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Abstract

We study the sample complexity of nondeterministically testable graph parameters
and improve existing bounds by several orders of magnitude. The technique used would
be also of independent interest. We also discuss some generalization and the special
case of nondeterministic testing with polynomial sample size.

1 Introduction

We call a non-negative function on the set of labeled simple graphs a graph parameter if
it is invariant under graph isomorphism. We define parameters of edge-k-colored directed
graphs, that will be considered in this paper as loop-free, and graphons analogously. From
now on colored means edge-colored if not noted otherwise, furthermore, each directed edge
carries exactly one color. The central characteristic of parameters investigated in the current
paper is the possibility of value estimation via uniform sampling. For a graph G (directed
and k-colored possibly) the expression G(k,G) denotes the random induced subgraph of G
with the vertex set chosen uniformly among all subsets of V (G) that have cardinality k.

Definition 1.1. The graph parameter f is testable if for any ǫ > 0 there exists a positive
integer qf(ǫ) such that for any simple graph G with at least qf (ǫ) nodes

P(|f(G)− f(G(qf(ǫ), G)| > ǫ) < ǫ.

The smallest function qf satisfying the previous inequality is called the sample complexity of
f . The testability of parameters of edge-k-colored directed graphs is defined analogously.

An a priori weaker notion than testability is the second cornerstone of the current work,
it was introduced in [14].
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Definition 1.2. The graph parameter f is non-deterministically testable if there exist inte-
gers m ≥ k and a testable edge-k-colored directed graph parameter g called witness such that
for any simple graph G the value f(G) = maxG′=G g(G) where the maximum goes over the
set K of (k,m)-colorings of G. The edge-k-colored directed graph G is a (k,m)-coloring of
G, if we erase all edges of G colored with an element of [m+ 1, . . . , k] and forget about the
orientation and coloring of the remaining edges, then we end up with G (G is the shadow of
G).

The problem regarding the relationship of the set of parameters that are testable and
those who are non-deterministically testable was first studied in the framework of graph
limits by Lovász and Vesztergombi [14] in the spirit of the general ”P vs. NP” question, that
is a central problem in theoretical computer science. In the dense setting with this particular
notion of nondeterministicity they were able to prove that any non-deterministically testable
graph property is also testable, which implies the analogous statement for parameters.

Theorem 1.3. [14] Every non-deterministically testable graph parameter f is testable.

However, no explicit relationship between the sample size required by f and the two
factors, the number of colors k and the sample complexity of the witness g was provided.
The reason for the absence of this is that the authors exploited various consequences of the
next remarkable fact.

Fact. If (Wn)n≥1 and ‖Wn‖� → 0 when n tends to infinity, the for any measurable
function Z : [0, 1]2 → [−1, 1] it is true that ‖WnZ‖� → 0, where the product is taken point-
wise.

The norm ‖.‖� above will be precisely defined in the paper, for now it is enough to know
that it is weaker than the L1-norm, and combined with an optimal labeling procedure it is
possible to define with its aid a distance whose unit ball is compact. Although the above
statement is true for all Z, the convergence is not uniform and its rate depends heavily on
the structure of Z.

The relationship of the magnitude of the sample complexity of a testable property P and
its witness Q was analyzed by Gishboliner and Shapira [9] relying on Szemerédi’s regularity
lemma and its connections to graph property testing unveiled by Alon, Fischer, Newman,
and Shapira [1]. The height of the exponential tower in the estimate of [9] was not bounded
and growing in function of 1

ǫ
, the main result can be rephrased as follows:.

Theorem 1.4. [9] Every non-deterministically testable graph parameter f is testable. If
the sample complexity of the witness parameter g for each ǫ > 0 is qg(ǫ), then the sample
complexity of f for each ǫ > 0 is at most tf((qg(ǫ/2))), where tf(t) is the value of the t-fold
iteration of the function 2x at 2.

In the current note, motivated by the fact that most of the dense graph limit theory
does only rely on the Weak Regularity Lemma as a central tool, see [4], [5], we improve on
the result of [9] using a weaker kind of regularity approach which eliminates the tower-type
dependence on the error parameter ǫ.
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Theorem 1.5. Let f be a testable graph parameter with non-deterministic witness parameter
g of k-colored graphs, and let the corresponding sample complexities be qf and qg. Then there
for any ǫ > 0 we have qf (ǫ) ≤ exp(3)(poly(qg(ǫ/2))).

1.1 Outline of the paper

This paper is organized as follows. In Section 2 we introduce the basic notation related to
dense graph limit theory that is necessary to conduct the proof of the main result in Theorem
1.5, and we will also state and prove the main ingredient of the proof, the intermediate
regularity lemma, that might be of interest on its own right. Section 3 continues with the
proof of Theorem 1.5, while in Section 4 we treat some generalizations and special cases
of the non-deterministic testing notion applied in the current paper, and also directions of
further research are discussed.

2 Graph limits and regularity lemmas

First we provide the definition of graph convergence via subgraph densities. For the simple
graphs F and G let hom(F,G) denote the number of maps φ : V (F ) → V (G) that preserves

adjacency, that is, it is a graph homomorphism. Furthermore, let t(F,G) = hom(F,G)

|V (G)||V (F )|

denote the subgraph density. The densities t(F,G) in the case of k-colored digraphs is
defined similarly. The variant tinj(., .) stands for the relative cardinality of injective graph
homomorphisms.

Definition 2.1. Let (Gn)n≥1 be a sequence of simple graphs graphs. It is said to be con-
vergent if for every simple F the numerical sequences (t(F,Gn))n≥1 converge to some limit.
Convergence is defined in the case of sequences of k-colored directed graphs similarly.

Now we describe the space of possible limit objects of simple graphs. Let I be an interval
and WI be the set of all measurable functions W : [0, 1] × [0, 1] → I that are symmetric
in the sense that W (x, y) = W (y, x) for all x, y ∈ [0, 1]. When I = [0, 1], then we call
WI the space of graphons. The space of k-colored directed graphons can be described in a
similar, though more complicated way. Let W(k) be the set of k2-tuples W = (W (i,j))i,j∈[k]
such that for each i, j ∈ [k] the function W (i,j) : [0, 1] × [0, 1] → [0, 1] is measurable, they
have a symmetry in the sense that W (i,j)(x, y) = W (j,i)(y, x) for each x, y ∈ [0, 1], and also
∑

i,j∈[k]Wi,j(x, y) = 1 for each x, y ∈ [0, 1]. Note that for each set [m] with m ≤ k we have

that W ′(x, y) =
∑

i,j∈[m]W
(i,j)(x, y) are graphons when W is k-colored directed graphon,

furthermore, each graphon W can be regarded as a 2-colored directed graphon by setting
W (1,2) =W (2,1) = 0 and W (1,1) =W everywhere.

We introduce the notion of the canonical equiv-partition of [0, 1] into t sets for a partition
P whose classes are the intervals Pi = [ i−1

t
, i
t
) for each i ∈ [t]. We can associate to each

simple graph G on n vertices a graphon WG that is a step function with the steps forming
the canonical eguiv-partition into n sets and taking value 1 on Pi × Pj whenever ij ∈ E(G)
and 0 otherwise. Similarly, for a k-colored directed G we can define WG as the step function
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with the same steps as above by setting W
(α,β)
G

to 1 on Pi × Pj when (i, j) is colored by α
and (j, i) by β in G, and to 0 otherwise.

For a positive integer n we call a partition of [0, 1] and n-partition if it is refined by the
canonical partition into n sets, and we call a function on [0, 1]2 an n-step function if its steps
form an n-partition.

Next we define the sampling process for these objects, this will be right away explained
for the general case.

Definition 2.2. Let G be a simple graph and S be a random subset of V (G) chosen among
all subsets of cardinality q uniformly. Then G(q, G) denotes the random induced subgraph of
G on S. For a k-colored directed graph G the random subgraph G(q,G) is defined identically.

