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Abstract

We prove explicit approximation hardness results for the Graphic TSP on cubic and subcubic
graphs as well as the new inapproximability bounds for the corresponding instances of the
(1,2)-TSP. The result on the Graphic TSP for cubic graphs is the first known inapproximability
result on that problem. The proof technique in this paper uses new modular constructions of
simulating gadgets for the restricted cubic and subcubic instances. The modular constructions
used in the paper could be also of independent interest.

1 Introduction

We study the Traveling Salesman Problem in the shortest path metric completion (Graphic TSP) of
cubic as well as subcubic graphs. These two cases played a crucial role in some recent developments
on Graphic TSP (cf. [GLS05], [BSSS11a], [BSSS11b], [MS11], [M12]). We shed some light on their
inapproximability status and prove explicit approximation hardness bounds of 1153/1152 for the
cubic Graphic TSP and 685/684 for the subcubic case. The result on the Graphic TSP for cubic
graphs is the first inapproximability result known on that problem (cf. [BSSS11a], [BSSS11b]).
For the most recent improvements on the explicit inapproximability bounds on the general metric
TSP see [KLS13].

We design new 3-regular gadget amplifier construction yielding the above bounds, and estab-
lish also new inapproximability bounds for the cubic and subcubic instances of the (1,2)-TSP of
1141/1140 and 673/672, respectively.

The inapproximability bounds for the (1,2)-TSP improve over the bounds of 1291/1290 and
787/786 claimed in [CKK02] (see also [EK06]). Our proof method in this paper depends on
improved amplifier construction and two transparent and direct reduction stages, firstly proving
approximation lower bounds for the cubic and subcubic instances of the (1,2)-TSP, and then con-
necting it, in a special way, to the cubic and subcubic instances of the Graphic TSP.

We call an instance of (1,2)-TSP cubic and subcubic if the graph induced by the all weight 1
edges is cubic and subcubic, respectively.
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2 Organization of the Paper

The paper is organized as follows. In Section 3, we give some basic definitions. In Section 4, we
review some connections between the approximability of the Graphic TSP and the (1,2)-TSP. In
Section 5, we formulate our main results, whereas in Section 6, we describe the techniques used
in our proofs. In Section 7, we introduce a bounded occurrence Constraint Satisfaction problem
called the Hybrid problem. In Section 8, we describe the reduction given in [KS13] from the
Hybrid problem to the (1,2)-TSP. In Section 9 and 10, we introduce modular gadget constructions
and prove explicit approximation hardness bounds for the (1,2)-TSP in subcubic and cubic graphs,
respectively. The inapproximability results for the Graphic TSP in cubic and subcubic graphs are
given in Section 11. In Section 12, we summarize our results.

3 Preliminaries

Given an arbitrary connected undirected graph G = (V,E), we consider the shortest path metric
completionG′ and define the Graphic TSP problem forG as the standard TSP on the metric instance
G′. Equivalently, the Graphic TSP is the problem of finding a smallest Eulerian spanning multi-
subgraph of G. We are interested here in special cases of the above problem for cubic (3-regular)
and subcubic (maximum degree 3). Both cases are known to be NP-hard in exact setting, as the
Hamiltonian cycle problem is NP-hard for the 3-regular graphs (cf. [GJT76]), it can be reduced to
both (1,2)-TSP and Graphic TSP on cubic graphs.

In order to describe a (1,2)-TSP instance, it is sufficient to specify the edges of weight one.
By constructing a graph G = (V,E), the distance of the vertices u and v is defined to be 1 if
{u, v} ∈ E and 2 otherwise. To compute the cost of a tour, it is enough to consider the parts of the
tour traversing edges of G. We call a vertex, in which the tour leaves or enters G an endpoint. In
addition, a vertex with the property that the tour both enters and leaves G in that vertex is called
double endpoint, and we count it as two endpoints. If n is the number of vertices and 2 · p is the
total number of endpoints, the cost of the tour is n+ p since every edge of weight two corresponds
to two endpoints. On the other hand, every tour with cost n+ p has exactly 2 · p endpoints.

4 Approximability

The Graphic TSP for cubic and subcubic graphs is of special interest because of its connection to
the famous 4/3 conjecture on the integrality gap of the metric TSP (cf. [BSSS11a], [BSSS11b]).
Recently, the first polynomial time approximation algorithms with approximation factor 4/3 for the
above problem on cubic and subcubic graphs were designed [BSSS11b] and [MS11]. This was
slightly improved beyond 4/3 bound for the case of 2-connected cubic graphs [CLS12].

There was also a remarkable progress on general Graphic TSP ([OSS11], [MS11], [M12]) lead-
ing to the approximation factor 7/5, cf. Sebö and Vygen [SV12].

The (1,2)-TSP can be viewed as a special case of the Graphic TSP. To see this, we simply augment
the subgraph induced by all weight 1 edges in an instance of the (1,2)-TSP by a new vertex z and
add all edges connecting the original vertices with that vertex z. Thus, the explicit approximation
lower bound of 535/534 for general (1,2)-TSP is also the inapproximabiltity bound for the general
Graphic TSP. It is also known that the factor 3/2 of Christofides’ algorithm [C76] for the general
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metric TSP is tight for the Graphic TSP on cubic graphs. The best up to now approximation factor
for (1,2)-TSP is 8/7 [BK06] (see also [PY93]).

