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Abstract

We prove the first logarithmic lower bounds for the approximability of the Minimum Dom-
inating Set problem for the case of connected (α, β)-power law graphs for α being a size
parameter and β the power law exponent. We give also a best up to now upper approximation
bound for this problem in the case of the parameters β > 2. We develop also a new functional
method for proving lower approximation bounds and display a sharp approximation phase tran-
sition area between approximability and inapproximability of the underlying problems. Our
results depend on a method which could be also of independent interest.

Keywords: Approximation Algorithms, Inapproximability, Power Law Graphs, Combinatorial
Optimization, Dominating Set

1 Introduction

The Minimum Dominating Set problem (Min-DS) asks for a minimum size set of vertices D for
a given graph G such that each vertex in G is either contained in D or adjacent to some vertex in D.
The Min-DS problem has asymptotically the same approximation upper and lower bounds as the
Set Cover problem. It can be approximated within (1 − o(1)) ln(n) by a greedy algorithm and,
unless NP ⊆ DTIME(nO(log logn)), there is no (1− ε) ln(n)-approximation algorithm for Min-DS for
any ε > 0 [8]. Furthermore, Raz and Safra established an approximation lower bound of c · ln(n)
for some constant c under the weaker assumption that P 6= NP [20].

In this paper we give new approximation upper and lower bounds for Min-DS on power law
graphs. G is called a power law graph if the number of nodes of degree i is proportional to i−β, for
some β > 0. The parameter β is called the power law exponent and determines the log-log growth
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rate of G. The Min-DS problem on power law graphs was originally introduced in the context of
the sensor placement problems in massive social networks (cf. [7]).

Power law graphs (PLG) have been used in modeling and analyzing the real-world networks like
the graphs of the Internet and the World Wide Web (WWW), peer-to-peer networks, mobile call
networks, protein-protein interaction networks, gene regulatory networks, food webs and various
social networks. Typically, the power law exponent of these real-world networks lies within the
range 2 < β < 3 (e.g. β = 2.38 for the WWW [5], β = 2.4 for protein-protein interaction networks
[13]). There also exist examples of real-world networks with a power law exponent β ≤ 2 or β ≥ 3,
e.g. for distributional food webs (β = 1.05, [18]), statistical investigations of book sales in the US
(β = 3.51, [12, 19]) and human contact networks (β = 3.4, [17]).

A number of different random graph models were proposed in order to capture the topological
properties of real-world networks and to analyze these graphs on the basis of a so called null-model
(see [3, 15, 16, 1, 2, 6, 4]). On this basis, two different types of models have been introduced. The
evolving models define a random process where one node at a time is added and connected to the
existing graph in a random fashion—and thus are aiming to describe how power laws arise. The
static models start from a given power law degree sequence as an input and then perform a random
selection from the space of graphs with this degree sequence. The most prominent examples of
the two types are the preferential attachment model described by Barabási and Albert [3], and the
ACL model introduced by Aiello, Chung, and Lu [1, 2].

In this paper, we consider the power law model (α, β)-PLG due to Aiello, Chung, and Lu (also
called the ACL model). A (multi-)graph G with maximum degree ∆ is called an (α, β)-PLG with
size parameter α and a power law exponent β, if for each i ≤ ∆ =

⌊
eα/β

⌋
, the number of nodes of

degree i is equal to
⌊
eα/iβ

⌋
.

2 Previous Results

Ferrante, Pandurangan, and Park [9] have shown the NP-hardness of Min-DS on simple discon-
nected (α, β)-PLG for β > 0. In [21] it was shown that Min-DS on (α, β)-PLG is in APX for
β > 2. Furthermore, for β > 1, APX-hardness was shown and explicit constant approximation
lower bounds were given, namely 1 + 1

390(2ζ(β)3β−1) on (α, β)-PLG multigraphs and 1 + 1
3120ζ(β)3β

on simple (α, β)-PLG.
Eubank et al. [7] studied a relaxed version of Min-DS: In the (1 − ε)-Min-DS problem the

requirement is to dominate at least an (1 − ε)-fraction of the vertices. They show that for every
ε > 0, the (1− ε)-Min-DS problem on bipartite random PLG admits a PTAS.
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3 Our Results

In this paper, we give the first logarithmic lower approximation bounds for Min-DS on (α, β)-PLG
for the case β ≤ 2. The best up to now approximation lower bound was a constant bound [21]. We
show that in this case, unless NP ⊆ DTIME(nO(log logn)), Min-DS on connected (α, β)-PLG cannot
be approximated within an approximation ratio Ω(ln(n)). Thus our lower approximation bound is
almost tight. We also give improved approximation upper bounds for the case β > 2 and show that
in this case, Min-DS on (α, β)-PLG can be approximated within some constant approximation
ratio Rβ which converges to 1 as β →∞.

Then we take a very precise look at the phase transition point at β = 2. We consider a case
when β = 2 + 1/f(n) is a function of the size of the graph. Here, n denotes the number of vertices
of the PLG, and f is a monotone increasing unbounded function. Surprisingly, we obtain a very
sharp phase transition result, between approximability and inapproximability areas depending on
the order of magnitude of the function f . We show that when f(n) = o(logn), Min-DS on
(α, 2 + 1/f(n))-PLG is still in APX. On the other hand, we give a logarithmic approximation lower
bound for the case when f(n) = ω(logn).

Our approximation lower bounds are based on a direct approximate reduction from the Set
Cover problem to the Min-DS problem combined with an embedding of the resulting graph
instances into (α, β)-PLG. Our constructions rely on precise estimates of sizes of node intervals in
(α, β)-PLG and on the available node degree inside these intervals. Table 1 summarizes our main
results in lower and upper approximation bounds for Min-DS on (α, β)-PLG.

Power Law Exponent Approx. Lower Bound
0 < β < 1 Ω

(
ln(n)− ln

(
1

1−β
))

β = 1 Ω (ln(n))
1 < β < 2 Ω (ln(n)− ln(ζ(β)))
β = 2 Ω (ln(n)− ln(ζ(β)))

β = 2 + 1
f(n) , f(n) = ω(logn) Ω (ln(n)− ln(ζ(β)))

Power Law Exponent Approx. Upper Bound
β = 2 + 1

f(n) , f(n) = o(logn) APX
2 < β ≤ 2.729 ζ(β)−1

ζ(β)−
∑d−1

j=1 j
−β

β > 2.729 ζ(β−1)−2ζ(β)
ζ(β−1)−2

Table 1: Summary of the main results: Approximation lower bounds and approximation upper
bounds for Min-DS on (α, β)-PLG for certain ranges of the parameter β. The precise choice of the
parameter d is described in Theorem 4.
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4 Organization of the Paper

In Section 5, we are giving an outline of the proof methods and the simulating constructions on
which our reductions are based. In Section 6, we use the original reduction of Feige [8] from 5Occ-
Max-E3-Sat (5 Occurrence Maximum E3-Sat) to the Set Cover problem and the reduction
from the Set Cover to Min-DS. As a result of this section, we obtain sufficient information
about the degree distribution of the resulting Min-DS instances GU,S . In Section 7 we give new
lower bounds on the approximability of Min-DS on (α, β)-PLG. The case 0 < β < 1 is treated
in Section 7.1, based on a precise rounding error analysis for the terms that determine the lower
approximation bound. A similar analysis is used for the case β = 1 in Section 7.2. The Section 7.3
deals with the case 1 < β ≤ 2. Especially, we describe how to rescale the degree distribution of
instances GU,S in order to embed them into an (α, β)-PLG. In Section 8 we present new upper
bounds for the case of β > 2 and provide a detailed comparison of the previous and new upper
bounds in terms of the parameter β. In Section 9 we consider the functional case when βf = 2+ 1

f(n)
is a function of the graph size n which converges from above to 2.