Let W be a graphon and q ≥ 1, furthermore, (Xi)i∈[q] and (Yij)ij∈([q]2 )
mutually pair-wise

independent uniform [0, 1] random variables. Then the random graph G(q,W ) has vertex set
[q] and an edge runs between ij if Yij ≥ W (Xi, Xj). The random k-colored directed graph
G(q,W) has also vertex set [q], conditioned on (Xi)i∈[q], the colors for the edges are chosen

independently for all pairs ij ∈
(

[q]
2

)

of vertices, (i, j) has color α and (j, i) has color β with

probability W (α,β)(Xi, Xj).

Note that in G(q,W) the colors of (i, j) and (j, i) are not even conditionally independent.
The next theorem, first proven in [11], states that the graphons truly represent the limit

space of graphs. For the proof of the general case, see [6], [12] or [10].
The density of a simple graph F with vertex set [q] in a graphon W is defined as

t(F,W ) =

∫

[0,1]q

∏

ij∈E(F )

W (xi, xj)dx,

and the density of a colored digraph F with the same vertex set as above in W is given as

t(F,W) =

∫

[0,1]q

∏

ij:E(F)(i,j)=α
E(F)(j,i)=β

W (α,β)(xi, xj)dx.

Theorem 2.3. [11], [12] If (Gn)n≥1 is a convergent sequence of simple graphs, then there
exists a graphon W such that for every simple graph F we have t(F,Gn) → t(F,W ), when n
tends to infinity. Similarly, If (Gn)n≥1 is a convergent sequence of k-colored directed graphs,
then there exists a k-colored digraphon W such that for every F it holds that t(F,Gn) →
t(F,W).

It remains to add the norms and distances that will be relevant and posses valuable
properties with regard to graph limits.

Definition 2.4. The cut norm of an n× n matrix A is

‖A‖� =
1

n2
max
S,T⊂[n]

|A(S, T )| .
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The cut distance of two labeled simple graphs F and G on the same vertex set [n] is

d�(F,G) = ‖AF −AG‖�,

where AF and AG stand for the respective adjacency matrices. The cut norm of a graphon
W is

‖W‖� = max
S,T⊂[0,1]

∣

∣

∣

∣

∣

∣

∫

S×T

W (x)dx

∣

∣

∣

∣

∣

∣

,

where maximum is taken over all pairs of measurable sets S and T . We speak of the n-cut
norm when the maximum is only taken over such sets that can be given as the union of some
classes belonging to the canonical partition into n sets, it is denoted by ‖W‖〈n〉

�
. The cut

norm of a k-colored directed graphon is

‖W‖� =

k
∑

i,j=1

‖W (i,j)‖�.

The cut distance of two graphons W and U is

δ�(W,U) = inf
φ,ψ

‖W φ − Uψ‖�,

where the infimum runs over all measure-preserving permutations of [0, 1], and the graphon
W φ is defined as W φ(x, y) = W (φ(x), φ(y)). Similarly for k-colored directed graphons W

and U we have
δ�(W,U) = inf

φ,ψ
‖Wφ −Uψ‖�,

with the difference being component-wise. The cut distance for arbitrary unlabeled graphs F
and G is

δ�(F,G) = δ�(WF ,WG),

the definitions for the colored directed version is identical. Another variant is for the case
when V (F ) = [m] and V (G) = [n] such that m is a divisor of n. Then

δ
〈n〉
�

(F,G) = min
φ
d�(F [n/m], Gφ),

where F [t] is the t-fold blow up of F and minimum goes over all node relabelings of G.

Observe that for two graphs F and G on the common node set [n] the distance d�(F,G) =

‖WF −WG‖� = ‖WF −WG‖〈n〉�
.

The connection to graph limits is given in the next theorem from [4].

Theorem 2.5. [4] The graph sequence (Gn)n≥1, and the k-colored directed graph sequence
(Gn)n≥1 respectively, is convergent if and only if it is Cauchy in the δ� metric.
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We list some variants of the Weak Regularity Lemma for graphons, and going to derive
the intermediate version using the general lemma, a regularity lemma in Hilbert spaces, that
immediately follows, that is our key tool in the proof of Theorem 1.5.

Lemma 2.6. [13] Let K1,K2, . . . be arbitrary subsets of a Hilbert space H. Then for every
ǫ > 0 and f ∈ H there is an m ≤ 1

ǫ2
and there are fi ∈ Ki and γi ∈ R (1 ≤ i ≤ m) such that

for every g ∈ Km+1 we have that

|〈g, f −
m
∑

i=1

γifi〉| ≤ ǫ‖f‖‖g‖. (2.1)

Actually, we require a version that also contains a lower bound on m and the condition
that the fi’s are linearly independent, these were not present in the original formulation,
the inclusion does not alter the proof of the original. In the case that for some f with
‖f‖ ≤ 1 Lemma 2.6 outputs an m below our desired bound, then we pick an arbitrary
fm+1 ∈ Km+1 and a γm+1 such that ‖f −∑m+1

i=1 γifi‖ ≤ 1, and apply the lemma once again
for f−∑m+1

i=1 γifi. Iterate this procedure until the desired lower bound is reached eventually.
We phrase this result as a corollary.

Corollary 2.7. Let K1,K2, . . . be arbitrary subsets of a Hilbert space H. Then for every
ǫ > 0 and f ∈ H with ‖f‖ ≤ 1 there is an log 1

ǫ
≤ m ≤ log 1

ǫ
1
ǫ2

and there are linearly
independent fi ∈ Ki and γi ∈ R (1 ≤ i ≤ m) such that for every g ∈ Km+1 we have that

|〈g, f −
m
∑

i=1

γifi〉| ≤ ǫ‖f‖‖g‖. (2.2)

One can easily deduce Frieze and Kannan’s version from the above one, that found various
application in the design of efficient algorithms.

Lemma 2.8 (Weak regularity lemma). [8], [13] For every ǫ > 0 and W ∈ WI there exists

a partition P = (P1, . . . , Pm) of [0, 1] into m ≤ 2
8
ǫ2 parts, such that

‖W −WP‖� ≤ ǫ, (2.3)

where we get WP from W by averaging on every rectangle given by products from P.

In the same we get the version for k-colored graphons.

Lemma 2.9 (Weak regularity lemma for k-colored directed graphons). For every ǫ > 0 and

k-colored digraphon there exists a partition P = (P1, . . . , Pm) of [0, 1] into m ≤ 2k
2 8
ǫ2 equal

parts, such that

d�(W,WP) =

k
∑

i,j=1

‖W (i,j) − (W (i,j))P‖� ≤ ǫ. (2.4)
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The following norm shares some useful properties with the cut-norm, most prominently
it admits a regularity lemma with comparable number of steps to the weak one, although it
does not admit a definition of a related distance by calculating the norm of the difference of
two optimally overlayed objects. This comes from the general assumption that the partition
P always will belong to one of the graphons whose deviation we wish to estimate and
any ”re-labeling” of [0, 1] should act on them simultaneously, therefore symmetry fails. Its
advantages will get clearer in the next section.

Definition 2.10. Let W be a graphon and P = (P1, . . . , Pt) a partition of [0, 1]. Then the
cut-P-norm of W is

‖W‖�P = max
Si,Ti⊂Pi

t
∑

i,j=1

∣

∣

∣

∣

∣

∣

∣

∫

Si×Tj

W (x, y)dxdy

∣

∣

∣

∣

∣

∣

∣

. (2.5)

For two graphons U and W let dW,P(U) denote the cut-P-entropy of U with respect to W
that is defined by

dW,P(U) = inf
φ
‖Uφ −W‖�P , (2.6)

where the infimum runs over all measure preserving maps from [0, 1] to [0, 1].
For n ≥ 1, a partition P of [n] and a directed weighted graph H the cut-P-norm of H is

defined as

‖H‖�P = ‖WH‖�P ′, (2.7)

where P ′ is the partition of [0, 1] induced by P and the map j 7→ [ j−1
n
, j
n
).