In this paper, we attack both cubic and subcubic (1,2)-TSP and Graphic TSP, and will use inher-
ent connections between that problems.

5 Main Results

We prove the following explicit inapproximability results. The result for Graphic TSP on cubic
graphs is the first inapproximability result known for that problem.

Theorem 1. The Subcubic (1,2)-TSP is NP-hard to approximate to within any factor less than
673/672.

Theorem 2. The Cubic (1,2)-TSP is NP-hard to approximate to within any factor less than
1141/1140.

For subcubic and cubic instances of the Graphic TSP, we prove the following.

Theorem 3. The Graphic TSP on subcubic graphs is NP-hard to approximate to within any factor
less than 685/684.

Theorem 4. The Graphic TSP on cubic graphs is NP-hard to approximate to within any factor less
than 1153/1152.

6 Techniques Used

The method and techniques of the paper use new modular constructions of simulating gadgets
and also extend some of the ideas of [KS12] and [KS13]. The underlying constructions and their
correctness arguments are presented in the subsequent sections.

7 Hybrid Problem

We start with defining the following Hybrid problem (cf. [BK99], see also and [BK03]).

Definition 1 (Hybrid problem). Given a system of linear equations mod 2 containing n variables, m2

equations with exactly two variables, andm3 equations with exactly three variables, find an assignment
to the variables that satisfies as many equations as possible.

The following result is due to Berman and Karpinski [BK99].

Theorem 5 ([BK99]). For every constant ε ∈ (0, 1/2) and b ∈ {0, 1}, there exist instances of the
Hybrid problem IH with 42ν variables, 60ν equations with exactly two variables, and 2ν equations of
the form x ⊕ y ⊕ z = b such that: (i) Each variable occurs exactly three times. (ii) It is NP-hard to
decide whether there is an assignment to the variables that leaves at most ε ·ν equations unsatisfied, or
else every assignment leaves at least (1− ε)ν equations unsatisfied. (iv) An assignment to the variables
in IH can be transformed in polynomial time into an assignment satisfying all 60ν equations with two
variables without decreasing the total number of satisfied equations in IH.
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The instances of the Hybrid problem produced in Theorem 5 have an even more special structure,
which we are going to describe. For this, we are going to introduce the MAX-E3LIN2 problem:
Given a systems I of linear equations mod 2 with exactly 3 variables in each equation, find an
assignment that maximizes the number of satisfied equations in I.
For the MAX-E3LIN2 problem, Håstad [H01] gave an optimal inapproximability result stated below.

Theorem 6 (Håstad [H01]). For every ε ∈ (0, 1/2), there exists a constant Bε and instances of the
MAX-E3LIN2 problem with 2 · ν equations such that:
(i) Each variable in the instance occurs at most Bε number of times.
(ii) It is NP-hard to distinguish whether there is an assignment satisfying all but at most ε·ν equations,
or every assignment leaves at least (1− ε)ν equations unsatisfied.

In the following, we describe briefly the reduction given in [BK99] from the MAX-E3LIN2 prob-
lem to the Hybrid problem and give the proof of Theorem 5. For this, let us first recall some
definitions (see also [BK03]).

Let G be a graph and X ⊂ V (G). We say that G is a d-regular amplifier for X if the following
two conditions hold:

(i) All vertices in X have degree (d− 1) and all vertices in V (G)\X have degree d.

(ii) For every non-empty subset U ⊂ V (G), we have the condition that

|E(U, V (G)\U)| ≥ min{|U ∩X|, |(V (G)\U) ∩X|},

where E(U, V (G)\U) = {e ∈ E(G) | |U ∩ e| = 1}.

We call X the set of contact vertices and V (G)\X the set of checker vertices. Amplifier graphs are
used for proving hardness of approximation for Constraint Satisfaction problems, in which every
variable occurs a bounded number of times. Berman and Karpinski [BK99] gave a probabilistic
argument on the existence of 3-regular amplifiers. In particular, they constructed a very special
amplifier graph, which they called wheel amplifier.

A wheel amplifierW with 2n contact vertices is constructed as follows. We first create a Hamil-
tonian cycle on 14n vertices with edge set C(W). Then, we number the vertices 1, 2, ..., 14n and
select uniformly at random a perfect matching M(W) on the vertices whose number is not a mul-
tiple of 7. The vertices in the matching are our checker vertices and the remaining vertices are our
contacts. The set M(W) ∪ C(W) defines the edge set of W. It is not hard to see that the degree
requirements are satisfied. Berman and Karpinski [BK99] gave a probabilistic argument to prove
that with high probability the above construction indeed produces a 3-regular amplifier graph.

Theorem 7 (Berman and Karpinski [BK99]). With high probability, wheel amplifiers are 3-regular
amplifier.

Let us proceed and give the proof of Theorem 5.