5 Outline of the Method

We are going to give an outline of our methods and the underlying constructions. In order to obtain
logarithmic approximation lower bounds for the Min-DS problem on (α, β)-power law graphs, we
construct reductions from Min-DS in graphs, the problem which is basically as hard to approximate
as the Set Cover problem. It is well known (cf. [14]) that Set Cover instances (U,S) with
universe U and set system S can be translated into instances GU,S of Min-DS in graphs, where
GU,S contains a vertex for every element of U and vertices for the sets S ∈ S. Element vertices
are connected to set vertices of those sets in which they are contained, and two set vertices are
connected by an edge if and only if the two sets have a non-empty intersection.

Our reductions map those graphs GU,S which are stemming from the Set Cover instances
(U,S) to (α, β)-power law graphs Gα,β. In this construction, nodes of the graph GU,S are connected
to a set Γ of degree 2 nodes, and those are again connected to the rest of the graph. The set
Γ enforces any reasonable dominating set in Gα,β to contain a dominating set of the graph GU,S .
Another important property of our constructions is that the residual graph Gα,β\(GU,S∪Γ) contains
a sufficiently small set X of vertices which dominate every node in Gα,β \GU,S . It is precisely this
property which enables us to obtain logarithmic lower bounds (instead of the previously known
constant lower bounds) for the approximability of Min-DS in (α, β)-PLG.

The crucial point in our construction is the implementation of the power law distribution.
Therefore we need to know the degree distribution in the graph GU,S . In Section 6 we use the
original construction from [8], and obtain upper and lower bounds for the degrees of nodes in the
graph GU,S , where (U,S) is a Set Cover instance. We apply our construction only to those Set
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Cover instances (U,S) = FSC(ϕ) where ϕ is a 5Occ-Max-E3-Sat instance and FSC is Feige’s
reduction from [8]. We show that the Min-DS instances GU,S have the following property: There
exist constants 0 < a < b < 1 such that for every (U,S) with (U,S) = FSC(ϕ), the node degrees
of all vertices in GU,S are contained in the interval

[
Na, N b

]
, where N is the number of vertices of

the graph GU,S .

Intervals and Volumes. In the following, we introduce some notions connected to the intervals
of nodes inside an (α, β)-power law graph and of the volume of such intervals. Let Gα,β = (V,E) be
an (α, β)-power law graph with n nodes. Thus, n = ∑∆

i=1
⌊
eα

iβ

⌋
, where ∆ =

⌊
eα/β

⌋
is the maximum

degree of Gα,β. Let m = |E| = 1
2
∑∆
i=1
⌊
eα

iβ

⌋
be the number of edges of Gα,β. According to [1, 2], the

parameters n,m,α and β are related roughly as follows:

n ≈


ζ(β)eα if β > 1

αeα if β = 1
e
α
β

1−β if 0 < β < 1

and m ≈


1
2ζ(β − 1)eα if β > 2
1
4αe

α if β = 2
1
2
e

2α
β

2−β if 0 < β < 2

An interval of nodes in Gα,β is a set [a, b] = {v ∈ V | a ≤ deg(v) ≤ b}, where 1 ≤ a ≤ b ≤ ∆ =⌊
eα/β

⌋
. Let |[a, b]| be the number of nodes inside the interval [a, b]. The volume of an interval [a, b]

is defined as vol([a, b]) = ∑b
j=a
⌊
eα

jβ

⌋
· j, i.e. the sum of node degrees of nodes inside the interval.

Embedding Technique. We are going now to construct a map which embeds every graph GU,S
(where (U,S) is a Set Cover instance from Feige’s hardness result) into an (α, β)-PLG Gα,β. Let
GU,S = (VU,S , EU,S) with |VU,S | = N . The graphs GU,S have the following property: There exist
constants 0 < a < b < 1 such that for all v ∈ VU,S , Na ≤ degU,S(v) ≤ N b. The power law graph
Gα,β = (Vα,β, Eα,β) has the vertex set Vα,β = VU,S ∪X ∪ Γ ∪ V1 ∪W . The set X is a subset of the
node interval [x∆, y∆] = { v ∈ Vα,β | x∆ ≤ degα,β(v) ≤ y∆ }. X is the set of dominating nodes,
V1 is the set of degree 1 nodes and W the set of remaining nodes which is needed to implement
the power law distribution. The power law graph Gα,β is constructed in such a way that each node
in VU,S has precisely one neighbor in Γ ⊆ W , and every u ∈ Γ has precisely one neighbor in VU,S .
Furthermore, each node w ∈ W is adjacent to precisely one node in X and every degree 1 node
is adjacent to a node in X, whereas each v ∈ X has at least one degree 1 neighbor. From this
construction it follows that the set X dominates every vertex in W and all the degree 1 nodes in
V1. (cf. Figure 1). During the construction of the graph Gα,β, we keep track of the residual degrees
degr(v) of nodes in X ∪W ∪ V1.

The algorithm ConstructPLG on page 7 gets as an input the graph GU,S for a given Set Cover
instance (U,S) and constructs the associated power law graph Gα,β. The procedure Fill_Wheel

gets as an input a set of nodes V with residual degrees degr(v) > 0, ∀v ∈ V and generates the missing
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Γ ⊆ V2

GU,S

W

X

Figure 1: The main construction for the embedding of a Min-DS (Set Cover) instance GU,S into
a (α, β)-PLG. In the resulting graph the nodes ∈ X are dominating the sets W ∪ V1, separating
the dominating set in GU,S from the dominating set in Gα,β \GU,S .

edges degree-wise in a cyclic order. Let vj,1, . . . , vj,nj be the nodes of degree degα,β(vj,l) = j in
the set V , then the following invariant will be maintained. In every stage of the construction, for
every j ∈ {1, . . . ,∆}, degr(vj,1) ≤ · · · ≤ degr(vj,nj ) and degr(vj,nj )− degr(vj,1) ≤ 1. The procedure
Fill_Wheel is described in detail in [11]. Figure 2 shows how the node intervals with the same

degree i
degree i+ 1

degr
ee i

+ 2

Figure 2: Procedure Fill_Wheel realizes the residual degrees on the wheel nodes in W and X.

residual degree are filled and how the case is treated when the number of nodes contained in such
an interval is odd. The set X ⊆ [x∆, y∆] and the parameters x∆ and y∆ of the construction
are chosen such that the volume vol([x∆, y∆]) = ∑∆

j=x∆
⌊
eα

jβ

⌋
· j minimally exceeds the number

of nodes in Vα,β \ X. Thus, some nodes v ∈ X might have residual degree > 0. In this case,
Fill_Wheel(X) is used to reduce the residual degree of these nodes to 0. Furthermore, each node
w ∈ W is connected to the set X by a single edge. Since the residual degrees of nodes w ∈ W are
within the interval [3,∆], Fill_Wheel(W ) is used to reduce the residual degree of nodes w ∈W to
0.