The definition for the k-colored version is analogous.

Definition 2.11. LetW = (W (1,1), . . . ,W (k,k)) be a k-colored digraphon and P = (P1, . . . , Pt)
a partition of [0, 1]. Then the cut-P-norm of W is

‖W‖�P =

k
∑

i,j=1

‖W (i,j)‖�P . (2.8)

For two k-colored digraphons U and W let dW,P(U) denote the cut-P-entropy of U with
respect to W that is defined by

dW,P(U) = inf
φ
‖Uφ −W‖�P = inf

φ

k
∑

i,j=1

‖(U (i,j))φ −W (i,j)‖�P , (2.9)

where the infimum runs over all measure preserving maps from [0, 1] to [0, 1].
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It is not hard to check that the cut-P-norm is truly a norm on the space where we identify
two graphons when they differ only on a set of measure 0. From the definition it follows
directly that for any U,W graphons and any partition P we have ‖W‖� ≤ ‖W‖�P ≤ ‖W‖1
and δ�(U,W ) ≤ dW,P(U) ≤ δ1(U,W ), the same is true for the k-colored version.

Remark 2.12. We present a different representation of the cut-P-norm of W and W

respectively that will allow us to rely on result concerning the cut-norm more directly.
Let {aα,β}tα,β=1 ∈ {−1,+1}t×t and let W a(x, y) = aα,βW (x, y), respectively Wa given by

(W (i,j))a(x, y) = aα,βW
(i,j)(x, y) for x ∈ Pα and y ∈ Pβ. Then ‖W‖�P = max

a
‖W a‖� and

‖W‖�P = max
a

‖Wa‖�.
This newly introduced norm admits a uniform approximation assertion essential to the

proof of Theorem 1.5 in the following sense.

Lemma 2.13 (Intermediate regularity lemma for edge k-colored graphs). Let n ≥ 1 fixed,
and let each partition in the statement be such that it is refined by the canonical partition of
[0, 1] into n parts, and each function be such that it is constant on the product sets of classes
of the canonical partition.

For every ǫ > 0, k ≥ 1 and k-colored directed graphon W there exists a partition P =

(P1, . . . , Pm) of [0, 1] into m ≤ 2(2k
2+1)16/ǫ

2

parts and a step function V with steps from P,
such that for any partition Q of [0, 1] into at most m classes we have

‖W −V‖�Q ≤ ǫ/2. (2.10)

Furthermore it holds that

‖W −WP‖�P ≤ ǫ. (2.11)

If we require the parts to have almost equal measure, then the upper bound on the number of

classes is modified into tk(ǫ) = 2(4k
2+2)64/ǫ

2

.

Proof. We will use the result of Lemma 2.6 with a suitable choice of the spaceH and the sets
Ki. LetH beW(k) with the sum of the component-wise L2-products as the inner product and
Ki be the set of k2-tuples of indicator functions that have the following form. Set s(1) = 1

and s(i + 1) = s(i)(s(i) + 1)2k
2
for each i ≥ 1. Let (S

(j,l)
i )i∈[m],j,l∈[k] and (T

(j,l)
i )i∈[m],j,l∈[k]

be such that for each j, l ∈ [k] the tuples (S
(j,l)
1 , . . . , S

(j,l)
s(i) ) and (T

(j,l)
1 , . . . , T

(j,l)
s(i) ) consist of

pairwise disjoint measurable subsets of [0, 1] and let C(j,l) ⊂ [s(i)]2, and define Ki as the
set that consists of k2-tuples of the signed indicator functions whose components can be
expressed in the form ±[

∑

(α,β)∈C(j,l) IS(j,l)
α ×T

(j,l)
β

] for some choice of the previous sets.

Let us fix ǫ > 0. Applying Lemma 2.6 with ǫ/4 ensures the existence of an integer m
satisfying log 4

ǫ
≤ m ≤ 16

ǫ2
and Wi ∈ Ki, γi ∈ R such that for any U = (U (j,l))j,l∈[k] ∈ Km+1

of the form U(j,l) =
∑

(α,β)∈C(j,l) IS(j,l)
α ×T

(j,l)
β

we have

∑

j,l∈[k]

∣

∣

∣

∣

∣

∣

∣

∣

∑

(α,β)∈C(j,l)

∫

S
(j,l)
α ×T

(j,l)
β

W (j,l)(x, y)−
m
∑

i=1

γiW
(j,l)
i (x, y)dxdy

∣

∣

∣

∣

∣

∣

∣

∣

≤ ǫ/4. (2.12)
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Let us denote the sum
∑m

i=1 γiW
(j,l)
i by V (j,l). From the definition of the sets Ki it follows

that each V (j,l) is a step function with at most t =
∏m

i=1(s(i) + 1)2k
2
common steps, let us

denote them by P1, . . . , Pt. It is easy to verify that t = s(m + 1), so in particular we have

for any S
(j,l)
α , T

(j,l)
α ⊂ Pα, with C

(j,l)′ = {(α, β) :
∫

S
(j,l)
α ×T

(j,l)
β

W (j,l) − V (j,l) ≥ 0} ⊂ [s(m+ 1)]2

and C(j,l)′′ = [s(m+ 1)]2 \ C(j,l)′ that

∑

j,l∈[k]

∑

(α,β)∈C(j,l)′

∣

∣

∣

∣

∣

∣

∣

∣

∫

S
(j,l)
α ×T

(j,l)
β

W (j,l) − V (j,l)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ǫ/4, (2.13)

and

∑

j,l∈[k]

∑

(α,β)∈C(j,l)′′

∣

∣

∣

∣

∣

∣

∣

∣

∫

S
(j,l)
α ×T

(j,l)
β

W (j,l) − V (j,l)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ǫ/4. (2.14)

Therefore

‖W −V‖�P =
∑

j,l∈[k]

max
S
j,l∈[k]
i ,T

j,l∈[k]
i ⊂Pi

m
∑

α,β=1

∣

∣

∣

∣

∣

∣

∣

∣

∫

S
j,l∈[k]
α ×T

j,l∈[k]
β

W (j,l) − V (j,l)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ǫ/2. (2.15)

Claim 2.14. The cut-P-norm is contractive with respect to averaging. That is for any
W ∈ W(k) any Q that is a refinement of P we have ‖WQ‖�P ≤ ‖W‖�P .

Applying Claim 2.14 it follows that

‖W −WP‖�P ≤ ‖W −V‖�P + ‖V −WP‖�P (2.16)

= ‖W −V‖�P + ‖(V −W)P‖�P ≤ 2‖W −V‖�P ≤ ǫ. (2.17)

We are left to construct an upper bound t = s(m + 1). Therefore define r(1) = 1 and
r(i+ 1) = 22k

2
r2k

2+1(i) for i ≥ 1, and let l(i) = log2 r(i). It is clear now that r(i) ≥ s(i) for
any i, and l(1) = 0 and l(i+ 1) = (2k2 + 1)l(i) + 2k2 for i ≥ 1. Simple analysis shows that

l(i) = (2k2 + 1)i−1 − 1, which eventually leads to 2(2k
2+1)log

4
ǫ ≤ t ≤ 23

m ≤ 2(2k
2+1)16/ǫ

2

.
In order to verify the statement regarding the equiv-partition case consider the modifica-

tion of the above construction by setting s′(1) = 1 and s′(i+1) = [s′(i)(s′(i)+ 1)2k
2
][s′(i)(s′(i)+

1)2k
2
+ 1], and applying Lemma 2.6 with ǫ/4. Identical analysis as before delivers that

s′(i) ≤ 2(4k
2+2)i−1−1. Using the above notation, V is a step function with t = s′(i)(s′(i)+1)2k

2

steps denoted by P. Let the refinement P ′ of P be such that each Pi is subdivided in an
arbitrary way into the sets Pi,1, . . . , Pi,hi of size 1/t2 and a remainder set Pi,0. Subsequently
consider P ′′ that we obtain from P ′ by replacing the remainder sets by an arbitrary 1/t2

subdivision of their union to eventually obtain an equiv-partition with s′(i+ 1) classes.
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Claim 2.15. Let P and Q two partitions of [0, 1] with the same number of classes t (this
will be not necessary, if this fails, then add empty sets to one of the partitions). Also, let
W ∈ W[−1,1] be such that it is 0 on the set [∪ti=1(Pi ∩Qi)]× [∪ti=1(Pi ∩Qi)]. Then

|‖WP‖�P − ‖WQ‖�Q| ≤ 4
t

∑

i=1

λ(Pi△Qi).