Proof of Theorem 5. Let ε ∈ (0, 1/2) be a constant and I an instance of the MAX-E3LIN2 problem,
in which the number of occurences of each variable is bounded by Bε. For a fixed b ∈ {0, 1}, we can
negate some of the variables such that all equations in the instance I are of the form x⊕ y⊕ z = b,
where x, y, z are variables or negated variables.
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For a variable xi in I, we denote by di the number of occurences of xi in I1. For each xi, we
create a set of 7·di = α new variables V ar(i) = {xij}αj=1. In addition, we construct a wheel amplifier
Wi on α vertices with di contacts. Since di is bounded by a constant, it can be accomplished in
constant time. In the remainder, we refer to contact and checker variables as xil ∈ V ar(i), whose
corresponding index l is a contact and checker vertex inWi, respectively.

Let us now define the equations of the new instance IH of the Hybrid problem. For each edge
{j, k} ∈ M(Wi), we create xij ⊕ xik = 0 and refer to equations of this form as matching equations.
On the other hand, for each edge {l, t} in C(Wi), we introduce xil ⊕ xit = 0. Equations of the
form xi ⊕ xi+1 = 0 with i ∈ {2, . . . , α − 1} and x1 ⊕ xα = 0 are called cycle equations, whereas
x1 ⊕ x2 = 0 is the cycle border equation. Finally, we replace the j-th occurrence of xi in I by the
contact variable xiλ, where λ = 7 · j. Accordingly, we have 2ν equations with three variables in IH,
60ν equations with two variables and each variable appears in exactly 3 equations.

We call an assignment to V ar(i) as consistent if for bi ∈ {0, 1}, we have that xij = bi for all
j ∈ [α]. A consistent assignment to the variables of IH is an assignment that is consistent for each
V ar(i). By using standard arguments and the amplifier constructed in Theorem 7, we are able to
transform an assignment to the variables of IH into a consistent one without decreasing the number
of satisfied equations and the proof of Theorem 5 follows.

8 (1,2)-TSP in Graphs with Maximum Degree 5

In this section, we describe the reduction constructed in [KS13] from the Hybrid problem to the
(1,2)-TSP. In particular, this construction can be used to prove the following theorem.

Theorem 8 ([KS13]). The (1,2)-TSP is NP-hard to approximate to within any factor less than
535/534.

8.1 The Construction of G12
H

In the following, we describe briefly the reduction from the Hybrid problem to the (1,2)-TSP and
refer for more details to [KS13] and [KS12].

Let IH be an instance of the Hybrid problem with n wheels, 60ν equations with two vari-
ables and 2ν equations with two variables. In order to simulate the variables of IH, we introduce
for each variable xli the corresponding parity gadget P li displayed in Figure 1 (a). If we start in vli,l1
or vli,l0, there are two ways to traverse this gadget visiting every vertex only once. In the following,
we refer to those traversals as 0/1-traversals, which are defined in Figure 1 (b) and (c).
The idea of the parity gadgets is that any tour in the instance of the (1,2)-TSP can be transformed
into a tour, which uses only 0/1-traversals of all parity gadgets that are contained as a subgraph
in G12

H without increasing its cost. The 0/1-traversal of the parity gadget defines the value that we
assign to the variable associated with the parity gadget.

For each equation, we have a specific way to connect the parity gadgets that are simulating the
variables of the underlying equation. Let us start with the construction for matching equations.

Matching equations: Given a matching equation xli ⊕ xlj = 0 in IH with i < j and the cy-
cle equations xli ⊕ xli+1 = 0 and xlj ⊕ xlj+1 = 0, we connect the associated parity gadgets P li , P

l
i+1,
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vli,l0 vli,r0

vli,l1 vli,r1

(a) Parity gadget P li (b) 1-Traversal (c) 0-Traversal

Figure 1: 0/1-Traversals of the parity gadget P li . Traversed edges are displayed by thick lines.

P l{i,j}, P
l
j and P lj+1 as displayed in Figure 2.

P l
i P l

i+1

P l
{i,j}

P l
jP l

j+1

Figure 2: Construction simulating the equations xli ⊕ xlj = 0, xli ⊕ xli+1 = 0 and xlj ⊕ xlj+1 = 0.

Equations with three variables: For equations with three variables x ⊕ y ⊕ z = 0 = b3c in IH, we
use the graph G3⊕

c displayed in Figure 3. Engebretsen and Karpinski [EK06] introduced this graph
and proved the following statement.

Lemma 1 ([EK06]). There is a simple path from sc to sc+1 in Figure 3 containing the vertices v1c and
v2c if and only if an even number of parity gadgets is traversed.

We now explain how we connect the parity gadgets for xi and xi+1 with G3⊕
c : Let us assume that

xi ⊕ y ⊕ z = 0 and xi ⊕ xi+1 = 0 are equations in IH. We denote the parity gadgets that appear in
G3⊕
c as P(x,i), Py and Pz.

Then, we connect P li and P li+1 with P(x,i) via edges {vli,r0, vl(x,i),r1}, {v
l
i+1,l0, v

l
(x,i),l1}. Further-

more, we add {vli,r1, vli+1,l1} to connect P li and P li+1. If xi appears negated in the equation with
three variables, we create {vli,r1, vl(x,i),r1} and {vli+1,l1, v

l
(x,i),l1} and {vli,r0, vli+1,l0}.