In the subsequent sections, we will show how to choose the parameters x and y of the construc-
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Algorithm 1: ConstructPLG
Input: GU,S = (VU,S , EU,S) with |VU,S | = N .
Output: Power law graph Gα,β = (Vα,β, Eα,β) with Vα,β = VU,S ∪X ∪W ∪ V1 ∪ V2,

|Vα,β| = n and EU,S ⊆ Eα,β.
choose α, x, y such that vol([x∆, y∆]) ≥ n and |[Na, N b]| ≥ N ;
set X := [x∆, y∆], W := [3,∆] \ (VU,S ∪X) and Γ := ∅;
set Vα,β := VU,S ∪X ∪W ∪ V1 ∪ V2;
for i = 1, . . . , N do

map si ∈ VU,S with ti ∈ V2 \ Γ and set Eα,β := Eα,β ∪ {si, ti},Γ := Γ ∪ {ti};
choose v ∈ X with maximum degr(v) > 0 and set Eα,β := Eα,β ∪ {ti, v};
update degr(ti) and degr(v);

foreach u ∈ V1 ∪ V2, degr(u) > 0 do
choose v ∈ X with maximum degr(v) > 0 and set Eα,β := Eα,β ∪ {u, v};
update degr(t) and degr(v);

foreach w ∈W do
choose v ∈ X with maximum degr(v) > 0 and set Eα,β := Eα,β ∪ {w, v};
update degr(w) and degr(v);

Fill_Wheel(W ); /* realizes residual degrees on W and X */
Fill_Wheel(X);
return Gα,β = (Vα,β, Eα,β);

tion depending on the power law exponent β in such a way that the set X becomes sufficiently
small. Hence any dominating set D′ in Gα,β can be efficiently transformed into a dominating set D
of size |D| ≤ |D′| such that D = DU,S ∪X, where DU,S ⊆ VU,S is a dominating set of GU,S .

6 Node Degrees and Lower Bound for Set Cover

In order to go on with our proof we need the following constructions. We start with Feige’s [8]
logarithmic lower bound for the approximability of the Set Cover problem. For each Set Cover
instance (U,S) we embed the associated Min-DS instance GU,S into an (α, β)-PLG Gα,β. In order
to implement the power law node-degree distribution, we need to know the degree distribution
of the graph GU,S . Therefore we briefly review the construction from [8]. This construction is
based on a k-prover proof system for the problem 5Occ-Max-E3-Sat. Consider a 3CNF formula
ϕ with n variables such that each variable occurs at most 5 times in ϕ. One can assume that
either the formula is satisfiable, or no assignment satisfies more than an ε fraction of the clauses
simultaneously. The k-prover proof system works as follows: It chooses k codewords of length
l = Θ(log logn), weight l/2 and pairwise Hamming distance ≥ l/3. The verifier picks l clauses
C1, . . . , Cl from ϕ independently uniformly at random. Independently, from each such clause Ci it
picks one variable xi of Ci uniformly at random. For each 1 ≤ i ≤ k, the verifier sends to the prover
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i those l/2 clauses Cj for which the associated bit of prover i’s codeword is 1 and those l/2 variables
xj for which the associated bit of prover i’s codeword is 0. The provers return their answers, and
based on this the verifier determines its output. The construction of the associated Set Cover
instances makes use of some combinatorial building blocks called partition systems.

Following [8], we define a partition system B(m,L, k, d) to consist of a ground set B of car-
dinality |B| = m and L partitions p1, . . . , pL of B into k disjoint subsets pj,h ⊂ B. The defining
property of these partition systems is that each cover of B by subsets pj,h which uses sets from
pairwise different partitions must consist of at least d subsets. [8] gives a randomized construction
of such partition systems with L ≈ (logm)c, k being any number smaller than ln(m/3) · ln ln(m) and
d = (1− f(k)) · k · ln(m) with some function f(k) with f(k) −→ 0 as k −→∞. That construction
yields partitions for which with high probability all the sets have the same size. We show that the
same result is obtained by making use of random permutations. But now, for each partition pj ,
the sets pj,h always have the same size m/k (provided k|m). Namely, choose a random permutation
πj ∈R Sm and let pj,h = {πj((h−1)m/k+1), . . . , πj(k ·m/k)}. Suppose now we cover B with d subsets
pj1,h1 , . . . , pjd,hd from pairwise different partitions. Then for a given point v ∈ B, the probability
that v is covered by at least one of them is

P (point v ∈ B is covered by at least one of these d sets)

= 1−
d∏
i=1

P (v is not in position 1, . . . ,m/k in permutation πj) = 1−
(m−1

m/k

) · (mk )! · (m− m
k

)
!

m!

d

= 1−
(

(m− 1)! · (m− m
k

)
!(

m− 1− m
k

)
! ·m!

)d
= 1−

m ·
(
1− 1

k

)
m

d = 1−
(

1− 1
k

)d
.

This is precisely the property of the randomized construction which has been used in [8] in the
analysis of the construction. So from now on we assume that all sets of a partition pj have the
same size m/k.

Resulting Set Cover Instances ([8]). For a given 5Occ-Max-E3-Sat formula ϕ with n vari-
ables and the property that either ϕ is satisfiable or no assignment satisfies more than an ε fraction
of the clauses, a Set Cover instance (U,S) is constructed as follows:

• R is the set of random strings used by the verifier in the k-Prover Proof System. The number
of random strings is |R| = R = (5n)l.

• |U | = mR with m = (5n) 2l
ε , hence |U | = (5n)l(1+2/ε)

• For each r ∈ R, Br(m,L, k, d) is a partition system with L = 2l.

• Q = nl/2 ·
(

5n
3

)l/2
is the number of different queries the verifier may ask to a prover.
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• S contains for every triple (q, a, i) a set Sq,a,i, where q is a query, i is (the index of) a prover
and a is the prover’s answer. The set Sq,a,i is defined as Sq,a,i = ⋃

r : (q,i)∈r B(r, ar, i).

Hence the number of sets in S is Q · k, and each set is of cardinality
√
R · m/k. We have to give

an estimate for the number of sets in which a point (an element of U) occurs. For each prover i,
for each query q, each point in Br with |Br| = m occurs in 2l sets Sq,a,i. Hence the total degree of
points (the number of occurrences of this point in sets) is 2l ·Q.

From Set Cover to Dominating Set. Let (U,S) denote a Set Cover instance with U =
{u1, . . . , u|U |} and S =

{
S1, . . . , S|S|

}
. Let GU,S be the undirected graph with set of vertices

VU,S = U ∪ S and set of edges EU,S = { {Si, uj} | uj ∈ Si } ∪ { {Sj , Sl} | Sj ∩ Sl 6= ∅ }. We
observe that each set cover C ⊆ S is a dominating set in GU,S . On the other hand, let D ⊆ VU,S
be a dominating set in GU,S with D = DU ∪ DS , DU = D ∩ U and DS = D ∩ S. If we replace
each ui ∈ DU by an arbitrary set Sj with ui ∈ Sj , the resulting set D′ is a dominating set with
DS ⊆ D′ ⊆ S and |D′| ≤ |D|. In this way dominating sets in GU,S correspond to set covers C for
(U,S).

In the construction in [8], the parameter l satisfies l = Θ(log logn). If N0 = |U | + |S| is the
number of nodes of GU,S , then (up to logarithmic factors), N0 ≈ nl+nl(1+2/ε), the degree of element
nodes u ∈ U is ≈ nl, each set contains nl(1/2+2/ε) elements and there are ≈ nl sets. The degree of
set nodes in GU,S is bounded by the sum of the cardinality of that set and the number of sets in
the instance (U,S), which is ≈ nl(1/2+2/ε). Hence we obtain the following result we will use in the
sequel.

Lemma 1. Let FSC denote Feige’s reduction from 5Occ-Max-E3-Sat to the Set Cover problem,
and for a given Set Cover instance (U,S) = FSC(ϕ) let GU,S be the associated Min-DS instance
as described above. If N0 is the number of nodes of GU,S , then for every node v in GU,S , the node
degree of v in GU,S satisfies Na

0 ≤ degU,S(v) ≤ N b
0 , where 0 < a < b < 1 and b = (1+o(1)) · 1/2+2/ε

1+2/ε =
(1 + o(1)) · ε+4

2ε+4 .

In the next section we consider approximation lower bounds for the values of β satisfying
0 < β ≤ 2.

