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Abstract

We present a new method for proving explicit approximation lower bounds for the
Shortest Superstring problem, the Maximum Compression problem, Maximum Asym-
metric TSP problem, the (1, 2)–ATSP problem, the (1, 2)–TSP problem, the (1, 4)–ATSP
problem and the (1, 4)–TSP problem improving on the best up to now known approxi-
mation lower bounds for those problems.

1 Introduction

We study explicit inapproximability bounds of several combinatorial optimization
problems connected to the Shortest Superstring and TSP problems. We start with the
definitions of the underlying problems.

The Shortest Superstring Problem (SSP) is the following problem: Given a finite
set S of strings and the objective is to construct their shortest superstring, which is the
shortest possible string such that every string in S is a proper substring of it.
The task of computing a shortest common superstring appears in a wide variety of applica-
tion related to computational biology [L90]. Vassilevska [V05] proved that approximating
the SSP with less than 1217/1216 is NP-hard. The currently best known approximation
algorithm is due to Mucha [M12] and yields an approximation factor of 211

23
.

In this paper, we prove that the SSP is NP-hard to approximate within any constant
approximation ratio less than 333/332.

The Asymmetric Traveling Salesman Problem (ATSP) is defined as follows: We
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are given an asymmetric metric space (V, d), that is, d is not necessarily symmetric, and
we would like to construct a shortest tour visiting every vertex exactly once.

The best known algorithm for the ATSP approximates the solution within
O( log n/ log log n) [AGM+10], where n is the number of vertices in the given metric
space. On the other hand, in [KLS13], it was proved that the ATSP is NP-hard to approxi-
mate to within any approximation factor less than 75/74. It is conceivable that the special
cases with bounded metric are easier to approximate than the cases when the distance
between two points grows with the size of the instance. Clearly, the (1, B)-ATSP, in which
the distance function is taking values in the set {1, . . . , B}, can be approximated within B
by just picking any tour as the solution. When we restrict the problem to distances one and
two, it can be approximated within 5/4 due to Bläser [B04]. Furthermore, it is NP-hard
to approximate this problem with an approximation factor less than 321/320 [EK06]. For
the case B = 8, in [EK06], a reduction was constructed yielding the approximation lower
bound of 135/134 for the (1, 8)–ATSP.

In this paper, we prove NP-hardness of approximating the (1, 2)-ATSP and (1, 4)-ATSP
to within any approximation factor less than 207/206 and 141/140, respectively.

The Metric Traveling Salesman Problem (TSP) is a special case of the ATSP, in
which we are given a metric space (V, d) and the task consists of constructing a shortest
tour visiting each vertex exactly once.

The TSP in metric spaces is one of the most fundamental NP-hard optimization prob-
lems. Christofides [C76] gave an algorithm approximating the TSP within 3/2, that is, an
algorithm that produces a tour with length being at most a factor 3/2 from the optimum.
As for lower bounds, a reduction due to Papadimitriou and Yannakakis [PY93] and the
PCP Theorem [ALM+98] together imply that there exists some constant, not greater than
1 + 10−6, such that it is NP-hard to approximate the TSP with distances either one or two.
For discussion of bounded metrics TSP, see also [T00]. Since then there was a series of re-
sults on the hardness of approximating the TSP improving the inapproximability threshold
to 123/122. (cf. [BS00], [E03], [PV06], [L12],[KLS13]).

The restricted version of the TSP, in which the distance function takes values in
{1, . . . , B}, is referred to as the (1, B)-TSP. The (1, 2)-TSP can be approximated in poly-
nomial time with an approximation factor 8/7 due to Berman and Karpinski [BK06]. On
the other hand, in [EK06], it was proved that the inapproximability threshold for the
(1, B)-TSP is 741/740 and 389/388 for B = 2 and B = 8, respectively.

In this paper, we prove that it is NP-hard to approximate the (1, 2)-TSP and the
(1, 4)-TSP to within any approximation factor less than 535/534 and 337/336, respectively.

The Maximum Compression Problem (MAX-CP) is defined as follows: We are
given a collection of strings S = {s1, . . . , sn}. The task is to find a superstring for S with
maximum compression, which is the difference between the sum of the lengths of the
given strings and the length of the superstring.

In the exact setting, an optimal solution to the SSP is an optimal solution to the MAX-
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CP, but the approximate solutions can differ significantly in the sense of approximation
factor. The Maximum Compression problem arises in various data compression problems
(cf. [S88]). The best known efficient approximation algorithm achieves an approximation
factor 1.5 [KLS+05] by reducing it to the MAX-ATSP defined below.