Cycle border equations: For each wheelWl with l ∈ [n], we introduce three vertices b1l , b
2
l and b3l ,

which are connected via b1l − b2l − b3l . Let {xli}αi=1 be the associated set of variables ofWl. Then, we
connect b3l with vl1,l0 and vl2,r1. In addition, we add {b1l+1, v

l
1,l1} and {b1l+1, v

l
2,r0}.

For the last wheel, we introduce the path b1n+1 − b2n+1 − s1, where s1 is the starting vertex of the
graph G3⊕

1 simulating an equation with three variables. The graphs corresponding to equations
with three variables are connected via vertices s1, . . . s2ν+1, where s2ν+1 = b11 is the first vertex of
the path b11 − b21 − b31. This is the whole description of the corresponding graph G12

H .
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sc sc+1

v1c

v2c

Figure 3: Graph G3⊕
c simulating x⊕ y ⊕ z = 0.

8.2 Assignment to Tour

We are going to prove one direction of the reduction and prove the following lemma.

Lemma 2. Let IH be an instance of the Hybrid problem with nwheels, 60ν equations with two variables
and 2ν equations with three variables and φ an assignment that leaves δν equations in IH unsatisfied
for a constant δ ∈ (0, 1). Then, there is a tour in G12

H with cost at most 534ν + 3(n+ 1)− 1 + δν.

Proof. According to Theorem 5, we may assume that all variables associated to a wheel take the
same value under φ. Our tour in G12

H starts in b11 and traverses b11− b21− b31. Then, we use the φ(x11)-
traversals of the parity gadgets corresponding to the variables of the wheel W1 until we enter the
vertex b12. For each wheel, we use the corresponding traversal defined by the assignment. Finally,
we get to the vertex s1, which belongs to the graph G3⊕

1 . We refer to this part of the tour as the
inner loop. In the remaining part of the tour, we are going to traverse the graphs corresponding to
equations with three variables. If an odd number of parity gadgets was visited in the inner loop,
we can find a Hamiltonian path in G3⊕

c . In the other case, we have to introduce two endpoints.
In the outer loop of the tour, we visit all gadgets corresponding to equations with three variables.
Accordingly, our tour has cost at most 8 · 60ν + (3 · 8 + 3) · 2ν + 3(n+ 1)− 1 + δν.

8.3 Tour to Assignment

In the following, we briefly describe the other part of the reduction given in [KS13].

Let us first introduce the notion of consistent tours. We call a (1,2)-tour π in G12
H consistent

if all parity gadgets in G12
H are visited by π using a 0/1-traversal. In order to ensure that we can

restrict ourselves to consistent (1,2)-tours, the following statement can be proved.

Lemma 3 ([KS13]). Let π be a tour in G12
H . For every parity gadget P in G12

H , it is possible to convert
efficiently π into a tour σ in G12

H , that uses a 0/1-traversal of P , without increasing the cost.

Due to the following lemma, we can construct efficiently an assignment if we are given a con-
sistent tour in G12

H .
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Lemma 4 ([KS13]). Let π be a consistent tour in G12
H with cost 534ν + 3(n + 1) − 1 + δν for some

constant δ ∈ (0, 1). Then, it is possible to construct efficiently an assignment that leaves at most δν
equations in IH unsatisfied.

We are ready to give the proof of Theorem 8.

Proof of Theorem 8. Let I be an instance of the MAX-E3LIN2 problem with n variables and 2γ equa-
tions. For all τ > 0, there exists a constant k such that if we create k copies of each equation, we
get an instance Ik with 2ν = k · 2γ equations and n variables with 3(n + 1) + 1 ≤ ν · τ . From Ik,
we generate an instance IH of the Hybrid problem consisting of n wheels, 60ν equations with two
variables and 2ν equations with three variables. Finally, we construct the associated instance G12

H
of the (1,2)-TSP.

Given an assignment φ to the variables of IH leaving δ · ν equations unsatisfied with δ ∈ (0, 1),
according to Lemma 2, there is a tour with length at most 534ν + 3(n+ 1)− 1 + δ · ν.

On the other hand, if we are given a tour σ in G12
H with cost 534ν + 3(n + 1) − 1 + δ · ν, it

is possible to transform σ in polynomial time into a consistent tour π without increasing the cost
by applying Lemma 3 to each parity gadget in G12

H . Moreover, due to Lemma 4, we are able to
construct efficiently an assignment, which leaves at most δν equations in IH unsatisfied.

According to Theorem 5, we know that for all ε > 0, it is NP-hard to decide whether there is
a tour with cost at most 534ν + 3(n + 1) − 1 + ε · ν ≤ 534 · ν + ε′ν or all tours have cost at least
534 · ν + (1 − ε)ν + 3(n + 1) − 1 ≥ 535 · ν − ε′ · ν, for some ε′ which depends only on ε and τ .
By appropriate choices for ε and τ , the ratio between these two cases can get arbitrarily close to
535/534

9 (1,2)-TSP in Subcubic Graphs

In this section, we are going to define a new outer loop of the construction from the previous
section in order to obtain an instance of the (1,2)-TSP in subcubic graphs.