7 New Lower Bounds for 0 < β ≤ 2

We will now describe our new logarithmic lower bounds for approximability of the Min-DS problem
in (α, β)-PLG. We distinguish several cases depending on the range of the parameter β. For the
cases 0 < β < 1, 1 < β < 2 and β = 2 our construction involves rescaling of the instances GU,S ,
which has the effect of shifting the degree interval

[
Na, N b

]
towards the left end of the full interval

[1,∆]. It turns out that for the case β = 1 we can omit the scaling and directly implement the
power law distribution.
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Bounds on Optimums in GU,S . Let (U,S) be an instance of the Set Cover problem which
is an image (U,S) = FSC(ϕ) of some 5Occ-Max-E3-Sat instance ϕ under Feige’s reduction
FSC . Suppose the number of nodes of GU,S is N0. Let OPT(GU,S) denote a minimum cardinality
dominating set of GU,S . Then

|OPT(GU,S)| ≤ k ·N
ε

2+ε
0 or |OPT(GU,S)| ≥ (1− ε) · k ·N

ε
2+ε

0 · ε

2 + ε
·
(1

2

) ε
2+ε · (ln(N0)−O(1)) ,

where k is the number of provers in Feige’s k-prover proof system. Recall that the 3CNF formula
ϕ with FSC(ϕ) = (U,S) is either satisfiable, or no assignment satisfies more than an ε fraction of
its clauses. Furthermore, as a result of Lemma 1, the node degrees in GU,S are contained in the
interval

[
Na

0 , N
b
0
]
with 0 < a < b < 1 being constant.

Scaling. In the three cases 0 < β < 1, 1 < β < 2 and β = 2, it turns out that we have to rescale
the degrees of nodes in GU,S in order shift the interval associated to GU,S towards the left end of
the full interval. This will yield a better lower bound for the size of a dominating set in GU,S and
prevents overlapping of the intervals [Na, N b] and [x∆, y∆]. For this purpose, we replace GU,S by
the graph GdU,S which consists of Nd−1

0 disjoint copies of the graph GU,S (cf. Figure 3). Here, d is a

Na N b

GU,S

N a/d N b/d

0

GU,S

GU,S GU,S. . .

Nd−1
0 copies

⇒

Figure 3: Scaling by replacing the original graph GU,S by Nd−1
0 disjoint copies in order to shift

the occupied degree set towards the left end of the full interval.

parameter of our construction. The graph GdU,S has the following properties: The number of nodes
is N := Nd

0 . The node degrees are contained in the interval
[
Na/d, N b/d

]
. Let OPT(GdU,S) denote
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an optimum dominating set of GU,S . Then

|OPT(GdU,S)| ≤ N d−1
d kN

1
d

ε
2+ε = kN

1
d(d−1+ ε

2+ε) or

|OPT(GdU,S)| ≥ (1− ε)kN 1
d

ε
2+ε

ε

2 + ε

(1
2

) ε
2+ε (

ln
(
N

1
d

)
−O(1)

)
N

d−1
d

= k
ε(1− ε)

2 + ε

(1
2

) ε
2+ε

N
1
d(d−1+ ε

2+ε)
(
ln
(
N

1
d

)
−O(1)

)
.

Construction of the Graph Gα,β. Now we describe in detail how the graph Gα,β is constructed.
We choose α and the parameters x, y such as to satisfy the following constraints:

(1)
∣∣∣[Na/d, N b/d

]∣∣∣ ≥ N .

(2) |[x∆, y∆]| = o
(
N

d−1
d

)
, where N d−1

d is a lower bound for the size of an optimum dominating
set in GU,S .

(3)
y∆∑
j=x∆

⌊
eα

jβ

⌋
· j = vol(|x∆, y∆|) ≥ ζ(β) · eα, i. e. the total volume of the set [x∆, y∆] is large

enough such that [x∆, y∆] can dominate the wheelW as well as all the degree 2 nodes, which
are matched to nodes in the graph GU,S .

Constraint (1) is implied by the following stronger constraint: eα · N−bβ/d ≥ N . In all of the
following cases, we work with this constraint instead of (1) and obtain the following bound for the
parameter α: eα ≥ N1+bβ/d. In order to minimize the value of the parameter α—and therefore the
overall graph size—we choose eα = N1+bβ/d.

7.1 The Case 0 < β < 1

Now we consider the case 0 < β < 1. Here, we have to make use of our scaling technique.
Furthermore, in this case we have to choose parameters x, y of the interval X = [x∆, y∆] carefully
in order to obtain a logarithmic lower bound. The next lemma provides an estimate for the size of
the interval [x∆, y∆] and the volume vol([x∆, y∆]).

Lemma 2. Let 0 < β < 1 and X = [x∆, y∆]. We have the following bounds on the size and the
volume of the underlying interval:

|[x∆, y∆]| ∈
[ ∆

1− β
(
1− x1−β

)
−
( 1
xβ
− 1

)
− (2− x)∆, ∆

1− β
(
1− x1−β

)]
and

vol([x∆, y∆]) ≥ ∆2
(

1− x2−β

2− β − 1
2 + x2

2

)
−∆

(
1− x1−β − 1

2 + x

2

)
.

11



Proof. Regarding the requirement of constraint (2) of the construction, we have

|[x∆, y∆]| ∈
 y∆∑
j=x∆

eα

jβ
− (y − x+ 1)∆,

y∆∑
j=x∆

eα

jβ

 ,
where

y∆∑
j=x∆

eα

jβ
∈

eα y∆∫
x∆

1
jβ

dj − eα
( 1

(x∆)β −
1

(y∆)β
)
, eα

y∆∫
x∆

1
jβ

dj


=

eα [ j1−β

1− β

]y∆

x∆
− eα

∆β

( 1
xβ
− 1
yβ

)
, eα

[
j1−β

1− β

]y∆

x∆


=
[
eα∆1−β

1− β
(
y1−β − x1−β

)
−
( 1
xβ
− 1
yβ

)
,
eα∆1−β

1− β
(
y1−β − x1−β

)]

=
[ ∆

1− β
(
y1−β − x1−β

)
−
( 1
xβ
− 1
yβ

)
,

∆
1− β

(
y1−β − x1−β

)]
.

In order to fulfill the volume requirement of constraint (3), we have to take into account the
rounding error resulting when we replace the sum ∑y∆

x∆

⌊
eα

jβ−1

⌋
by ∑y∆

x∆
eα

jβ−1 . The sum of node
degrees of nodes in [x∆, y∆] is

vol([x∆, y∆]) =
y∆∑
x∆

⌊
eα

jβ

⌋
· j ∈

[ y∆∑
x∆

eα

jβ−1 −
(
y∆(y∆− 1)

2 − x∆(x∆− 1)
2

)
︸ ︷︷ ︸

rounding error

,
y∆∑
x∆

eα

jβ−1

]
,

where

y∆∑
x∆

eα

jβ−1 ∈

eα y∆∫
x∆

j1−β dj − eα
(
(y∆)1−β − (x∆)1−β

)
, eα

y∆∫
x∆

j1−β dj


=

eα [ j2−β

2− β

]y∆

x∆
−∆

(
y1−β − x1−β

)
, eα

[
j2−β

2− β

]y∆

x∆


=
[

∆2

2− β
(
y2−β − x2−β

)
−∆

(
y1−β − x1−β

)
,

∆2

2− β
(
y2−β − x2−β

)]
.

We choose y = 1 and obtain

|[x∆,∆]| ∈
[ ∆

1− β
(
1− x1−β

)
−
( 1
xβ
− 1

)
− (2− x)∆, ∆

1− β
(
1− x1−β

)]
.
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The volume of that interval is then estimated as

vol([x∆,∆]) ≥ ∆2

2− β
(
1− x2−β

)
−∆

(
1− x1−β

)
−
(

∆(∆ + 1)
2 − x2∆2 − x∆

2

)

= ∆2

2− β
(
1− x2−β

)
− ∆2

2 + x2

2 ∆2 −∆
(

1− x1−β − 1
2 + x

2

)
= ∆2

(
1− x2−β

2− β − 1
2 + x2

2

)
−∆

(
1− x1−β − 1

2 + x

2

)
, (7.1)

which finishes the proof.