We conclude with

‖W −WP ′′‖�P ′′ ≤ ‖W −WP ′‖�P ′ + 4/t

≤ 2‖W − V ‖�P ′ + 4/t

≤ ǫ/4 + 4/t ≤ ǫ,

where the first inequality holds due to Claim 2.15, the second due Claim 2.14, and the third
stands as a consequence of how the sets Ki were specified.

As seen in the proof, the upper bound on the number of classes in the statement of the
lemma is not the sharpest we can prove, we stay with the simpler bound for the sake of
readability. In the simple graph case the above reads as follows.

Corollary 2.16 (Intermediate regularity lemma). For every ǫ > 0 and W ∈ W[0,1] there

exists a partition P = (P1, . . . , Pm) of [0, 1] into m ≤ 23
16/ǫ2

parts, such that

‖W −WP‖�P ≤ ǫ. (2.18)

With the additional condition that the partition classes should have the same measure the

above is true with m ≤ 26
64/ǫ2

.

The following result regarding the distance of a simple graph and its induced subgraph
on a uniformly chosen vertex set is crucial for our purposes. Originally it was established to
verify Theorem 2.5, the equivalence of the substructure and the metric convergence.

Lemma 2.17. [4] Let ǫ > 0 and let U be a graphon with ‖U‖∞ ≤ 1. Then for q ≥ 2100/ǫ
2

we have

P(δ�(U,H(q, U) ≥ ǫ)) ≤ exp(−4100/ǫ
2 ǫ2

50
). (2.19)

3 Proof of Theorem 1.5

We will use the continuity of a testable graph parameter with respect to the cut norm and
the connection of this property to the sample complexity of the parameter. We require two
results, the first one quantifies the above continuity.

Lemma 3.1. Let g be a testable k-colored digraph parameter with sample complexity at
most qg. Then for any ǫ > 0 and graphs G,H with δ�(G,H) ≤ 2−2q2(ǫ/2) log k we have
|g(G)− g(H)| ≤ ǫ, whenever q2/min{|V (G)|, |V (H)|}q−1 < ǫ.

10



Proof. Let G, H, and ǫ > 0 as in the statement, and let q = q(ǫ/2). Then we have

|g(G)− g(H)| ≤ |g(G)− g(G(q,G))|+ |g(G(q,WG))− g(G(q,G))|
+ |g(G(q,WG))− g(G(q,WH))|+ |g(G(q,H))− g(G(q,WH))|
+ |g(H)− g(G(q,H))|. (3.1)

The first and the last term on the right of 3.1 can be upper bounded by ǫ/4 with failure
probability ǫ/2, by the assumptions of the lemma. To deal with the second and the fourth
term we require the fact thatG(q,G) andG(q,WG) has the same distribution conditioned on
the Xi’s for the second random object lie in different classes of the canonical equiv-partition
of [0, 1] into |V (G)| classes. The failure probability of the latter event can be upper bounded
by q2/2|V (G)|q−1.

In order to handle the third term we wish to upper bound the probability that the
two random graphs are different in some appropriate coupling, since clearly in the event
of equality the third term of (3.1) is 0. More precisely, we will show that G(q,WG) and
G(q,WH) can be coupled in such a way that P(G(q,WG) 6= G(q,WH)) < 1− ǫ. We utilize
that for a fixed k-colored digraph F on q vertices we can upper bound the deviation of the
subgraph densities of F in G and H by the cut norm of their difference. In particular,

|P(G(q,WG) = F)− P(G(q,WG) = F)| ≤
(

q

2

)

δ�(WG,WH).

Therefore in our case

∑

F

|P(G(q,WG) = F)− P(G(q,WG) = F)| ≤ k2(
q
2)
(

q

2

)

2−2q2 log k ≤ ǫ, (3.2)

where the sum goes over all labeled k-colored digraphs F on q vertices.
Now we can couple G(q,WG) and G(q,WH)) via the underlying independent uniform

[0, 1] random variables {Xi}1≤i≤q, and {Yi,j}1≤i<j≤q, paying attention that the overlay sat-

isfies P[G(q,WG)(ij) 6= G(q,WH)(ij)|Xi, Xj] =
∑k

α,β=1 |W
(α,β)
G

(Xi, Xj) − W
(α,β)
H

(Xi, Xj)|
for all ij ∈

(

[q]
2

)

, so that in the end P[G(q,WG) 6= G(q,WH)] ≤ ǫ. This implies that with
positive probability (in fact, with at least 1−3ǫ) the sum of the five terms on the right hand
side of (3.1) does not exceed ǫ, so the statement of the lemma follows.

We will also require the following statement which can be regarded as the quantitative
counterpart of Lemma 3.2 from [14].

Lemma 3.2. Let ǫ > 0, U be a step function with steps P = (P1, . . . , Pt) and V be a graphon
with ‖U−V ‖�P ≤ ǫ, and also let k ≥ 1. For any U = (U (1,1), . . . , U (k,k)) k-colored digraphon
step function with steps from P that is an m-witness of U there exists a k-colored m-witness
of V denoted by V = (V (1,1), . . . , V (k,k)) so that ‖U−V‖� =

∑k
α,β=1 ‖U (α,β)−V (α,β)‖� ≤ k2ǫ.

If V = WG for a simple graph G on n nodes and P is an n-partition of [0, 1] then there
is a (k,m)-coloring G of G that satisfies the above conditions and ‖U − WG‖� ≤ 2k2ǫ
whenever n ≥ 16/ǫ2.
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Proof. Let U , V and U as in the statement of the lemma. Then
∑k

α,β=1 U
(α,β) = 1, let

M be the subset of [k]2 such that its elements have at least one component at most m, and
∑

(α,β)∈M U (α,β) = U . Now for (α, β) ∈ M set V (α,β) = V U (α,β)

U
on the set where U > 0 and

V (α,β) = V
k2−(k−m)2

where U = 0, furthermore for (α, β) /∈ M set V (α,β) = (1−V )U (α,β)

1−U
on

the set where 1 > U and V (α,β) = 1−V
(k−m)2

where U = 1. We will show that the k-colored

digraphon V defined this way satisfies the conditions, in particular for each (α, β) ∈ [k]2 we
have ‖U (α,β) − V (α,β)‖� ≤ ǫ. We will only explicitly preform the calculation for (α, β) ∈M ,
the other case is analogous. We fix S, T ⊂ [0, 1].

∣

∣

∣

∣

∣

∣

∫

S×T

U (α,β) − V (α,β)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

S×T,U>0

U (α,β) − V (α,β) +

∫

S×T,U=0

U (α,β) − V (α,β)

∣

∣

∣

∣

∣

∣

≤
t

∑

i,j=1

∣

∣

∣

∣

∣

∣

∣

∫

(S∩Pi)×(T∩Pj),U>0

U (α,β)

U
(U − V ) +

∫

(S∩Pi)×(T∩Pj),U=0

1

k2 − (k −m)2
(U − V )

∣

∣

∣

∣

∣

∣

∣

=
t

∑

i,j=1

∣

∣

∣

∣

∣

∣

∣

∫

(S∩Pi)×(T∩Pj)

(U − V )

[

IU>0
U (α,β)

U
+ IU=0

1

k2 − (k −m)2

]

∣

∣

∣

∣

∣

∣

∣

≤
t

∑

i,j=1

∣

∣

∣

∣

∣

∣

∣

∫

(S∩Pi)×(T∩Pj)

(U − V )

∣

∣

∣

∣

∣

∣

∣

= ‖U − V ‖�P ≤ ǫ.