The gadgets simulating equation with three variables in the construction given in [KS13]
contain vertices with degree 5. We are going to replace these gadgets by cubic graphs which we
will specify later on. In order to understand the cubic gadgets, we first describe a reduction from
the MAX-E3LIN2 problem to the MAX-2in3SAT problem. The reduction is straightforward: Given
an equation of the form x ⊕ y ⊕ z = 0, we create three clauses (x ∨ a1 ∨ a2), (y ∨ a2 ∨ a3) and
(z ∨ a1 ∨ a3). Note that if we are given an assignment to x, y and z that satisfies the equation mod
2, then, it is possible to find an assignment to a1, a2 and a3 that satisfies all three corresponding
clauses. In the other case, we find assignments to a1, a2 and a3 that make at most two clauses
satisfied.

In the next step, we are going to design a gadget that simulates the predicate 2in3SAT. This
gadget is displayed in Figure 4 (a). The boxes can be viewed as modules, which will be replaced
with a parity gadget or a graph with similar properties (see Figure 8). Any graph with less ver-
tices and the properties of a parity gadget will lead to improved inapproximability factors for the
corresponding problems. Note that the graph in Figure 4 (b) has degree at most 3.

We are going to prove the following lemma.

Lemma 5. There is a Hamiltonian path from s∨ to e∨ in the graph displayed in Figure 4 (a) if and
only if 2 edges with modules are traversed.
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smid

c1

c2

c3

s∨
e∨

y

x

z

c2

smid
e∨s∨

c1

c3

(a) Modular view of the graph G3
∨ (b) Detailed view of G3

∨

Figure 4: The graph G3
∨ corresponding to (x ∨ y ∨ z).

Proof. There are three possibilities to enter the vertex smid. Therefore, a Hamiltonian path in G3
∨

contains (i) c1− smid− c2, (ii) c1− smid− e∨ or (iii) c2− smid− e∨. In the case (i), we are forced to
use {c3, e∨} and then, either {s∨, c1} and {c3, c2} or {s∨, c2} and {c3, c1}. In the case (ii), we first
note that we cannot use {e∨, c3}. Due to the degree condition, we have to use c2 − c3 − c1. The
only remaining vertex with degree one is c2 and has to be connected to s∨. In case (iii), we may
argue similarly to case (ii).

As for the next step, we introduce a gadget that simulates a11⊕a21 = 0 displayed in Figure 5. We
see that in order to get from the vertex s1 to e1, we simply use the edge {s1, e1} or the three edges
which are connecting the two parity gadgets.

s= e=

a11 a21

s= e=

(a) Modular view of the graph G= (b) Detailed view of G=

Figure 5: Graph G= corresponding to a11 ⊕ a21 = 0.

We are ready to describe the construction that simulates the equation x ⊕ y ⊕ z = 0: We create
three copies of the gadget G3

∨, denoted by G31
∨ , G32

∨ and G33
∨ , to simulate (x∨ a11 ∨ a12), (y ∨ a22 ∨ a13)

and (z ∨ a21 ∨ a23). For each i ∈ [3], the vertex set of G3i
∨ is defined by {si∨, ci1, ci1, ci2, ci3, ei∨, simid}. In

order to connect those three copies, we add the edge {ei∨, si+1
∨ } for each i ∈ [2]. In the next step,

we create three copies of the gadget G=, denoted by G1
=, G2

= and G3
=, to simulate a11 ⊕ a21 = 0,
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a12 ⊕ a22 = 0 and a13 ⊕ a23 = 0. For each i ∈ [3], the vertex set of Gi= is defined by {si=, ei=}. Again,
we connect those three copies by adding {ei=, si+1

= } for each i ∈ [2] and we also create {e3∨, s1=} in
order to connect G3

∨ with G1
=. The whole construction is illustrated in Figure 6.

s1mid

c12

e1∨

s2∨

a11

x

s2mid
s3mid

c21

c32

e3∨

s1=
s1∨

a12

y

a22
a13

a21

a23

z

e3∨ e1= e2=

s3=

e3=

s1= a11 a21 s2= a12 a22 a13 a23

c11 c13

c22

c23

e2∨

c31 c33

s3∨

Figure 6: Modular view of the construction simulating x⊕ y ⊕ z = 0.

Finally, we connect the graphs that we introduced by parity gadgets as follows: For each graph
Gi=, we create two parity gadgets and connect them to the graph G3j

∨ corresponding the clause, in
which the variable aki with k ∈ {1, 2} appear (See Figure 7 for a detailed view). The parity gadgets,
which are associated to the variables x, y and z, are attached to G3j

∨ with j ∈ {1, 2, 3} similarly
as in the construction described in Section 8.1 for the graph G3⊕

c . Hence, the parity gadget is also
connected to the graph which is associated to the wheelWα, where α ∈ {x, y, z}.

Given an instance IH of the Hybrid problem, we refer to the corresponding instance of the
(1,2)-TSP in subcubic graphs as G12

SC .

9.1 Tour From Assignment

We are going now to construct a tour from a given assignment and prove the following lemma.