Now we use the scaling technique with scaling parameter d. Thus we have to choose α such that
eα ≥ N

d+bβ
d . Since N d−1

d is a lower bound for the optimum in GdU,S , we have N d−1
d = e

d−1
d+bβ ·α =

e(1−δ)α, where we can choose 1− δ arbitrary close to 1. The size of the interval [x∆,∆] is of order
∆(1−x1−β), hence we want to choose x such that ∆(1−x1−β) = eα/β ·ep with α/β ·p < (1−δ)α, i.e.
p < (1− δ)β. So suppose we choose x such that p = (1− δ′)β, where 1− δ′ can be chosen arbitrary
close to 1. Furthermore, the interval [x∆,∆] needs to provide sufficient volume to dominate the rest
of the graph, i.e. (using Lemma 2) we require that ∆2

(
1

2−β − 1
2 − x2−β

(
1

2−β − xβ

2

))
> ∆. This

yields the requirement 1
2−β − 1

2 − x2−β
(

1
2−β − xβ

2

)
> 1

∆ , which is implied by 1 − 1
∆
(

1
2−β−

1
2

) > x2.

Combining this with the upper bound requirement for the size of the interval, we obtain

(
1− 1− β

e
α
(

1
β
−(1−δ′)

)) 1
1−β

≤ x <
1− 1(

1
2−β − 1

2

)
· e

α
β

 1
2

. (7.2)

We observe that 1
1−β > 1 > 1

2 for β ∈ (0, 1), and furthermore α
β − (1 − δ′)α < α

β . Hence we can
choose x such that Equation 7.2 holds. Thus for this choice of x we have |[x∆,∆]| = o

(
N

d−1
d

)
and vol([x∆,∆]) ≥ |Gα,β|, fulfilling the constraints (2) and (3) of the graph Gα,β. We have
OPT(Gα,β) = (1 + o(1))OPT(GdU,S), and furthermore N = (|Gα,β| · (1− β))

dβ
d+bβ . Altogether we

obtain the following result.

Theorem 1. For 0 < β < 1, the Min-DS problem on (α, β)-PLGs is hard to approximate within

(1− ε)ε
2 + ε

·
(1

2

) ε
2+ε ·

(
β

d+ bβ
·
(

ln(|Gα,β|)− ln
( 1

1− β

))
−O(1)

)
.

7.2 The Case β = 1

In the case β = 1, we can omit the scaling and directly embed the graph GU,S into a PLG Gα,β.
It suffices to describe the choice of parameters x and α for a given GU,S and to verify that the
constraints (1)–(3) of the graph Gα,β are satisfied. It turns out that if we choose x such that
ln(1/x) = o(eα·

b
1+b ) and N1+b

0 = eα, we obtain the following lower bound.

13



Theorem 2. For β = 1, the Min-DS problem on (α, β)-PLGs is hard to approximate within

(1− ε)ε
2 + ε

·
(1

2

) ε
2+ε ·

((1− o(1)) ln(|Gα,β|)
1 + b

−O(1)
)

.

In order to prove the theorem, we have to describe the choice of parameters x and α for a given
GU,S such as to satisfy the constraints (1)–(3). We make use of the following lemma.

Lemma 3. Let β = 1 and X = [x∆, y∆]. We have the following bounds on the size and the volume
of the interval:

|[x∆, y∆]| ∈
[
eα ln

(1
x

)
−
(1
x
− 1

)
, eα ln

(1
x

)]
and

vol([x∆, y∆]) ∈
[
∆2
(

1
2 − x+ x2

2

)
− 1− x

2 ∆, (1− x)∆2
]
.

Proof. For a given x ∈ [0, 1], the size of the interval [x∆,∆] = { v ∈ V (Gα,β) | x∆ ≤ degα,β(v) ≤ ∆ }
satisfies

|[x∆,∆]| ∈
[
eα∑
xeα

eα

j
− (1− x)eα,

eα∑
xeα

eα

j

]

⊆
[
eα (ln(eα)− ln(xeα))− eα( 1

x
− 1) · 1

eα
, eα · ln

(1
x

)]
=
[
eα ln

(1
x

)
−
(1
x
− 1

)
, eα ln

(1
x

)]
.

The volume of that interval is

vol([x∆,∆]) ∈
 ∆∑
x∆

eα − j,
∆∑
x∆

eα


⊆
[
eα(1− x)∆−

(∆(∆ + 1)
2 − x∆(x∆ + 1)

2

)
, eα(1− x)∆

]
=
[
∆2
(

1
2 − x+ x2

2

)
− 1− x

2 ∆, (1− x)∆2
]
.

Proof of Theorem 2. From Lemma 3, we obtain that for every x < 1 being bounded away from 1,
the volume of the interval [x∆,∆] is ω(|Gα,1|). Recall that in order to achieve N0 ≤

∣∣∣[Na
0 , N

b
0
]∣∣∣, it

suffices to choose α sufficiently large such that N0 ≤ eα

Nbβ
0

= eα

Nb
0
. Hence suppose we have N1+b

0 = eα.

This implies eα

Nb
0

= eα·
1

1+b . Thus it suffices to choose x such that ln
(

1
x

)
= o

(
eα·

b
1+b
)
. The size of

the PLG is |Gα,β| = αeα, and from N1+b
0 = eα we obtain N0 = e

α
1+b =

( |Gα,β |
ln(Gα,β)

) 1
1+b . Hence, we
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obtain the same lower bound as for the case 0 < β < 1 stated in Theorem 1. This concludes the
proof of Theorem 2.

7.3 The Case 1 < β ≤ 2

In this section we consider the case 1 < β ≤ 2. We start with the subcase 1 < β < 2. The following
lemma provides estimates for the sizes and volumes of node intervals of the form [x∆, y∆].

Lemma 4. Let 1 < β < 2 and X = [x∆, y∆]. We have the following bounds on the size and the
volume of the interval:

|[x∆, y∆]| ∈
[
∆(y − x)

( 1
yβ
− 1

)
, ∆y − x

xβ

]
and

vol([x∆,∆]) ≥ (1− o(1))∆2 · β − 2x2−β + (2− β)x2

2 · (2− β) .

Proof. For 1 < β < 2, we have the following estimate for the size of the node interval [x∆, y∆]:

|[x∆, y∆]| ∈
[
eα

∆β
(y − x)∆ 1

yβ
− (y − x)∆, e

α

∆β
(y − x)∆ 1

xβ

]
=
[
∆(y − x)

( 1
yβ
− 1

)
, ∆y − x

xβ

]
.

The volume vol(|x∆, y∆|) = ∑y∆
j=x∆

⌊
eα

jβ

⌋
· j can be estimated as follows:

vol(|x∆, y∆|) ≥ eα
y∆∑
j=x∆

j1−β − rβ

= (1− o(1))eα ·
y∆∫
x∆

j1−β dj − rβ

= (1− o(1))eα ·
[
j2−β

2− β

]y∆

x∆
− rβ

= (1− o(1))eα · eα
2−β
β · y

2−β − x2−β

2− β − rβ

= (1− o(1))∆2 · y
2−β − x2−β

2− β − rβ,

where rβ = ∆2(y2−x2)
2 + ∆(y+x)

2 is an upper bound for the rounding error. We conclude that
vol([x∆, y∆]) = ω(|Gα,β|), provided we choose x and y in such a way that y2−β−x2−β

2−β − rβ > 0. Let
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us choose y = 1. Then, we have

y2−β − x2−β

2− β − rβ = 1− x2−β

2− β − 1− x2

2 − o(1) = β − 2x2−β + (2− β)x2

2 · (2− β) − o(1).

