1
x

)
− 0

)
.

Hence, we choose x such that ln
(

1
x

)
≥ ζ(β), i.e. x ≤ 1

eζ(β) . Then the volume of the interval
[x∆,∆] suffices to dominate the rest of the graph and constraint (3) is satisfied. The size of the
interval [x∆,∆] satisfies |[x∆,∆]| ∈

[
∆1−x

1 ,∆1−x
xβ

]
. The two intervals [x∆,∆] and [Na/d, N b/d] need

to be node disjoint. Hence, we want to choose d such that N b/d < x∆. For x = 1
eζ(β) , we have

x∆ = eα/β−ζ(β). Furthermore, the size N of the graph GdU,S satisfies N = |GdU,S | ≤ e
α d
d+bβ . This

yields the following bound for the scaling parameter d: N b/d < x∆ ⇐⇒ e
αb· 1

d+bβ < eα/β−ζ(β) ⇐⇒
d > α·b

α/β−ζ(β) − bβ.

Resulting Lower Bound. Since |Gα,β| = ζ(β) · eα and the parameter α is chosen such that

eα = N1+ bβ
d , we have |Gα,β| = ζ(β) ·N1+ bβ

d . This yields N =
( |Gα,β |
ζ(β)

) d
d+bβ . Now using inequalities

7.1 and 7.2 we obtain the following bounds on the size of an optimum dominating set for Gα,β: If
|Gα,β|
ζ(β) = φ, then

|OPT(Gα,β)| ≤
(
φ

d
d+bβ

) d−1
d

k

(
φ

d
d+bβ

) 1
d

ε
2+ε

= k

(
φ
d−1+ ε

2+ε
d+bβ

)
or

|OPT(Gα,β)| ≥ k
(
φ
d−1+ ε

2+ε
d+bβ

)
(1− ε)ε

2 + ε

(1
2

) ε
2+ε

(
ln
(
φ

d
d+bβ

1
d

)
−O(1)

)
.

Altogether, we obtain the following theorem.
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Theorem 3. For 1 < β ≤ 2, the Min-DS problem on (α, β)-power law graphs is hard to approxi-
mate within

(1− ε) · ε
2 + ε

·
(1

2

) ε
2+ε ·

( ln (|Gα,β|)− ln(ζ(β))
d+ bβ

−O(1)
)
.

8 New Upper Bounds for β > 2

Now we are going to prove new upper bounds for Min-DS for β > 2. It was already observed
by Shen et al. [21] that, in the case of β > 2, the Min-DS problem on (α, β)-PLG is in the class
APX. They showed that there exists an efficient approximation algorithm with approximation ratio
(ζ(β)− 1/2)/(ζ(β)−∑t0

j=1 1/jβ) for some t0 = O(1). In this section we give a new and explicit upper
bound, based on our techniques of estimating sizes and volumes of intervals in (α, β)-PLG. Let us
first give an outline of our underlying ideas. The approximation ratio (ζ(β)−1/2)/(ζ(β)−∑t0

j=1 1/jβ)
from [21] comes from the observation that in the construction of a dominating set, we can omit at
least half of the degree 1 nodes. The worst case occurs when the degree 1 nodes are connected by
a matching in Gα,β. In the denominator, t0 is chosen as small as possible such that the volume of
nodes of degree at least t0 + 1 in Gα,β suffices to dominate all the nodes of degree at most t0.

We will now give an improved approximation ratio, based on a more careful analysis (cf. [10]).
We will also construct upper and lower bounds for the size of a dominating set in Gα,β, but we will
relate these bounds to each other. The lower bound on the size of a dominating set in Gα,β given
in part (ii) of the following lemma was also used in [21].

Lemma 6.

(i) If vol([x∆,∆]) = ∑∆
j=x∆

⌊
eα

jβ

⌋
· j < beαc, then |[x∆,∆]| is a lower bound on the size of a

dominating set in Gα,β.

(ii) If vol([x∆,∆]) = ∑∆
j=x∆

⌊
eα

jβ

⌋
· j < ∑x∆−1

j=1

⌊
eα

jβ

⌋
, then |[x∆,∆]| is a lower bound on the size

of a dominating set in Gα,β.

Proof. Considering (i), let D be a dominating set in Gα,β, and let D1 = D∩ [x∆,∆] and D2 = D \
D1. Suppose |D2| < |[x∆,∆]\D1|. Since ∀v ∈ D2, u ∈ [x∆,∆]\D1 we have degα,β(v) < degα,β(u),
this implies vol(D2) < vol([x∆,∆] \D1) and thus vol(D) < vol([x∆,∆]) < beαc, a contradiction.