The second inequality is a consequence of
[

IU>0
U (α,β)

U
+ IU=0

1
k2−(k−m)2

]

being a constant

between 0 and 1 on each of the rectangles Pi × Pj.
We prove now the second statement of the lemma concerning graphs with V = WG

and a P that is an n-partition. The first part delivers the existence of V that is a (k,m)-
coloring of WG, which can be regarded as a fractional coloring of G, as V is constant on
the sets associated with nodes of G. For |V (G)| = n we get for each ij ∈

(

[n]
2

)

a probability

distribution on [k]2 with P [Zij = (α, β)] = n2
∫

[ i−1
n
, i
n
]×[ j−1

n
, j
n
]
V (α,β)(x, y)dxdy. For each pair

ij we make an independent random choice according to this measure, and color (i, j) by the
first, and (j, i) by the second component of Zij to get a proper (k,m)-coloring G of G. We
are left with the analysis of the deviation in the statement of the lemma, we will show that
this is small with hight probability with respect to the randomization, which in turn implies
existence. Now we have

‖U−WG‖� ≤ ‖U−V‖� + ‖V −WG‖�
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≤ k2ǫ+

k
∑

α,β=1

‖V (α,β) −W
(α,β)
G

‖�

For each (α, β) ∈ [k]2 we have that P

(

‖V (α,β) −W
(α,β)
G

‖� ≥ 4/
√
n
)

≤ 2−n, this result is

exactly Lemma 4.3 in [4]. This implies for n ≥ 16/ǫ2 the existence of a suitable coloring,
which in turn finishes the proof of the lemma.

Remark 3.3. Actually we can preform the same proof to verify the existence of a k-coloring
V such that d�P(U,V) ≤ k2ǫ. On the other hand, we can not weaken the condition on the
closeness of U and V , a small cut-norm of U − V does not imply the existence of a suitable
coloring V, that is if the number of classes t is exponential in 1/‖U − V ‖�.

We proceed to the proof of the main statement of the paper. Before we do that we require
yet another specific lemma.

Let M denote the set of U n-step functions that have steps P with |P| ≤ tk(∆/2) classes,
and values between 0 and 1. In order to verify Theorem 1.5 we will condition on the event
that is formulated in the following lemma.

Lemma 3.4. Let G be a simple graph on n vertices and ∆ > 0. Then for q ≥ t14k (∆/2) we
have

|dU,P(G)− dU,P(G(q, G))| ≤ ∆/2, (3.3)

for each U ∈ M simultaneously, with probability at least 1 − exp(−c√q) for some constant
c > 0 depending only on k.

Proof. Let q be such that it satisfies the conditions of the lemma and for technical
convenience, n should be such that it is a multiple of q, and let us introduce the quantity
t = tk(∆/2) and F = G(q, G). The proof consists of two main steps.

First we will show that for any n-partition Q of [0, 1] into at most t classes there exists
an n-permutation φ of [0, 1] such that ‖WG −W φ

F ‖�Q < ∆/2 with high probability simul-
taneously for each such Q. Applying Lemma 2.16 with the error parameter ∆/2 and lower
bound t on the number of steps for the approximating step function for WG we can assert
that there exists an n-step function V with its steps forming the partition P into tP steps
with t ≤ tP ≤ 2t such that for every Q partition into tQ classes tQ ≤ tP it holds that

‖WG − V ‖�Q ≤ ∆/2.

This property is equivalent to stating that

max
Q

max
A∈A

max
S,T⊂[0,1]

tP
∑

i,j=1

Ai,j

∫

S×T

(WG − V )(x, y)IQi
(x)IQj

(y)dxdy ≤ ∆/2. (3.4)
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We can reformulate the above by putting

J =









1 0 1 0
1 0 1 0
0 0 0 0
0 0 0 0









,

and defining the tensor product BA = A ⊗ J , so that Bα,β
i,j = AijJα,β. The first matrix J

correspond to the partition (S ∩ T, S \ T, T \ S, [0, 1] \ (S ∪ T )) = (T1, T2, T3, T4) generated
by a pair (S, T ) of measurable subsets of [0, 1] so that for any function W it holds that

4
∑

i,j=1

Jij

∫

[0,1]2

W (x, y)ITi(x)ITjdxdy =

∫

S×T

W (x, y)dxdy.

It follows that the inequality (3.4) is equivalent to saying

max
A∈A

max
Q̂

tP
∑

i,j=1

4
∑

α,β=1

(BA)
α,β
i,j

∫

[0,1]2

(WG − V )(x, y)IQα
i
(x)IQβ

j
(y)dxdy ≤ ∆/2, (3.5)

where the second maximum goes over all n-partitions Q̂ = (Qα
i ) i∈[t]
α∈[4]

into 4t classes. Let us

substitute an arbitrary graphon W for WG − V in (3.5) and define

hA,Q̂(U) =
∑

1≤i,j≤tP
1≤α,β≤4

(BA)
α,β
i,j

∫

[0,1]2

U(x, y)IQα
i
(x)IQβ

j
(y)dxdy

and

hA(U) = max
Q̂

hA,Q̂(U)

as the expression whose optima is sought.
For notational convenience only lower indeces will be used when referring to the entries of

BA. We introduce a relaxed version of the above function hA,Q̂ by replacing the requirement

on Q̂ being an n-partition, instead we define

hA,f(U) =
∑

1≤i,j≤4t

(BA)i,j

∫

[0,1]2

U(x, y)fi(x)fj(y)dxdy

with f = (fi)i∈[4t] being a fractional n-partition into 4t classes, that is, each component of f
is a non-negative n-function, and their sum is the constant 1 function.

It is easy to see that
hA(U) = max

f
hA,f(U),
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where f runs over all fractional n-partitions.
Denote U ′ = WG(q,U). We wish to upper bound the probability that the deviation

|hA(U) − hA(U
′)| exceeds ∆/2, for each A ∈ A simultaneously. To do be able to this

we will require following tools, the proofs are not given here, we direct the reader to [2], [4],
and [10] respectively for a reference. The technique we employ is at some places cited as the
cut decomposition method.

The first result is a variant of the regularity lemma with an additional bound on the
factors used to construct the approximating function.

Lemma 3.5. [2] Let ∆ > 0 arbitrary, and n ≥ 1 . For any bounded measurable n-function
U : [0, 1]2 → [0, 1] there exist an s ≤ 1

∆2 , measurable n-sets Si, Ti ⊂ [0, 1] with i = 1, . . . , s,
and real numbers d1, . . . , ds so that with B =

∑s
i=1 diISi×Ti it holds that

(i) ‖U‖2 ≥ ‖U − B‖2,

(ii) ‖U −B‖� < ∆, and

(iii)
∑s

i=1 |di| ≤ 1
∆
.

The next lemma tells us that the original cut norm is preserved under uniform sampling.

Lemma 3.6. [4] For any ∆ > 0 and bounded measurable function U : [0, 1]2 → [−1, 1] we
have that

P (|‖H(q, U)‖� − ‖U‖�| > ∆) < 2 exp

(

− 10

∆2

)

,

where q ≥ 1000
∆4 .

The following lemma asserts that if we sample from a linear program a certain way to
get a linear program of bounded complexity, then the optimal value of the objective function
cannot deviate too much when the right scaling is applied.