Lemma 6. Let IH be an instance of the Hybrid problem with n wheels, 60ν equation with two variables,
2ν equations with three variables and φ an assignment that leaves at most δν equations unsatisfied.
Then, there is a tour in G12

SC with cost at most 672ν + 3(n+ 1)− 1 + δν

Proof. Given the assignment φ, we define the inner loop of the tour in G12
SC in the same way as in

Lemma 2. This means that some of the parity gadgets which are connected to gadgets simulating
equations with three variables may have been traversed in the inner loop of the tour. In the outer
loop of the tour, if the assignment satisfies the underlying equation x ⊕ y ⊕ z = 0, then there is a
Hamiltonian path traversing all graphs corresponding to (x ∨ a11 ∨ a12), (y ∨ a22 ∨ a13), (z ∨ a21 ∨ a23),
a11 ⊕ a21 = 0, a12 ⊕ a22 = 0 and a13 ⊕ a23 = 0. For each satisfied equation with three variables, we
associate the cost 3(6 + 3 · 8 + 2). If the underlying equation is not satisfied, we have to introduce
two endpoints. Thus, we associate the cost 3(6 + 3 · 8 + 2) + 1. Summing up, we obtain a tour in
G12
SC with cost at most 8 ·60ν+3 · (6+3 ·8+2) ·2ν+3(n+1)−1+δν = 672ν+3(n+1)−1+δν.
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9.2 Assignment From Tour

Given a tour in G12
SC , we are going to construct an assignment to the variables of the corresponding

instance IH of the Hybrid problem and prove the following lemma.

Lemma 7. Let IH be an instance of the Hybrid problem with n wheels, 60ν equations with two vari-
ables, 2ν equations with three variables and π a tour in G12

SC with cost 672ν+3(n+1)−1+ δν. Then,
it is possible to construct efficiently an assignment that leaves at most δν equations in IH unsatisfied.

Proof. In the first step, we convert the underlying tour inG12
SC into a consistent one without increas-

ing its cost. This is done by applying Lemma 3 to each parity gadget in G12
SC . In the second step,

we use the same 0/1-traversals of the parity gadgets in the inner loop of the tour which enables us
to construct a tour in the corresponding instance G12

H with cost at most

672ν + 3(n+ 1)− 1 + δν − 3 · (6 + 3 · 8 + 2) · 2ν + (3 · 8 + 3) · 2ν = 534ν + 3(n+ 1)− 1 + δν.

Finally, we apply Lemma 4 and compute efficiently an assignment that leaves at most δν equations
in IH unsatisfied.

We are ready to give the proof of Theorem 1.

Proof of Theorem 1. Given IH an instance of the Hybrid problem consisting of n wheels, 60ν equa-
tions with two variables and 2ν equations with three variables, we construct in polynomial time
the associated instance G12

SC of the (1,2)-TSP.
Given an assignment φ to the variables of IH leaving δ · ν equations unsatisfied with δ ∈ (0, 1),

then, according to Lemma 6, it is possible to find a tour with cost at most 672ν+3(n+1)−1+ δ ·ν.
On the other hand, if we are given a tour σ in G12

SC with cost 672ν + 3(n+ 1)− 1 + δ · ν, due to
Lemma 7, we are able to construct efficiently an assignment to the variables of IH, which leaves at
most δν equations in IH unsatisfied.

Similarly to the proof of Theorem 8, for a constant τ > 0, we may assume that (3n+ 4)/ν ≤ τ
holds. According to Theorem 5, we know that for all ε > 0, it is NP-hard to decide whether there
is a tour with cost at most 672ν + 3(n + 1) − 1 + ε · ν ≤ 672 · ν + ε′ν or all tours have cost at
least 672 · ν + (1 − ε)ν + 3(n + 1) − 1 ≥ 673 · ν − ε′ · ν, for some ε′ that depends only on ε and τ .
By appropriate choices for ε and τ , the ratio between these two cases can get arbitrarily close to
673/672.

10 (1,2)-TSP in Cubic Graphs

This section is devoted to the proof of Theorem 2.

10.1 The Construction of the Graph G12
CU

Given an instance IH of the Hybrid problem with n wheels, 60ν equations with two variables and
2ν equations with three variables, we construct the corresponding graph G12

SC . In order to convert
the instance G12

SC of the (1,2)-TSP in subcubic graphs into an instance G12
CU of the (1,2)-TSP in

cubic graphs, we replace all vertices with degree exactly two by a path in which all vertices will
have degree exactly three. Let us describe this in detail: Let w be a vertex with degree two in G12

SC ,

11



s2= e2=

s1∨

c12

s1mid

c11

c13

c21

s2∨

c23

e1∨ e2∨

c22

s2mid

Figure 7: Detailed view of the gadget for (x ∨ a11 ∨ a12), (y ∨ a22 ∨ a13) and a12 ⊕ a22 = 0.

which is connected to x and y. Replace w with the path pw = v1w − v2w − v3w − v4w. In addition, we
add edges {v1w, v3w}, {v2w, v4w}, {x, v1w} and {y, v4w}. By applying this modification to each vertex of
degree exactly two, we create a cubic graph and refer to it as G12

CU .
A modified parity gadget is displayed in Figure 8 (a). The corresponding traversals are defined

in Figure 8 (b) and (c).

(a) Modified parity gadget (b) 1-traversal (c) 0-traversal

Figure 8: 0/1-Traversals of a modified parity gadget. The traversed edges are pictured by thick
lines.

The following lemma enables us to construct a tour in G12
CU given an assignment φ to the

variables of the corresponding instance IH of the Hybrid problem with a certain cost that depends
on the number on unsatisfied equations in IH by φ.