Suppose in case (ii) that vol([x∆,∆]) < |[1, x∆− 1]| and that D,D1, D2 are the same as in the
proof of (i). Again we obtain vol(D2) < vol([x∆,∆] \D1), which implies vol(D) < vol([x∆,∆]) <
|[1, x∆−1]. Thus the volume ofD is not sufficient to dominate the subset [1, x∆−1], a contradiction.

We will now analyze upper bounds for the approximability of Min-DS based on the lower
bounds from Lemma 6. Instead of just giving upper and lower bounds on the size of an optimum
dominating set and a greedy solution separately, we will explicitly relate upper and lower bound
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to each other. Let Gα,β be an (α, β)-PLG with β > 2. Let W be the set of neighbors of degree 1
nodes of degree at least 2 in Gα,β and let M be the set of degree 1 nodes in Gα,β which are adjacent
to another degree 1 node. Let R = V \ (W ∪ {v ∈ V | degα,β(v) = 1}). Then there exists some
c = cβ > 0 not depending on α such that |W | ≥ c · eα. This implies |R| ≤ (ζ(β)− c− 1)eα.

Lemma 7. If Gα,β is a connected (α, β)-PLG with β > 2 and W and R are defined as above, then
there exists an optimum dominating set OPT in Gα,β with OPT = OPTR ∪W ∪M ′, where OPTR
is an optimum dominating set for the induced subgraph Gα,β[R] on R and M ′ ⊂M is of cardinality
|M ′| = |M |

2 .

The maximum degree in the subgraph Gα,β[R] induced by R is at most ∆. We consider the
dominating set D = W ∪DGr ∪M ′ where DGr is a dominating set for Gα,β[R] constructed by the
greedy algorithm and M ′ ⊂M is a subset of size |M |2 dominating M . Since R = V \ (W ∪ V1) and
|OPTR| ≤ |R|, the approximation ratio is at most

max

r · |OPTR|+ |W |+ |M |
2

|OPTR|+ |W |+ |M |
2

∣∣∣∣∣∣∣
|OPTR| ≤ |R|,
r = min

{
α
β ,

|R|
|OPTR|

}
 .

Case 1:
(
r = α

β

)
This means that α

β ≤
|R|

|OPTR| , i.e. |OPTR| ≤ β
α · |R|. The upper bound for the

approximation ratio is monotone increasing in |OPTR|, hence it is bounded by

α
β ·

β
α · |R|+ |W |+

|M |
2

β
α · |R|+ |W |+

|M |
2

=
|R|+ |W |+ |M |

2
β
α · |R|+ |W |+

|M |
2

.

Case 2:
(
r = |R|

|OPTR| <
α
β

)
Here, we have |OPTR| > β·|R|

α and obtain

r · |OPTR|+ |W |+ |M |
2

|OPTR|+ |W |+ |M |
2

=
|R|+ |W |+ |M |

2
|OPTR|+ |W |+ |M |

2
≤ |R|+ |W |+ |M |

2
β
α · |R|+ |W |+

|M |
2

.

Thus we have shown that the approximation ratio is bounded by |R|+|W |+ |M|2
β
α
·|R|+|W |+ |M|2

. Now we need to
construct an upper bound for this term. We consider two cases.

Case I: (ζ(β − 1)− 1 < 1) In this case, the volume of nodes of degree at least 2 does not suffice
to dominate all the degree 1 nodes. Hence in this case, M 6= ∅. We obtain the following lower
bound for the cardinality of M : |M | ≥ eα − (ζ(β − 1)− 1)eα = (2− ζ(β − 1))eα. Nevertheless we
will use the upper bound |R| ≤ (ζ(β)− 1)eα. Since the term |R|+|W |+ |M|2

β
α
·|R|+|W |+ |M|2

is monotone increasing
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in |R|, we obtain

ρ(β) =
|R|+ |W |+ |M |

2
β
α · |R|+ |W |+

|M |
2
≤ (ζ(β)− 1)eα + (2−ζ(β−1))eα

2
β
α(ζ(β)− 1)eα + (2−ζ(β−1))eα

2
=
ζ(β)− ζ(β−1)

2
1− ζ(β−1)

2
= ζ(β − 1)− 2ζ(β)

ζ(β − 1)− 2 .