On the approximation lower bound side, Vassilevska [V05] proved an inapproximability
threshold for the MAX-CP of 1072/1071.

In this paper, we prove that approximating the MAX-CP to within any approximation
factor less than 204/203 is NP-hard.

The Maximum Asymmetric Traveling Salesman Problem (MAX-ATSP) is defined
as follows: We are given a complete directed graph G and a weight function w assigning
each edge of G a non-negative weight. The task is to find a tour of maximum weight
visiting every vertex of G exactly once .

This problem is well-known and motivated by several applications and in particular, a
good approximation algorithm for the MAX-ATSP implies a good approximation algorithm
for many other optimization problems such as the SSP, the MAX-CP and the (1, 2)-ATSP
(cf. [BGS02]).

The MAX-(0, 1)-ATSP is the restricted version of the MAX-ATSP, in which the weight
function w takes values in the set {0, 1}. Vishwanathan [V92] constructed an approx-
imation preserving reduction proving that every (1/α)-approximation algorithm for the
MAX-(0, 1)-ATSP yields a (2 − α)- approximation algorithm for the (1,2)-ATSP. Therefore,
all negative results concerning the approximation of the (1, 2)-ATSP transform into hard-
ness of approximation results for the MAX-(0, 1)-ATSP. Due to the explicit approximation
lower bound for the (1,2)-ATSP given in [EK06], it is NP-hard to approximate the MAX-
(0,1)-ATSP to within every approximation factor less than 320/319. The best known ap-
proximation algorithm for the restricted version of this problem is due to Bläser [B04] and
achieves an approximation factor 5/4.

For the unrestricted version of the problem, Kaplan et al. [KLS+05] designed an al-
gorithm with the best up to now known approximation upper bound of 3/2. Elbassioni,
Paluch and Zuylen [EPZ12] gave a simpler approximation algorithm for the problem with
the same approximation ratio. In this paper, we prove that approximating the MAX-ATSP
within every approximation factor less than 204/203 is NP-hard.
The preliminary versions of this paper appeared in [KS11] and [KS12].

2 The Proof Methods and the Summary of Results

The results of the paper depend on several new reductions from a bounded occurrence
CSP problem (cf. [K01]) called the Hybrid problem, which was proven to be approxima-
tion hard to within some constant (cf. [BK99]). The reduction method defines for each
problem so called parity gadgets that are simulating the variables of the Hybrid problem
and also transmit the parity information to the gadgets that are simulating the linear
equation mod 2 with exactly three variables in the instance of the Hybrid problem. The
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crucial point of the reduction is that we make essential use of the underlying structure of
the equations in the Hybrid problem, which are induced by a 3-regular amplifier graph.
This could be a more widely useful method for improving the approximation lower bounds
of other problems (see [KLS13] and [KS13] for two extensions of this idea).

The explicit approximation lower bounds are summarized in Table 1.

Problem Our Results Previously known
(1, 2)–ATSP 207/206 (Theorem 1 (i)) 321/320 [EK06]
(1, 2)–TSP 535/534 (Theorem 1 (ii)) 741/740 [EK06]
(1, 4)–ATSP 141/140 (Theorem 1 (iii)) 321/320 [EK06]
(1, 4)–TSP 337/336 (Theorem 1 (iv)) 741/740 [EK06]
MAX–ATSP 204/203 (Corollary 1) 320/319 [EK06]
MAX–CP 204/203 (Theorem 1 (v)) 1072/1071 [V05]

SSP 333/332 (Theorem 1 (vi)) 1217/1216 [V05]

Table 1: Comparison of our results and previously known inapproximability factors.

3 Outline of the Paper

The organization of the paper is as follows. In Section 5, we formulate our main results. In
Section 6, we give the definition of the Hybrid problem and state some results concerning
its hardness of approximation. In Section 7, we construct the reduction from the Hybrid
problem to the (1, 2)-ATSP. In Section 8, we give the proof of the approximation lower
bound for the (1, 4)-ATSP. In Section 9, we present the inapproximability result for the
(1, 2)-TSP. In Section 10, we consider the (1, 4)-TSP. In Section 11, we give the proof of the
claimed inapproximability thresholds for the SPP and the MAX-CP.