Lemma 8. Let IH be an instance of the Hybrid problem with n wheels, 60ν equation with two variables,
2ν equations with three variables and φ an assignment that leaves δ · ν equations unsatisfied for some
δ ∈ (0, 1). Then, it is possible to construct efficiently a tour in G12

CU with cost at most 1140ν + 6(n +
1)− 1 + δ · ν

Proof. Basically, we use the same tour as constructed in Lemma 6 for the graph G12
SC with the
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difference that instead of traversing a vertex w of degree exactly two in G12
SC , we have to use the

path v1w − v2w − v3w − v4w consisting of 3 more vertices. Thus, if we have given a tour σ in G12
SC ,

that was constructed according to Lemma 6, we have to add 6 · 60ν (for each equation with two
variables), 9 · 6 · 2ν (for each equation with three variables), and 3(n + 1) (for each wheel) to the
cost of σ and obtain a tour in G12

CU with cost at most

672ν + 3(n+ 1)− 1 + δ · ν + (6 · 60ν) + 9 · 6 · 2ν + 3(n+ 1) = 1140ν + 6(n+ 1)− 1 + δ · ν

and the proof of Lemma 8 follows.

10.2 Tour to Assignment

We are going to prove the other direction of the reduction and give the proof of the following
lemma.

Lemma 9. Let IH be an instance of the Hybrid problem with n wheels, 60ν equation with two variables,
2ν equations with three variables and π a tour in G12

CU with cost 1140ν +6(n+1)− 1+ δ · ν. Then, it
is possible to construct efficiently an assignment that leaves at most δ · ν equations in IH unsatisfied.

Proof. Let π be a tour in G12
CU with cost 1140ν+6(n+1)−1+δ ·ν. We are going to show that we can

convert efficiently π into a tour π′ in G12
SC with cost 672ν+3(n+1)− 1+ δ · ν. For this, we consider

the path x− v1c − v2c − v3c − v4c − y in G12
CU , where pc = v1c − v2c − v3c − v4c corresponds to the vertex c

of degree exactly two in the instance G12
SC . As we want to contract the path pc into one vertex, we

will ensure that the (1,2)-tour is using either the path v1c − v2c − v3c − v4c or v1c − v3c − v2c − v4c . Let us
assume that either v2c or v3c is an endpoint, say v2c . Clearly, it implies that there is another endpoint
in {v1c , v3c , v4c} or v2c is a double endpoint. We delete all edges of weight 1 that the tour is using and
are incident on v2c and v3c . Then, we add {v1c , v2c}, {v2c , v3c} and {v3c , v4c} to connect v4c and v1c by
edges of weight 1. Note that this transformation decreased the total number of endpoints and the
cost of the (1,2)-tour. By applying this transformation successfully to each such path pc, we obtain
a tour which is using the complete path that corresponds to a vertex of degree 2 in the instance
G12
SC without increasing the cost of the tour. By contracting each path pc into the vertex c, it yields

a (1,2)-tour in G12
SC with cost at most 672ν + 3(n + 1) + 1 + δ · ν. Finally, we apply lemma 7 and

obtain an assignment that leaves at most δ · ν equations in IH unsatisfied.

Analogously to the proof of Theorem 1, we combine Lemma 8 with Lemma 9 and obtain Theo-
rem 2.

11 Graphic TSP in Subcubic and Cubic Graphs

In this section, we are going to give the proof of Theorem 3 and Theorem 4.

11.1 The Construction

Let IH be an instance of the Hybrid problem. We first construct the corresponding instances G12
CU

and G12
SC of the (1,2)-TSP in cubic and subcubic graphs, respectively. Each gadget G= in G12

SC is
replaced by the graph Ggr= displayed in Figure 9. We refer to this construction as the graph GgrSC . In
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e=

a21

s= c1 c2

a11

e=s= c1 c2

(a) Modular view of the graph Ggr= (b) Detailed view of Ggr=

Figure 9: Graph Ggr= corresponding to a11 ⊕ a21 = 0.

order to obtain an instance of the Graphic TSP on cubic graphs, we use the modified parity gadgets
in Ggr= and denote this instance as GgrCU .

Let us prove one direction of the reductions.

Lemma 10. Let IH be an instance of the Hybrid problem with n wheels, 60ν equation with two
variables, 2ν equations with three variables and φ an assignment that leaves at most δν equations
unsatisfied. Then, there is a tour in GgrSC and in GgrCU with cost at most 684ν + 3(n+ 1)− 1 + δν and
1152ν + 6(n+ 1)− 1 + δν, respectively.

Proof. Let us start with the description of the tour in GgrSC . As for the inner loop, we use the
same tour as in Lemma 6. Note that we traversed only edges with weight 1 in the inner loop of
the tour in G12

SC . In the outer loop, we cannot use the same shortcuts as in the (1,2)-TSP, since
in some cases the weight of an edge can be greater than 2. To ensure that the cost traversing a
gadget corresponding to an equation with three variables increases only by one if the equation is
unsatisfied by the assignment, we will use the following trick: Consider an equation of the form
x⊕y⊕z = 0 that is simulated by (x∨a11∨a12), (y∨a22∨a13), (z∨a21∨a23), a11⊕a21 = 0, a12⊕a22 = 0 and
a13 ⊕ a23 = 0. If we have an assignment that satisfies x⊕ y ⊕ z = 0, then there is also an assignment
that satisfies all 6 associated predicates. Furthermore, we see that in the other case, we can find an
assignment that satisfies all predicates except exactly one equation with two variables.