Case II: (ζ(β − 1)− 1 ≥ 1) In this case, the volume of the nodes of degree at least 2 suffices to
dominate the degree 1 nodes. Now, we construct a lower bound for |W | as follows:

|W | ≥ min{ |[d,∆]| | vol([d,∆]) > eα }

= min


ζ(β)−

d−1∑
j=1

1
jβ

 eα
∣∣∣∣∣∣
ζ(β − 1)−

d−1∑
j=1

1
jβ−1

 eα > eα

 .

Hence, in this case, the approximation ratio is bounded by

ρ′(β) = ζ(β)− 1
β
α · |[1, d− 1]|+ |[d,∆]|

= ζ(β)− 1
ζ(β)−∑d−1

j=1
1
jβ

,

where d = min{ d′ | vol([d′,∆]) > eα }.
Altogether, we obtain the following theorem.

Theorem 4. For 2 < β ≤ 2.729, the Min-DS problem on (α, β)-power law graph is approximable
within approximation ratio ρ′(β) and for β > 2.729 within approximation ratio ρ(β), where d =
min{ d′ | vol([d′,∆]) > eα } and

ρ′(β) = ζ(β)− 1
ζ(β)−∑d−1

j=1
1
jβ

and ρ(β) =
ζ(β)− ζ(β−1)

2
1− ζ(β−1)

2
.

In Figure 6 we present a plot of the above approximation ratios ρ(β) and ρ′(β) in the valid
ranges for certain choices of the parameter d.
In what follows, we are going to analyze the functional dependencies of a parameter β.

9 The Functional Case βf = 2 + f(n)−1

So far we know that for every constant β ≤ 2, there is a logarithmic lower bound for the ap-
proximability of MIN-DS on (α, β)-PLGs, while for every β > 2 the problem is constant factor
approximable. In this section we will take a closer look at this phase transition at the point β = 2.
We consider the case when the parameter β is a function β = 2 + 1/f(n) of the size n of the power
law graph, converging to 2 from above. This can be seen as a combinatorial variant of preferential
attachment PLG (cf. also [11]). Surprisingly we will obtain a very tight phase transition of the
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Figure 6: Plot of the approximation ratios ρ(β) and ρ′(β) (solid line) in the valid ranges for certain
choices of the parameter d = min{ d′ | vol([d′,∆]) > eα }, in comparison to the results of Shen et al.
[21] (dashed line)

computational complexity of the problem, depending on the convergence rate of the function. Let
us first give a precise description of the model.

Let f : N→ N be a monotone increasing unbounded function. For βf = 2 + f(n)−1, an (α, βf )-
PLG is an undirected multigraph Gα,βf with n nodes and maximum degree ∆f =

⌊
e
α/βf

⌋
such that

for j = 1, . . . ,∆f =
⌊
e
α/βf

⌋
, the number of nodes of degree j in Gα,βf equals

⌊
eα

j
βf

⌋
. Especially this

means that ∑∆f

j=1

⌊
eα

j2+1/f(n)

⌋
= n.

We consider two cases for βf = 2 + f(n)−1, namely, f(n) = ω(log(n) and f(n) = o(log(n)). Let
us first consider the case f(n) = ω(log(n)). In this case, βf is a function of the size n of the graph
which converges to 2 sufficiently fast. We obtain the following theorem.

Theorem 5. For βf = 2 + f(n)−1 with f(n) = ω(log(n)), the Min-DS problem on (α, βf )-PLG is
hard to approximate within

(1− ε) · ε
2 + ε

·
(1

2

) ε
2+ε · ln (|Gα,β|)− ln(ζ(β))

d+ bβ
.

Before giving the proof of the theorem, we will first show that the terms j−βf converge to j−2

as n→∞. More precisely, we show that j−βf ∈
[

1
n1/f(n) · 1

j2 ,
1
j2

]
. First, we give an additive bound
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for the terms j−βf as follows: 1
j
βf

= 1

j
2+ 1

f(n)
∈
[

1
j2 − τ(n), 1

j2

]
, where

τ(n) = max
{

1
j2 −

1
j

2− 1
f(n)

∣∣∣∣∣ j = 1, . . . ,∆f

}
= max

 j
1

f(n) − 1
j

2+ 1
f(n)

∣∣∣∣∣∣ j = 1, . . . ,∆f

 .
We consider the function x 7→ h(x) := x

1/f(n)−1
x2+1/f(n) = x−2 − x

−2− 1
f(n) . Its derivative is d

dxh(x) =
d
dx

x
1/f(n)−1
x2+1/f(n) = −2x−3 +

(
2 + 1

f(n)

)
x
−3− 1

f(n) . The condition h(x) < 0 is equivalent to 1 + 1
2f(n) <

x
1

f(n) . We observe that the derivative attains its maximum at x = 2. We have h′(2) < 0 ⇐⇒(
1 + 1

2f(n)

)f(n)
< 2. We observe that limn→∞

(
1 + 1

2f(n)

)f(n)
= e1/2 < 2. Thus, we obtain

τ(n) = 21/f(n)−1
22+1/f(n) . Now, we give a multiplicative bound as follows: 1

j
βf

= 1
j2 · j2−βf = 1

j2 · 1
j1/f(n) ∈[

1
n1/f(n) · 1

j2 ,
1
j2

]
.