Lemma 3.7. [2], [10] Let n be a positive integer, cm : [n] → R, Ui,m : [n] → R for i = 1, . . . , s,
m = 1, . . . , q, u ∈ R

s×q, α ∈ R. If the optimum of the linear program

maximize
1

n

n
∑

t=1

q
∑

m=1

yt,mcm(t)

subject to
1

n

n
∑

t=1

yt,mUi,m(t) ≤ ui,m for i ∈ [s] and m ∈ [q]

0 ≤ yt,m ≤ 1 for t ∈ [n] and m ∈ [q]
q

∑

m=1

yt,m = 1 for t ∈ [n]
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is less than α, then for any ∆ > 0 and k ≤ n and the independent uniform random sample
X1, . . . , Xk of [n] with replacement the optimum of the sampled linear program

maximize
k

∑

j=1

q
∑

m=1

1

k
xj,mcm(Xj)

subject to
k

∑

j=1

1

k
xj,mUi,m(Xj) ≤ ui,m −∆‖U‖∞ for i ∈ [s] and m ∈ [q]

0 ≤ xj,m ≤ 1 for j ∈ [k] and m ∈ [q]
q

∑

m=1

xj,m = 1 for j ∈ [k]

is less than α +∆ with probability at least 1− exp(− ∆2k
2‖c‖2∞

).

Lemma 3.5 ensures the existence of an integer s ≤ 32t4

∆2 , measurable sets Si, Ti ⊂ [0, 1]
with i = 1, . . . , s, and real numbers d1, . . . , ds such that ‖U − ∑s

i=1 diISi×Ti‖� ≤ ∆/32t2

and
∑

i |di| ≤ 32t2

∆
. The hA value of this weighted sum of indicator functions approximates

hA,f(U) sufficiently well for any fractional n-partition f . Let D =
∑s

i=1 diISi×Ti. Then

|hA,f(U)− hA,f(D)| =

∣

∣

∣

∣

∣

∣

∣

∑

1≤i,j≤4t

(BA)i,j

∫

[0,1]2

U(x, y)fi(x)fj(y)dxdy

∣

∣

∣

∣

∣

∣

∣

≤ 4t2‖U −D‖� ≤ ∆.

In the same manner one can introduce a low complexity approximation on the sample
H(k, U), we will show that the image of D mapped via the sampling process is suitable. To
do this we only need to define the subsets [k] ⊃ Ŝi = {m : Xm ∈ Si} and [k] ⊃ T̂i = {m :
Xm ∈ Ti}. Let D̂ =

∑s
i=1 diIŜi×T̂i

. First we condition on the event from Lemma 3.6, call

this event E1, that is
∣

∣

∣
‖H(k, U)− D̂‖� − ‖U −D‖�

∣

∣

∣
< ∆/32t2. Set D′ = WD̂, then on E1

it follows that for any Q̂ that is an n-partition into 4t2 classes we have

|hA,Q̂(U ′)− hA,Q̂(D
′)| ≤ 16t2‖H(k, U)− D̂‖�

≤ 16t2‖U −D‖� +∆/2 ≤ ∆.

Let S = {Si : 1 ≤ i ≤ 2s} denote the set of measurable sets that occur in the sum
that defines D, and let S ′ stand for the corresponding set of sets on the sample, note that
|S| ≤ 64t4

∆2 . Define the sets

I(b) = {f : 1 ≤ i ≤ s, j = 1, . . . , 4t : |
∫

Si

fj − b
(1)
i,j | ≤

∆

16t2
and |

∫

Ti

fj − b
(2)
i,j | ≤ ∆},
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and

I ′(b) = {x : 1 ≤ i ≤ s, j = 1, . . . , 4t : |1
q

∑

j∈S′
i

xj,i − b
(1)
i,j | ≤ ∆/2 and |1

q

∑

j∈T ′
i

xj,i − b
(2)
i,j | ≤

∆

32t2
}.

for each b ∈ [0, 1]8st.

We will use the grid points B = {(b(α)i,j ) : ∀i, j, α : b
(α)
i,j ∈ [0, 1] ∩ (∆/2)Z}.

On every set I(b) we can produce a linear approximation of hA,f(D) (linearity is meant
whit respect to the components of f) which carries through to a linear approximation in
I ′(b) of hA,x(D

′) via sampling. The precise description of this is given in the next auxiliary
result.

Fix b ∈ B and define the b dependent real number

l0 =
4t
∑

i,j=1

s
∑

k=1

(BA)i,jdkb
(1)
i,k b

(2)
j,k ,

and the n-functions l1, l2, . . . , l4t : [0, 1] → R with

lm(x) =
4t
∑

j=1

s
∑

k=1

dk

[

(BA)m,jb
(2)
j,kISk

(x) + (BA)j,mb
(1)
j,kITk(x)

]

.

Then it is not hard to check (see also [2] and [10]) that the following holds. For every
f ∈ I(b) we have that

∣

∣

∣

∣

∣

∣

hA,f(D)− l0 −
1

∫

0

4t
∑

m=1

fm(t)lm(t)(x)dx

∣

∣

∣

∣

∣

∣

< ∆/2,

and for every x ∈ I ′(b) it is true that

∣

∣

∣

∣

∣

hA,f(D
′)− l0 −

q
∑

n=1

4t
∑

m=1

1

q
xm,nlm(Xn)

∣

∣

∣

∣

∣

< ∆/2.

Additionally we obtain that l1, l2, . . . , l4t are in the supremum norm bounded from above by
32t2

∆
.
Lemma 3.7 tells us that the event E2(A, b) comprising the implication that if the linear

program

maximize l0 +

q
∑

n=1

4t
∑

m=1

1

q
xn,mlm(Un)

subject to x ∈ I ′(b)

0 ≤ xn,m ≤ 1 for m = 1, . . . , q and m = 1, . . . , 4t
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4t
∑

m=1

xn,m = 1 for m = 1, . . . , 4t

has optimal value α, then the continuous linear program

maximize l0 +

1
∫

0

4t
∑

m=1

lm(y)fm(y)dy

subject to f ∈ I(b)

0 ≤ fm(y) ≤ 1 for y ∈ [0, 1] and m = 1, . . . , 4t
4t
∑

m=1

fm(y) = 1 for y ∈ [0, 1]

has optimal value at least α−∆/2 has probability at least 1− exp(− ∆4q
105t6

).
Condition on E1 and E2, where the second event is the simultaneous occurrence of

E2(A, b) for each A ∈ A and b ∈ B. E2 has failure probability at most exp(−t) when-
ever q ≥ t14.

Let A ∈ A and also let x be an arbitrary fractional n-partition such that f ∈ I ′(b0) for
some b0 ∈ B. Then there exists a fractional n-partition g ∈ I(b0) such that

hA,x(U
′)− hA,f(U) ≤ hA,x(D

′)− hA,f(D) + ∆/8

≤
q

∑

n=1

4t
∑

m=1

1

q
xm,nlm(Xn)−

1
∫

0

4t
∑

m=1

fm(t)lm(t)(x)dx+∆/4

≤ ∆/2.

This shows eventually that with probability at least 1− exp(−t) we have that

max
A∈A

max
Q̂

tP
∑

i,j=1

4
∑

α,β=1

(BA)
α,β
i,j

∫

[0,1]2

(WG(q,WG−V ))(x, y)IQα
i
(x)IQβ

j
(y)dxdy ≤ ∆. (3.6)

This however is equivalent to saying that for every Q partition into tQ classes tQ ≤ tP it
is true that

‖WG(q,WG−V )‖�Q ≤ ∆/2. (3.7)

The second estimate we require concerns the closeness of the step function V and its
sample. Our aim is to overlay these two functions via measure preserving permutations of
[0, 1], such that the measure of the subset of [0, 1]2 where they differ is as small as possible.