Now, we want to choose x ∈ (0, 1) such that β − 2x2−β + (2− β)x2 > 0. This inequality holds
for x < (β/2)

1
2−β , since β

2 < 1. For our choice of α, we have that N d−1
d = e

α· d−1
d+bβ , and hence

constraint (2) holds if the following constraint is satisfied: ∆ · y−x
xβ

= y−x
xβ
· e

α
β = o(eα·

d−1
d+bβ ). Hence,

for our choice of y = 1 and x < (β/2)
1

2−β , this last constraint is satisfied if αβ < α · d−1
d+bβ , i. e. when

d > (b+1)β
β−1 .

We proceed similarly in the case β = 2 and obtain a slightly different version of Lemma 4.

Lemma 5. Let β = 2 and X = [x∆, y∆]. We have the following bounds on the size and the volume
of the interval:

|[x∆, y∆]| ∈
[√

eα · y − x
yβ

,
√
eα · y − x

xβ

]
and vol([x∆, y∆]) = (1− o(1))eα ln

(1
x

)
.

Proof. We give an estimate of the size of the interval [x∆, y∆] and of the volume of that interval.
We have that

|[x∆, y∆]| ∈
[
∆y − x

yβ
,∆y − x

xβ

]
=
[√

eα · y − x
yβ

,
√
eα · y − x

xβ

]
.

The value vol([x∆, y∆]) of the interval is (1 − o(1))∑y∆
j=x∆

eα

jβ
j = (1 − o(1))eα (ln(y∆)− ln(x∆))

= (1− o(1))eα
(
ln
(

1
x

)
− ln

(
1
y

))
. We choose y = 1 and obtain

vol([x∆, y∆]) = (1− o(1))
y∆∑
j=x∆

eα

jβ
· j = (1− o(1))eα

(
ln
(1
x

)
− 0

)
.

Hence, we choose x such that ln
(

1
x

)
≥ ζ(β), i.e. x ≤ 1

eζ(β) . Then the volume of the interval
[x∆,∆] suffices to dominate the rest of the graph and constraint (3) is satisfied. The size of the
interval [x∆,∆] satisfies |[x∆,∆]| ∈

[
∆1−x

1 ,∆1−x
xβ

]
. The two intervals [x∆,∆] and [Na/d, N b/d] need

to be node disjoint. Hence, we want to choose d such that N b/d < x∆. For x = 1
eζ(β) , we have

x∆ = eα/β−ζ(β). Furthermore, the size N of the graph GdU,S satisfies N = |GdU,S | ≤ e
α d
d+bβ . This

yields the following bound for the scaling parameter d: N b/d < x∆ ⇐⇒ e
αb· 1

d+bβ < eα/β−ζ(β) ⇐⇒
d > α·b

α/β−ζ(β) − bβ.
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Resulting Lower Bound. Since the parameter α is chosen such that eα = N1+ bβ
d , we have

|Gα,β| = ζ(β) ·N1+ bβ
d . Thus we obtain the following bounds on the size of an optimum dominating

set for Gα,β: If |
Gα,β|
ζ(β) = φ, then

|OPT(Gα,β)| ≤
(
φ

d
d+bβ

) d−1
d

k

(
φ

d
d+bβ

) 1
d

ε
2+ε

= k

(
φ
d−1+ ε

2+ε
d+bβ

)
or

|OPT(Gα,β)| ≥ k
(
φ
d−1+ ε

2+ε
d+bβ

)
(1− ε)ε

2 + ε

(1
2

) ε
2+ε

(
ln
(
φ

d
d+bβ

1
d

)
−O(1)

)
.

Altogether, we obtain the following theorem.

Theorem 3. For 1 < β ≤ 2, the Min-DS problem on (α, β)-power law graphs is hard to approxi-
mate within

(1− ε) · ε
2 + ε

·
(1

2

) ε
2+ε · ln (|Gα,β|)− ln(ζ(β))

d+ bβ
.

8 New Upper Bounds for β > 2

Now we are going to prove new upper bounds for Min-DS for β > 2. It was already observed
by Shen et al. [21] that, in the case of β > 2, the Min-DS problem on (α, β)-PLG is in the class
APX. They showed that there exists an efficient approximation algorithm with approximation ratio
(ζ(β)− 1/2)/(ζ(β)−∑t0

j=1 1/jβ) for some t0 = O(1). In this section we give a new and explicit upper
bound, based on our techniques of estimating sizes and volumes of intervals in (α, β)-PLG. The
lower bound on the size of a dominating set in Gα,β given in part (ii) of the following lemma was
also used in [21].

Lemma 6.

(i) If vol([x∆,∆]) = ∑∆
j=x∆

⌊
eα

jβ

⌋
· j < beαc, then |[x∆,∆]| is a lower bound on the size of a

dominating set in Gα,β.

(ii) If vol([x∆,∆]) = ∑∆
j=x∆

⌊
eα

jβ

⌋
· j < ∑x∆−1

j=1

⌊
eα

jβ

⌋
, then |[x∆,∆]| is a lower bound on the size

of a dominating set in Gα,β.

Proof. Considering (i), let D be a dominating set in Gα,β, and let D1 = D∩ [x∆,∆] and D2 = D \
D1. Suppose |D2| < |[x∆,∆]\D1|. Since ∀v ∈ D2, u ∈ [x∆,∆]\D1 we have degα,β(v) < degα,β(u),
this implies vol(D2) < vol([x∆,∆] \D1) and thus vol(D) < vol([x∆,∆]) < beαc, a contradiction.

Suppose in case (ii) that vol([x∆,∆]) < |[1, x∆− 1]| and that D,D1, D2 are the same as in the
proof of (i). Again we obtain vol(D2) < vol([x∆,∆] \D1), which implies vol(D) < vol([x∆,∆]) <
|[1, x∆−1]. Thus the volume ofD is not sufficient to dominate the subset [1, x∆−1], a contradiction.
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We will now analyze upper bounds for the approximability of Min-DS based on the lower
bounds from Lemma 6. Instead of just giving upper and lower bounds on the size of an optimum
dominating set and a greedy solution separately, we will explicitly relate upper and lower bound
to each other. Let Gα,β be an (α, β)-PLG with β > 2. Let W be the set of neighbors of degree 1
nodes of degree at least 2 in Gα,β and let M be the set of degree 1 nodes in Gα,β which are adjacent
to another degree 1 node. Let R = V \ (W ∪ {v ∈ V | degα,β(v) = 1}). Then there exists some
c = cβ > 0 not depending on α such that |W | ≥ c · eα. This implies |R| ≤ (ζ(β)− c− 1)eα.

Lemma 7. If Gα,β is a connected (α, β)-PLG with β > 2 and W and R are defined as above, then
there exists an optimum dominating set OPT in Gα,β with OPT = OPTR ∪W ∪M ′, where OPTR
is an optimum dominating set for the induced subgraph Gα,β[R] on R and M ′ ⊂M is of cardinality
|M ′| = |M |

2 .

The maximum degree in the subgraph Gα,β[R] induced by R is at most ∆. We consider the
dominating set D = W ∪DGr ∪M ′ where DGr is a dominating set for Gα,β[R] constructed by the
greedy algorithm and M ′ ⊂M is a subset of size |M |2 dominating M . Since R = V \ (W ∪ V1) and
|OPTR| ≤ |R|, the approximation ratio is at most

max

r · |OPTR|+ |W |+ |M |
2

|OPTR|+ |W |+ |M |
2

∣∣∣∣∣∣∣
|OPTR| ≤ |R|,
r = min

{
α
β ,

|R|
|OPTR|

}
 .