Let us now give sufficiently precise estimates of sizes and volumes of the node intervals in the
functional case.

Lemma 8. Let βf = 2 + 1
f(n) and X = [x∆f , y∆f ]. We have the following bounds on the size and

the volume of the interval:

|[x∆f , y∆f ]| ∈[
e
α
f(n)+1

2f(n)+1 ·
(1
x
− 1
y

)
− (y − x)∆f , e

α
f(n)+1

2f(n)+1 ·
(1
x
− 1
y

)
+ e

α 1
2f(n)+1 ·

( 1
x2 −

1
y2

)]
and

vol([x∆f , y∆f ]) ∈[
eα(ln(y)− ln(x))

n
1

f(n)
−

(y2 − x2)∆2
f + (x+ y)∆f

2 , eα(ln(y)− ln(x)) + eα
(

1
x∆f

− 1
y∆f

)]
.

Proof. For β = 2, our technique based on integration yields the following estimate of sizes of
intervals:

y∆∑
j=x∆

1
j2 ∈

 y∆∫
x∆

j−2 dj,
y∆∫
x∆

j−2 dj + 1
(x∆)2 −

1
(y∆)2


=
[ 1
x∆ −

1
y∆ ,

1
x∆ −

1
y∆ + 1

(x∆)2 −
1

(y∆)2

]
|[x∆, y∆]| ∈

[
e
α/2 ·

(1
x
− 1
y

)
, e

α/2 ·
(1
x
− 1
y

)
+ 1

x2 −
1
y2

]
.

We combine this with the multiplicative bound and obtain the following estimate of the size of
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intervals in the case βf = 2 + 1
f(n) .

|[x∆f , y∆f ]| =
y∆f∑
j=x∆f

⌊
eα

jβf

⌋

∈

eα·
1+ 1

f(n)
2+ 1

f(n) ·
(1
x
− 1
y

)
− (y − x)∆f , e

α·
1+ 1

f(n)
2+ 1

f(n) ·
(1
x
− 1
y

)
+ e

α·
(

1− 1
1+ 1

2f(n)

)
·
( 1
x2 −

1
y2

)
=
[
e
α· f(n)+1

2f(n)+1 ·
(1
x
− 1
y

)
− (y − x)∆f , e

α· f(n)+1
2f(n)+1 ·

(1
x
− 1
y

)
+ e

α· 1
2f(n)+1 ·

( 1
x2 −

1
y2

)]
.

Especially we obtain the following estimate of the size of Gα,βf :

|[1,∆f ]| ∈
[
eα − eα

f(n)+1
2f(n)+1 − eα

f(n)
2f(n)+1 + 1, eα − eα

f(n)+1
2f(n)+1 + e

α 1
2f(n)+1 · e2α f(n)

2f(n)+1 − eα
1

2f(n)+1

]
= [(1− o(1))eα, (2− o(1))eα] .

This estimate can be refined as follows:

∆f∑
j=1

⌊
eα

jβf

⌋
∈
∆f∑
j=1

eα

jβf
− ∆f ,

∆f∑
j=1

eα

jβf


⊆
 1
n1/f(n)

·
∆f∑
j=1

eα

j2 − ∆f ,

∆f∑
j=1

eα

j2

 ⊆ [(1− o(1))ζ(2)eα, ζ(2)eα] ,

where the last inclusion holds for f(n) = ω(log(α)). The volume can be estimated as follows:

vol([x∆f , y∆f ]) =
y∆f∑
x∆f

⌊
eα

jβf

⌋
· j

∈
y∆f∑
x∆f

eα

jβf−1 − (x∆f + (x∆f + 1) + . . .+ y∆f ) ,
y∆f∑
x∆f

eα

jβf−1


=

y∆f∑
x∆f

eα

jβf−1 −
(y2 − x2)∆2

f + (x+ y)∆f

2 ,

y∆f∑
x∆f

eα

jβf−1

 .
Since jβf−1 = j

1+ 1
f(n) , j = x∆f , y∆f , we use Lemma 23 from our previous paper (cf. [11, p. 23])

and obtain that the volume vol([x∆f , y∆f ]) is within the interval[
eα · (ln(y)− ln(x))

n
1

f(n)
−

(y2 − x2)∆2
f + (x+ y)∆f

2 , eα · (ln(y)− ln(x)) + eα ·
(

1
x∆f

− 1
y∆f

)]
.
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We are now prepared to give the proof of Theorem 5.