Let V ′ = WH(q,V ), this n-function is well-defined this way and is a step function with
steps forming the n-partition P ′. This latter n-partition of [0, 1] is the image of P induced
by the sample and the map i 7→ [ i−1

q
, i
q
). Let ψ be a measure preserving n-permutation of

[0, 1] that satisfies that for each i ∈ [t] the volumes λ(Pi△ψ(P ′
i )) = |λ(Pi) − λ(P ′

i )|. Let
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P ′′ denote the partition with classes P ′′
i = ψ(P ′

i ) and V
′′ = (V ′)ψ (note that V ′′ and V ′ are

equivalent as graphons), furthermore let NV be the subset of [0, 1]2 where the two functions
V and V ′′ differ. Then

E[λ(NV )] ≤ 2E[

t′
∑

i=1

|λ(Pi)− λ(P ′
i )|]. (3.8)

The random variables λ(P ′
i ) for each i can be interpreted as the average positive outcome of

q independent Bernoulli trials with success probability λ(Pi). It follows that

E[

t
∑

i=1

|λ(Pi)− λ(P ′
i )|] ≤

√

√

√

√t′E[

t
∑

i=1

(λ(Pi)− λ(P ′
i ))

2] ≤
√

t

q
. (3.9)

This calculation yields that E[λ(NV )] ≤
√

4t
q
. Standard concentration result gives us

that λ(NV ) is also small in probability if q is chosen large enough. For convenience, define
the martingale Ml = E[λ(NV )|X1, . . . , Xl] for 1 ≤ l ≤ q, and recognize that the martingale
differences are uniformly bounded: |Ml −Ml−1| ≤ 4

q
. Azuma’s inequality then yields that

P(λ(NV ) ≥
√

4t

q
+ α) ≤ P(λ(NV ) ≥ E[λ(NV )] + α) ≤ exp(−α2q/32). (3.10)

Define the event E3 that holds whenever λ(NV ) ≤
√

4t
q
+ q−1/4 and condition on it in

addition to the above events E1 and E2. It follows from (3.10) that the failure probability
of E3 is at most exp(−t).

It follows that there exists an n-permutation of [0, 1] denoted by φ such that ‖(V ′)φ −
V ‖1 ≤ ∆/4. Now employing the triangle inequality and the bound (3.7) we get for all Q
n-partitions into t parts that

‖WG − (WF )
φ‖�Q ≤ ‖WG − V ‖�Q + ‖V − (V ′)φ‖1 + ‖(V ′)φ − (WF )

φ‖�φ(Q) ≤ ∆ (3.11)

Now let U ∈ M be arbitrary, and let PU denote the partition consisting of the steps of
U . Let ψ be the n permutation of [0, 1] that delivers dU,PU

(G) = ‖U − (WG)
ψ‖�PU

. Then

dU,PU
(G)− dU,PU

(F ) ≤ ‖U − (WG)
ψ‖�PU

− ‖U − (WF )
φψ‖�PU

(3.12)

≤ ‖WG − (WF )
φ‖�ψ−1(PU ) ≤ ∆. (3.13)

The lower bound on the above difference can be handled in a similar way, therefore we have
that |dU,PU

(G)− dU,PU
(F )| ≤ ∆ for every U ∈ M.

We conclude the proof with mentioning that the failure probability of the three events
E1, E2, and E3 taking place simultaneously is at most 3 exp(−t).

We are now ready to conduct the proof of the main result.
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Proof of Theorem 1.5.

Let us fix ǫ > 0 and the simple graph G. To establish the lower bound on f(G(qf , G))
not much effort is required: we pick a coloring G of G that certifies the value f(G), that
is, g(G) = f(G). Then the coloring of G(G, qg) induced by G, which we call F, satisfies
g(F) ≥ g(G)− ǫ/2 with probability at least 1− ǫ/2, simply due to the testability condition
on g, which in turn implies f(G(qg, G)) ≥ f(G)− ǫ/2 with probability at least 1 − ǫ/2. So
the condition qf (ǫ) ≥ qg(ǫ/2) is sufficient for this part.

The problem concerning the upper bound in terms of q on f(G(q, G)) is the difficult part
of the proof, the rest of it deals with this case. We introduce the error parameter ∆ > 0,
that is an explicit function of ǫ > 0, the precise connection will be stated later.

Let us condition on the event in the statement of Lemma 3.4. Let N be the set of all
k-colored digraphs W that are step functions with at most tk(∆/2) equal canonical steps P,
and for U =

∑

(α,β)∈M W (α,β) we have dU,P(G) ≤ 2∆.
Our main step in the proof will be that, conditioned on the aforementioned event, we

can find for each (k,m)-coloring of F a corresponding coloring of G so that the g values of
the two colored instances are sufficiently close. We will make this argument precise in the
following.

Let us fix an arbitrary (k,m)-coloring of F denoted by F. Lemma 2.13 implies that there
exist a W that is a step function with at most tk(∆/2) equal canonical steps P whose values
are integer multiples of ∆/2 between 0 and 1, such that there exists a φ measure-preserving
permutation of [0, 1] such that d�P((WF)

φ,W) ≤ ∆. Therefore with U =
∑

(α,β)∈M W (α,β)

we have dU,P(F ) ≤ ∆ with U ∈ M, which in turn implies by the conditioned event that
dU,P(G) ≤ 2∆, and consequently W ∈ N . It follows from Lemma 3.2 that there exists a
(k,m)-coloring of G denoted by G such that d�(W, (WG)

ψ) ≤ 2k2∆ for some ψ.
Therefore we get that δ�(G,F) ≤ (2k+1)∆. Now we have to choose ∆ small enough so

that by Lemma 3.1 we can assert that |g(G) − g(F)| ≤ ǫ/2, ∆ = 2
−q2g(ǫ/2) log k

2k+1
will do. This

finishes our argument, as F was arbitrary and the sample size was chosen in a way that
q ≤ exp(2)(O(1/∆2)) ≤ exp(3)(O(q2g(ǫ/2))), where the big-O hides also the role of k.

4 Generalizations and special cases

We will extract three possible directions of further research specifically with respect to the
framework of the current paper, and will provide partial answers to questions posed by the
authors of [14].

First we will introduce an even more restrictive notion of nondeterminism (the definition
used in the current paper’s previous section is a special case of the notion used commonly
in the complexity theory), relying on this we are able to improve on the sample complexity
upper bound of weakly nondeterministically testable graph parameters using a simplified
version of our approach applied in the proof of Theorem 1.5 without significant alterations.
Secondly, we will take an outlook on nondeterministically testable graph parameters whose
witness parameter has polynomial sample complexity in 1

ǫ
, where ǫ is the error parameter,
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and will compare the approach with the case of MAXCUT, whose sample complexity is
known to be polynomial in 1

ǫ
. The third point will concern a generalization of the current

framework to uniform hypergraphs of higher order.

4.1 Weak nondeterminism

We formulate the definition of a stronger property than the previously defined non-deterministic
testability. The notion itself may seem at first more complicated, but in fact it only cor-
responds to the case, where the witness parameter g of f for a graph G is evaluated only
on the set of node-colorings of G instead of edge-colorings in order to define the maximum
expression. This modification will enable us to rely only on the cut-norm and the correspond-
ing regularity lemma instead of the cut-P-norm, thus leading us to better upper bounds on
the sample complexity of f with respect to that of g. This time we only treat the case of
undirected graph colorings in detail, the directed case is analogous.

We will introduce the set of colorings of G called node-(k,m)-colorings. Let T =
(T1, . . . , Tk) be a partition of V (G) and D = (D1, . . . , Dm), D′ = (D′

1, . . . , D
′
m) be two par-

titions of [t]2, together they induce two partitions, C = (C1, . . . , Cm) and C′ = (C ′
1, . . . , C

′
m),

of V (G)2 such that each class is of the form Cα = ∪(i,j)∈DαTi × Tj and C
′
α = ∪(i,j)∈D′

α
Ti× Tj

respectively. A node-(k,m)-coloring of G is defined by some C of the previous form and
is the 2m-tuple of simple graphs G = (G1, . . . , Gm, G̃1, . . . , G̃m) with Gα = G[Cα] and
G̃α = Gc[C ′

α]. Here G
c stands for the complement of G (the union of G and its complement

is the directed complete graph with all loops present), and G[Cα] is the union of induced
subgraphs of G between Ti and Tj for each (i, j) ∈ Dα for i 6= j, in the case of i = j the
term in the union is the induced subgraph of G on the node set Ti.