Case 1:
(
r = α

β

)
This means that α

β ≤
|R|

|OPTR| , i.e. |OPTR| ≤ β
α · |R|. The upper bound for the

approximation ratio is monotone increasing in |OPTR|, hence it is bounded by

α
β ·

β
α · |R|+ |W |+

|M |
2

β
α · |R|+ |W |+

|M |
2

=
|R|+ |W |+ |M |

2
β
α · |R|+ |W |+

|M |
2

.

Case 2:
(
r = |R|

|OPTR| <
α
β

)
Here, we have |OPTR| > β·|R|

α and obtain

r · |OPTR|+ |W |+ |M |
2

|OPTR|+ |W |+ |M |
2

=
|R|+ |W |+ |M |

2
|OPTR|+ |W |+ |M |

2
≤ |R|+ |W |+ |M |

2
β
α · |R|+ |W |+

|M |
2

.

Now we need to construct an upper bound for the term |R|+|W |+ |M|2
β
α
·|R|+|W |+ |M|2

. We consider two cases.

Case I: (ζ(β − 1)− 1 < 1) In this case, the volume of nodes of degree at least 2 does not suffice
to dominate all the degree 1 nodes. Hence in this case, M 6= ∅. We obtain the following lower
bound for the cardinality of M : |M | ≥ eα − (ζ(β − 1)− 1)eα = (2− ζ(β − 1))eα. Nevertheless we
will use the upper bound |R| ≤ (ζ(β)− 1)eα. Since the term |R|+|W |+ |M|2

β
α
·|R|+|W |+ |M|2

is monotone increasing
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in |R|, we obtain

ρ(β) =
|R|+ |W |+ |M |

2
β
α · |R|+ |W |+

|M |
2
≤ (ζ(β)− 1)eα + (2−ζ(β−1))eα

2
β
α(ζ(β)− 1)eα + (2−ζ(β−1))eα

2
=
ζ(β)− ζ(β−1)

2
1− ζ(β−1)

2
= ζ(β − 1)− 2ζ(β)

ζ(β − 1)− 2 .

Case II: (ζ(β − 1)− 1 ≥ 1) In this case, the volume of the nodes of degree at least 2 suffices to
dominate the degree 1 nodes. Now, we construct a lower bound for |W | as follows:

|W | ≥ min{ |[d,∆]| | vol([d,∆]) > eα }

= min


ζ(β)−

d−1∑
j=1

1
jβ

 eα
∣∣∣∣∣∣
ζ(β − 1)−

d−1∑
j=1

1
jβ−1

 eα > eα

 .

Hence, in this case, the approximation ratio is bounded by

ρ′(β) = ζ(β)− 1
β
α · |[1, d− 1]|+ |[d,∆]|

= ζ(β)− 1
ζ(β)−∑d−1

j=1
1
jβ

,

where d = min{ d′ | vol([d′,∆]) > eα }.
Altogether, we obtain the following theorem.

Theorem 4. For 2 < β ≤ 2.729, the Min-DS problem on (α, β)-power law graph is approximable
within approximation ratio ρ′(β) and for β > 2.729 within approximation ratio ρ(β), where d =
min{ d′ | vol([d′,∆]) > eα } and

ρ′(β) = ζ(β)− 1
ζ(β)−∑d−1

j=1
1
jβ

and ρ(β) =
ζ(β)− ζ(β−1)

2
1− ζ(β−1)

2
.

In Figure 4 we present a plot of the above approximation ratios ρ(β) and ρ′(β) in the valid
ranges for certain choices of the parameter d.
In what follows, we are going to analyze the functional dependencies of a parameter β.

9 The Functional Case βf = 2 + f(n)−1

We consider the case when the parameter β is a function of the size n of the power law graph,
converging to 2 from above. This can be seen as a combinatorial variant of preferential attachment
PLG. In the preceding sections we have shown that for β ≤ 2, there is a logarithmic lower bound
for the approximability of the Min-DS problem in (α, β)-PLG. On the other hand, for β > 2 the
problem is in APX (cf. Shen et al. [21] and the previous section). Thus we will now have a closer
look at this phase transition at β = 2. Similar as in our previous paper (cf. [11]), we consider the
case when β is a function of the size n of the power law graph such that this function converges
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Figure 4: Plot of the approximation ratios ρ(β) and ρ′(β) (solid line) in the valid ranges for certain
choices of the parameter d = min{ d′ | vol([d′,∆]) > eα }, in comparison to the results of Shen et al.
[21] (dashed line)

to 2 from above. Surprisingly we will obtain a very tight phase transition of the computational
complexity of the problem, depending on the convergence rate of the function. Let us first give a
precise description of the model.

Let f : N→ N be a monotone increasing unbounded function. For βf = 2 + f(n)−1, an (α, βf )-
PLG is an undirected multigraph Gα,βf with n nodes and maximum degree ∆f =

⌊
e
α/βf

⌋
such that

for j = 1, . . . ,∆f =
⌊
e
α/βf

⌋
, the number of nodes of degree j in Gα,βf equals

⌊
eα

j
βf

⌋
. Especially this

means that ∑∆f

j=1

⌊
eα

j2+1/f(n)

⌋
= n.

We consider two cases for βf = 2 + f(n)−1, namely, f(n) = ω(log(n) and f(n) = o(log(n)). For
the case f(n) = ω(log(n)), we obtain the following theorem.

Theorem 5. For βf = 2 + f(n)−1 with f(n) = ω(log(n)), the Min-DS problem on (α, βf )-PLG is
hard to approximate within

(1− ε) · ε
2 + ε

·
(1

2

) ε
2+ε · ln (|Gα,β|)− ln(ζ(β))

d+ bβ
.

Before giving the proof of the theorem, we will first show that the terms j−βf converge to j−2

as n→∞. More precisely, we show that j−βf ∈
[

1
n1/f(n) · 1

j2 ,
1
j2

]
. First, we give an additive bound
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for the terms j−βf as follows: 1
j
βf

= 1

j
2+ 1

f(n)
∈
[

1
j2 − τ(n), 1

j2

]
, where

τ(n) = max
{

1
j2 −

1
j

2− 1
f(n)

∣∣∣∣∣ j = 1, . . . ,∆f

}
= max

 j
1

f(n) − 1
j

2+ 1
f(n)

∣∣∣∣∣∣ j = 1, . . . ,∆f

 .
We consider the function x 7→ h(x) := x

1/f(n)−1
x2+1/f(n) = x−2 − x

−2− 1
f(n) . Its derivative is d

dxh(x) =
d
dx

x
1/f(n)−1
x2+1/f(n) = −2x−3 +

(
2 + 1

f(n)

)
x
−3− 1

f(n) . The condition h(x) < 0 is equivalent to 1 + 1
2f(n) <

x
1

f(n) . We observe that the derivative attains its maximum at x = 2. We have h′(2) < 0 ⇐⇒(
1 + 1

2f(n)

)f(n)
< 2. We observe that limn→∞

(
1 + 1

2f(n)

)f(n)
= e1/2 < 2. Thus, we obtain

τ(n) = 21/f(n)−1
22+1/f(n) . Now, we give a multiplicative bound as follows: 1

j
βf

= 1
j2 · j2−βf = 1

j2 · 1
j1/f(n) ∈[

1
n1/f(n) · 1

j2 ,
1
j2

]
.

Let us now give sufficiently precise estimates of sizes and volumes of the node intervals in the
functional case.

Lemma 8. Let βf = 2 + 1
f(n) and X = [x∆f , y∆f ]. We have the following bounds on the size and

the volume of the interval:

|[x∆f , y∆f ]| ∈[
e
α
f(n)+1

2f(n)+1 ·
(1
x
− 1
y

)
− (y − x)∆f , e

α
f(n)+1

2f(n)+1 ·
(1
x
− 1
y

)
+ e

α 1
2f(n)+1 ·

( 1
x2 −

1
y2

)]
and

vol([x∆f , y∆f ]) ∈[
eα(ln(y)− ln(x))

n
1

f(n)
−

(y2 − x2)∆2
f + (x+ y)∆f

2 , eα(ln(y)− ln(x)) + eα
(

1
x∆f

− 1
y∆f

)]
.