Proof of Theorem 5. We compute the parameters α, d, x, y of our embedding GU,S 7→ Gα,βf for the
functional case βf = 2 + 1

f(n) , f(n) = ω(log(n)). In order to satisfy constraint (1), we have to give

an estimate for
∣∣∣[Na/d, N b/d

]∣∣∣. Note that eα·
1

2f(n)−1 ·∆2
f = e

α· f(n)+1
2f(n)+1 ·∆f = eα. Thus, our estimate

of interval sizes yields

∣∣∣[Na/d, N
b/d
]∣∣∣ ∈ [eα ( 1

N
a
d

− 1
N

b
d

)
−
(
N

b
d −N a

d

)
, eα

( 1
N

a
d

− 1
N

b
d

)
+ eα

( 1
N

2a
d

− 1
N

2b
d

)]
.

In order to satisfy constraint (1), for a given d, we have to choose α such that

∣∣∣[Na/d
]∣∣∣ ≥ eα ( 1

N
a
d

− 1
N

b
d

)
−
(
N

b
d −N a

d

)
⇐⇒ eα

(
N

b−a
d − 1

)
−
(
1−N a−b

d

)
≥ N1+ b

d .

Hence, we choose
eα ≈ N1+a

d ⇐⇒ α ≈
(

1 + a

d

)
· ln(N) .

If we now choose d > (b+1)βf
βf−1 , then the constraint (2) holds, and for y = 1 and x > 0 such that

x∆f > N b/d, constraint (3) holds as well. Thus, we obtain asymptotically the same approximation
hardness result as for the case β = 2 in Theorem 3.

Now we consider the case when f(n) = o(log(n)). This means that βf = 2+1/f(n) is a function
of n which slowly converges to 2 from above.

Here the hardness of Min-DS shows a surprising phase transition. We obtain the following
theorem.

Theorem 6. For βf = 2 + f(n)−1 with f(n) = o(log(n)), the Min-DS problem on (α, βf )-PLG is
in APX.

Proof. We consider the case when f(n) is a “slowly growing” function, namely f(n) = o(log(n)).
In that case, n1/f(n) −→∞ as n −→∞. For x∆f ≤ j ≤ y∆f , we obtain

1
j

1+ 1
f(n)

= 1
j
· 1
j

1
f(n)
≤ 1
j
· 1

(x∆f )
1

f(n)
= 1
j
· 1
x

1
f(n)
· 1
e
α· 1

2f(n)+1
,

and therefore
vol([x∆f ,∆f ]) ≤ eα · ln

(1
x

)
· 1
x

1
f(n)
· 1
e
α· 1

2f(n)+1
,

which yields the requirement ln(1/x)
x1/f(n) ≥ c · eα·

1
2f(n)+1 . This is equivalent to

ln ln
(1
x

)
+ 1
f(n) · ln

(1
x

)
≥ ln(c) + α

2f(n) + 1 ,
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which means the following: In order to dominate the remaining vertices of the graph with vertices
from [x∆f ,∆f ], we have to choose (roughly) ln (1/x) ≥ α/2, i. e. 1/x ≥ eα/2. This gives the following
lower bound for the size of that interval:

|[x∆f ,∆f ]| ≥ e
α· f(n)+1

2f(n)+1 ·
(
e
α
2 − 1

)
−
(

1− 1
e
α
2

)
· e

α

2+ 1
f(n) ≥ (1− o(1))e

α
2 ·
(

1+ f(n)+1
f(n)+1/2

)
.

This lower bound for the size of [x∆f ,∆f ] converges to eα as n→∞, which means there exists some
c > 0 such that |[x∆f ,∆f ]| ≥ c · |Gα,βf | in order to be a dominating set. Hence, each dominating
set in Gα,βf is of cardinality at least c · |Gα,βf | and we obtain the result.

10 Further Research

The further improvements on both lower and upper approximation bounds are important open
questions in the area, especially the upper approximation bounds for β ≤ 2. Another interesting
problem concerns the approximability of PLG optimization problems on random or quasirandom
instances.
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