Definition 4.1. The graph parameter f is weakly non-deterministically testable if there exist
integers m and k with m ≤ k and a testable edge-k-colored directed graph parameter g such
that for any simple graph G the value f(G) = maxG′=G g(G), where the maximum goes over
the set of node-(k,m)-colorings of G.

The following lemma is the analogous result to Lemma 3.2 that can be employed in
the proof of Theorem 1.5 in the special case of weakly non-deterministically testable graph
parameters.

Lemma 4.2. Let ǫ > 0, be a U and V be arbitrary graphons with ‖U − V ‖� ≤ ǫ, and
also let k ≥ 1. For any U = (U (1), . . . , U (m), Ũ (1), . . . , Ũ (m)) node-(k,m)-coloring of U there
exists a node-(k,m)-coloring of V denoted by V = (V (1), . . . , V (k), Ṽ (1), . . . , Ṽ (m)) so that
d�(U,V) =

∑m
i=1 ‖U (i) − V (i)‖� +

∑m
i=1 ‖Ũ (i) − Ṽ (i)‖� ≤ 2k2ǫ. If V = WG for some simple

graph G on n nodes and each U (i) is an n step function then there is a coloring G of G such
that d�(U,WG) ≤ 2k2ǫ.

Proof. Our approach is quite elementary: consider the partition T of [0, 1] and C of [0, 1]2

that provide U and define V (i) = V ICi
and Ṽ (i) = (1− V )ICi

for each i ∈ [m]. Then

‖U (i) − V (i)‖� ≤
∑

(α,β)∈Di

‖(U − V )ITα×Tβ‖� ≤ ǫ|Di| (4.1)
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for each i ∈ [m], and the same upper bound applies to ‖Ũ (i) − Ṽ (i)‖�. Summing up over i
gives the result stated in the lemma.

The argument showing the part regarding simple graphs is identical.
Note that in Lemma 3.2 we required U and V to be close in the cut-P-norm for some

partition P and U to be a P step function to guarantee for each U the existence of V that
is close to it in the cut distance of k-colored digraphons. Using the fact that in the weakly
non-deterministic framework cut-closeness of instances implies the cut-closeness of the sets
of their node-(k,m)-colorings we can formulate the next corollary of Theorem 1.5 that is the
main result of this subsection.

Corollary 4.3. Let f be a testable graph parameter with weak non-deterministic witness
parameter g of node-(k,m)-colored graphs, and let the corresponding sample complexity func-
tions be qf and qg. Then there for any ǫ > 0 we have qf (ǫ) ≤ exp(2)(poly(qg(ǫ/2))).

Proof. We will give only a sketch of the proof, as it is almost identical to that of Theorem
1.5, and we automatically refer to that, including the notation used in the proof, if not
noted otherwise. The part concerning the lower bound of f(G(q, G)) is completely identical.
For the upper bound we have to replace M by its subset M′ that consists only of the step
functions with at most t′k(∆/2) steps.

Let ǫ > 0 be arbitrary, and let ∆ > 0 to be specified later as a functions of ǫ > 0. We
condition now on the event that δ�(G,G(q, G) ≤ ∆, whose probability is sufficiently small
due to Lemma 2.17. Now we select an arbitrary (k,m)-coloring F of G(q, G) and apply the
Weak Regularity Lemma for k-colored graphons, Lemma 2.9, in the n step function case
with error parameter ∆/(2k2 + 1) to get a tuple of n-step functions U with t′k(∆/(2k

2 + 1))
steps. We define the n-graphon U =

∑m
i=1 Ui and observe that our condition implies that

δ(G,U) ≤ 2∆. To finish of the proof apply Lemma 4.2, it implies the existence of a coloring
G of G so that δ�(G,F) ≤ (2k2 +1)∆. Setting ∆ to exp(−cq2q (ǫ)) and applying Lemma 3.1
delivers the desired result.

4.2 Polynomially non-deterministically testable graph parameters

This subsection deals with the special case of non-deterministically testable parameters whose
witness parameter is testable with sample complexity that is polynomial in 1

ǫ
. The aim in

this setting would be naturally to investigate if polynomial testability of the witness implies
the polynomial testabilty of the parameter in consideration. We were not able to provide
any improvement in general to this issue, but propose the following reduction of a certain
special case.

We stick to the previously presented framework of weak nondeterminism using some vari-
ant of weak regularity, therefore we impose the additional condition that witness parameters
should obey α-Hölder-continuity in the cut metric for some fixed α > 0. That means that if
we find an ∆-approximating graphon step function W to our graph G in the cut metric (its
existence is provided by the Weak Regularity Lemma) such that their g values are ǫ-close,
then it suffices to take a sample whose size that is poly(1/∆), and therefore poly(1/ǫ), so
that the sampled graphon W ′ and G(q, G) are cut-(2∆)-close with high probability, and

22



therefore their g values are (21/αǫ)-close, also with high probability. Here we assumed that
the parameter g is defined also for graphons, this assumption spares us some technical diffi-
culties that otherwise would have been to overcome. We also want to use the version of the
Weak Regularity Lemma that has the least conditions on the approximating step function
(without equal sizes of classes), but the number of steps of W , s, still exponential in 1/∆2 in
general, although W can also be regarded as the weighted sum of 4/∆2 indicator functions
of the form IS×T .

Let W =
∑s

i=1 diISi×Ti and W ′ =
∑s

i=1 diIS′
i×T

′
i
. Notice that a priori W ′ has no ex-

plicit form and can be transformed via measure-preserving permutations of [0, 1] with-
out changing its graphon equivalence class, therefore we only fix one of these representa-
tions. The only thing that we can rely on that the sizes of the atoms defined by the sets
{S ′

1, . . . , S
′
s, T

′
1, . . . , T

′
s} (which are random variables, actually average outcomes of certain

Bernoulli trials) have to respect the sampling procedure. Roughly said, if the sample size
is at least of square order of the number of atoms, that is, it is at least 28/∆

2
, than each

atom size can be approximated well, so W and W ′ can be arranged by measure-preserving
permutations in a way that the L1-norm of their difference is small, and therefore also their
cut distance is small.

The most important problem is the following: Is there a way to get rid of the necessity
of two step functions (of the previous special form) being close in the cut metric to achieve
closeness in their g values by relying on the fact that the sample complexity of g is much
smaller than the number of steps (atoms) of the aforementioned step functions, but is com-
parable to the number of sets defining these atoms? We finish with the exact formulation
of this to open problem whose solution would shed more light on the sample complexity of
parameters that are weakly nondeterministically testable.

Let (Ω,A, µ) be a probability space and h be a parameter of random variables {X|X :
Ω → [−d, d] measurable} with d > 0 being some bound, that is, the h value of two random
variables is identical, whenever they have the same distribution function. Let X1, . . . , Xq be
independent samples according to the distribution of some random variable X , and define the
random variable X [q] : Ω → R that takes the values X1, . . . , Xq with probability proportional
to the frequency of their appearance. Suppose that there is a function qg : R+ → R+ such
that |h(X)− E[h(X [qg(ǫ)])]| < ǫ for every X , and that h is L1-continuous.

Question 4.4. Let X and Y be two random variables and s > 0, d1, . . . ds, such that
X =

∑s
i=1 diBi and Y =

∑s
i=1 diCi, where B1, . . . , Bs, C1, . . . , Cs are Bernoulli random

variables (they are not assumed to be independent, but Y can be thought of as a ran-
dom variable in Ω′ that is a copy of Ω). Does a function t exist that does not depend
on s, but log(t(ǫ)) = Θ(log(qg(ǫ))), such that for each ǫ > 0, t′ ≤ t(ǫ) and i1, . . . , it′, if
|E[Bi1 . . . Bit′

]− E[Ci1 . . . Cit′ ]| ≤ ǫst
′
holds, then |h(X)− h(Y )| ≤ ǫ?
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