Proof. For β = 2, our technique based on integration yields the following estimate of sizes of
intervals:

y∆∑
j=x∆

1
j2 ∈

 y∆∫
x∆

j−2 dj,
y∆∫
x∆

j−2 dj + 1
(x∆)2 −

1
(y∆)2


=
[ 1
x∆ −

1
y∆ ,

1
x∆ −

1
y∆ + 1

(x∆)2 −
1

(y∆)2

]
|[x∆, y∆]| ∈

[
e
α/2 ·

(1
x
− 1
y

)
, e

α/2 ·
(1
x
− 1
y

)
+ 1

x2 −
1
y2

]
.

We combine this with the multiplicative bound and obtain the following estimate of the size of
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intervals in the case βf = 2 + 1
f(n) .

|[x∆f , y∆f ]| =
y∆f∑
j=x∆f

⌊
eα

jβf

⌋

∈

eα·
1+ 1

f(n)
2+ 1

f(n) ·
(1
x
− 1
y

)
− (y − x)∆f , e

α·
1+ 1

f(n)
2+ 1

f(n) ·
(1
x
− 1
y

)
+ e

α·
(

1− 1
1+ 1

2f(n)

)
·
( 1
x2 −

1
y2

)
=
[
e
α· f(n)+1

2f(n)+1 ·
(1
x
− 1
y

)
− (y − x)∆f , e

α· f(n)+1
2f(n)+1 ·

(1
x
− 1
y

)
+ e

α· 1
2f(n)+1 ·

( 1
x2 −

1
y2

)]
.

Especially we obtain the following estimate of the size of Gα,βf :

|[1,∆f ]| ∈
[
eα − eα

f(n)+1
2f(n)+1 − eα

f(n)
2f(n)+1 + 1, eα − eα

f(n)+1
2f(n)+1 + e

α 1
2f(n)+1 · e2α f(n)

2f(n)+1 − eα
1

2f(n)+1

]
= [(1− o(1))eα, (2− o(1))eα] .

This estimate can be refined as follows:

∆f∑
j=1

⌊
eα

jβf

⌋
∈
∆f∑
j=1

eα

jβf
− ∆f ,

∆f∑
j=1

eα

jβf


⊆
 1
n1/f(n)

·
∆f∑
j=1

eα

j2 − ∆f ,

∆f∑
j=1

eα

j2

 ⊆ [(1− o(1))ζ(2)eα, ζ(2)eα] ,

where the last inclusion holds for f(n) = ω(log(α)). The volume can be estimated as follows:

vol([x∆f , y∆f ]) =
y∆f∑
x∆f

⌊
eα

jβf

⌋
· j

∈
y∆f∑
x∆f

eα

jβf−1 − (x∆f + (x∆f + 1) + . . .+ y∆f ) ,
y∆f∑
x∆f

eα

jβf−1


=

y∆f∑
x∆f

eα

jβf−1 −
(y2 − x2)∆2

f + (x+ y)∆f

2 ,

y∆f∑
x∆f

eα

jβf−1

 .
Since jβf−1 = j

1+ 1
f(n) , j = x∆f , y∆f , we use Lemma 23 from our previous paper (cf. [11, p. 23])

and obtain that the volume vol([x∆f , y∆f ]) is within the interval[
eα · (ln(y)− ln(x))

n
1

f(n)
−

(y2 − x2)∆2
f + (x+ y)∆f

2 , eα · (ln(y)− ln(x)) + eα ·
(

1
x∆f

− 1
y∆f

)]
.
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We are now prepared to give the proof of Theorem 5.

Proof of Theorem 5. We compute the parameters α, d, x, y of our embedding GU,S 7→ Gα,βf for the
functional case βf = 2 + 1

f(n) , f(n) = ω(log(n)). In order to satisfy constraint (1), we have to give

an estimate for
∣∣∣[Na/d, N b/d

]∣∣∣. Note that eα·
1

2f(n)−1 ·∆2
f = e

α· f(n)+1
2f(n)+1 ·∆f = eα. Thus, our estimate

of interval sizes yields

∣∣∣[Na/d, N
b/d
]∣∣∣ ∈ [eα ( 1

N
a
d

− 1
N

b
d

)
−
(
N

b
d −N a

d

)
, eα

( 1
N

a
d

− 1
N

b
d

)
+ eα

( 1
N

2a
d

− 1
N

2b
d

)]
.

In order to satisfy constraint (1), for a given d, we have to choose α such that

∣∣∣[Na/d
]∣∣∣ ≥ eα ( 1

N
a
d

− 1
N

b
d

)
−
(
N

b
d −N a

d

)
⇐⇒ eα

(
N

b−a
d − 1

)
−
(
1−N a−b

d

)
≥ N1+ b

d .

Hence, we choose
eα ≈ N1+a

d ⇐⇒ α ≈
(

1 + a

d

)
· ln(N) .

If we now choose d > (b+1)βf
βf−1 , then the constraint (2) holds, and for y = 1 and x > 0 such that

x∆f > N b/d, constraint (3) holds as well. Thus, we obtain asymptotically the same approximation
hardness result as for the case β = 2.

In the case f(n) = o(log(n)), the hardness of Min-DS shows a surprising phase transition and
we yield the following theorem.

Theorem 6. For βf = 2 + f(n)−1 with f(n) = o(log(n)), the Min-DS problem on (α, βf )-PLG is
in APX.

Proof. We consider the case when f(n) is a “slowly growing” function, namely f(n) = o(log(n)).
In that case, n1/f(n) −→∞ as n −→∞. For x∆f ≤ j ≤ y∆f , we obtain

1
j

1+ 1
f(n)

= 1
j
· 1
j

1
f(n)
≤ 1
j
· 1

(x∆f )
1

f(n)
= 1
j
· 1
x

1
f(n)
· 1
e
α· 1

2f(n)+1
,

and therefore
vol([x∆f ,∆f ]) ≤ eα · ln

(1
x

)
· 1
x

1
f(n)
· 1
e
α· 1

2f(n)+1
,

which yields the requirement ln(1/x)
x1/f(n) ≥ c · eα·

1
2f(n)+1 . This is equivalent to

ln ln
(1
x

)
+ 1
f(n) · ln

(1
x

)
≥ ln(c) + α

2f(n) + 1 ,

which means the following: In order to dominate the remaining vertices of the graph with vertices
from [x∆f ,∆f ], we have to choose (roughly) ln (1/x) ≥ α/2, i. e. 1/x ≥ eα/2. This gives the following
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lower bound for the size of that interval:

|[x∆f ,∆f ]| ≥ e
α· f(n)+1

2f(n)+1 ·
(
e
α
2 − 1

)
−
(

1− 1
e
α
2

)
· e

α

2+ 1
f(n) ≥ (1− o(1))e

α
2 ·
(

1+ f(n)+1
f(n)+1/2

)
.

This lower bound for the size of [x∆f ,∆f ] converges to eα as n→∞, which means there exists some
c > 0 such that |[x∆f ,∆f ]| ≥ c · |Gα,βf | in order to be a dominating set. Hence, each dominating
set in Gα,βf is of cardinality at least c · |Gα,βf | and we obtain the result.

10 Further Research

The further improvements on both lower and upper approximation bounds are important open
questions in the area, especially the upper approximation bounds for β ≤ 2. Another interesting
problem concerns the approximability of PLG optimization problems on random or quasirandom
instances.
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