In particular, it implies for a tour traversing the gadget Ggr= simulating a11 ⊕ a12 = 0 that if
(a11+a

1
2 = 0) and (a11+a

1
2 = 2) holds, we use s=−c2−c1−e= and s=−c2−c1−e=, respectively. On

the other hand, assuming (a11+a
1
2 = 1), we traverse either s=−c1−c2−c1−e= or s=−c2−c1−c2−e=.

Thus, we use the edge {c1, c2} twice increasing the cost only by 1.
Summarizing, given an assignment leaving δν equations unsatisfied, we find a tour in G12

SC with
cost at most 672ν +3(n+1)− 1+ δν and a tour in GgrSC with cost at most 684ν +3(n+1)− 1+ δν,
since we have to take into account the small detour and add 3 · 2 · 2ν to the cost.

Under the same conditions, we find a tour in G12
CU with cost at most 1140ν + 6(n+ 1)− 1 + δν

and a tour in GgrCU with cost at most 1152ν + 6(n+ 1)− 1 + δν.

11.2 Tour to Assignment

We now give the other direction of the reductions and prove the following lemma.

Lemma 11. Let IH be an instance of the Hybrid problem with n wheels, 60ν equation with two
variables, 2ν equations with three variables, π a tour in GgrSC with cost 684ν + 3(n+ 1)− 1 + δν and
σ a tour in GgrCU with cost 1152ν +6(n+1)− 1+ δν. By using either π or σ, it is possible to construct
efficiently an assignment that leaves at most δν equations in IH unsatisfied.
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Proof. Let us consider a tour π in GgrSC with cost 684ν + 3(n + 1) − 1 + δν. We interpret π as a
(1,2)-tour in GgrSC with cost at most 684ν + 3(n + 1) − 1 + δν. In the first step, we convert the
underlying tour in GgrSC into a consistent one without increasing its cost by applying Lemma 3 to
each parity gadget in GgrSC . In the second step, we use the same 0/1-traversals of the parity gadgets
in the inner loop which enables us to construct a tour in the corresponding instance G12

SC with cost
at most 672ν + 3(n+ 1)− 1 + δν. Finally, we apply Lemma 7 and construct an assignment leaving
at most δν equations in IH unsatisfied.

Analogously, if we have given a tour in GgrSC with cost 1152ν + 6(n+ 1)− 1 + δν, we convert it
into a (1,2)-tour without increasing its cost. By applying the contractions defined in Lemma 9, we
obtain a (1,2)-tour in GgrSC with cost at most 684ν + 3(n+ 1)− 1 + δν, for which we already know
how to construct an assignment with the desired properties.

By combining Lemma 10 and Lemma 11, we obtain immediately Theorem 3 and Theorem 4.

12 Summary of the Inapproximability Results

As mentioned before the explicit inapproximability bound of 535/534 ([KS12],[KS13]) for the
(1,2)-TSP carries through to the Graphic TSP. We summarize here (Table 1) the results of the
paper.

Restriction (1,2)-TSP Graphical TSP

Unrestricted 535/534 535/534

Subcubic 673/672 685/684

Cubic 1141/1140 1153/1152

Table 1: Inapproximability bounds for the instances of (1,2)-TSP and Graphic TSP.

13 Conclusions and Further Research

We provided new explicit inapproximability bounds for cubic and subcubic instances of (1,2)-TSP
and Graphic TSP. The important question is to improve the explicit inapproximability bounds on
those instances significantly. A bottleneck in our constructions, especially for the cubic case, are
the parity gadgets. Using the modularity of the constructions, any improvement of the costs of the
parity gadgets will lead to improved inapproximability bounds for the corresponding problems.

The current best upper approximation bound for general cubic instances of Graphic TSP is 4/3
(cf. [BSSS11a]). For the special case of 2-connected cubic graphs, the bound was recently improved
to (4/3 - 1/61236) [CLS12]. How about further improving those bounds? How about improving
the general upper bound of 8/7 [BK06] for cubic instances of the (1,2)-TSP?
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[CLS12] J. Correa, O. Larré and J. Soto, TSP Tours in Cubic Graphs: Beyond 4/3, In Proc. 20th ESA
(2012), LNCS 7501, pp. 790–801, 2012.

[EK06] L. Engebretsen and M. Karpinski, TSP with Bounded Metrics, J. Comput. Syst. Sci. 72, pp.
509–546, 2006.

[GLS05] D. Gamarnik, M. Lewenstein and M. Sviridenko, An Improved Upper Bound for the TSP in
Cubic 3-Edge-Connected Graphs, Oper. Res. Lett. 33, pp. 467–474, 2005.

[GJT76] M. Garey, D. Johnson and R. Tarjan,The Planar Hamiltonian Circuit Problem is NP-
Complete, SIAM Journal of Computing 5, 704–714, 1976.
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