4 Preliminaries

For i ∈ N, we use the abbreviation [i] for the set {1, . . . , i}. Given a finite alphabet Σ, a
string is an element of Σ∗. Given a string v, we denote the length of v by |v|. For two
strings x and y, we define the overlap of x and y, denoted ov(x, y), as the longest suffix
of x that is also a prefix of y. Furthermore, we define the prefix of x with respect to y,
denoted pref(x, y), as the string u with x = u ov(x, y). Let x and y be two strings with
i = |ov(x, y)| > 0. We denote the string that is obtained by overlapping x with y by i letters
as x i→ y.
Throughout in this paper, an instance (V, d) of the (1, 2)-ATSP problem is specified by
means of a directed graph DV , where (x, y) ∈ A(DV ) if and only if d(x, y) = 1. A tour
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σ ⊂ V × V in an asymmetric metric space (V, d) is a directed Hamiltonian cycle in the
associated directed graph (V, V × V ) with total cost

∑
a∈σ d(a). For n ∈ N, we refer to an

arc a ∈ V × V as a n-arc if d(a) = n holds.
Let S be a collection of strings over Σ such that no string is a proper substring of another
string in S. Then, we define an instance of the ASTP problem by (VS, dS), where VS =
S ∪ {Γ} with Γ 6∈ Σ and dS(si, sj) = |pref(si, sj)| for all si, sj ∈ VS. Note that we can
construct from a shortest tour in (VS, dS) of length (` + 1) a shortest superstring for S of
length ` and vice versa (e.g. [M12]).
Given S and a superstring s for S, we introduce the notion of compression of s with respect
to S denoted comp(s, S) and defined by comp(s, S) =

∑
si∈S |si| − |s|.

5 Main Results

In the subsequent sections, we are going to prove the following Theorem.

Theorem 1. It is NP-hard to approximate

(i) the (1, 2)-ATSP to within every constant factor less than 207/206,

(ii) the (1, 2)-TSP to within every constant factor less than 535/534,

(iii) the (1, 4)-ATSP to within every constant factor less than 141/140,

(iv) the (1, 4)-TSP to within every constant factor less than 337/336,

(v) the MAX-CP to within every constant factor less than 204/203 and

(vi) the SSP to within every constant factor less than 333/332.

Since instances of the MAX-CP can be seen as restricted instances of the MAX-ATSP (cf.
[BGS02]), we obtain immediately the following corollary.

Corollary 1. It is NP-hard to approximate the MAX-ATSP within every constant factor less
than 204/203.

6 Hybrid Problem

In this section, we introduce the so called Hybrid problem and present the reduction
which was constructed in [BK99] in order to prove first explicit approximation lower
bounds for a number of bounded occurrence CSP optimization problems.

In order to prove hardness of approximation for the the Hybrid problem, we first
consider the MAX-E3LIN2 problem which is defined as follows.
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Definition 1 (MAX-E3LIN2 problem). We have given a system I of linear equations mod 2
and we want to find an assignment to the variables of I that satisfies the maximum number
of equations.

For the MAX-E3LIN2 problem, Håstad [H01] gave an optimal inapproximability result
stated below.

Theorem 2 ([H01]). For every ε ∈ (0, 1/2), there exists a constant Bε and instances I of the
MAX-E3LIN2 problem with 2 · γ equations such that:
(i) Each variable in the instance I appears in at most Bε number of equations.
(ii) It is NP-hard to decide whether there is an assignment leaving at most ε · γ equations
unsatisfied, or every assignment leaves at least (1− ε)γ equations unsatisfied.

The Hybrid problem can be seen as a generalization of the MAX-E3LIN2 problem. Let
us first give the definition of the Hybrid problem following [BK99].

Definition 2 (Hybrid problem). We have given a system IH of linear equations mod 2 involv-
ing n variables, equations with exactly two variables, equations with exactly three variables
and we are supposed to find an assignment to the variables of IH that satisfies the maximum
number of equations.

In the following, we are going to present the construction of restricted instances of the
Hybrid problem, in which every variable in the instance occurs in exactly 3 equations.
In particular, we are going to give the proof of the theorem due to Berman and Karpin-
ski [BK99] stated below.

Theorem 3 ([BK99]). For every constant ε ∈ (0, 1/2), there exist instances of the Hybrid
problem IH involving 60ν equations with exactly two variables of the form x ⊕ y = 0 and 2ν
equations of the form x⊕ y⊕ z = b with b ∈ {0, 1} such that: (i) Each variable occurs exactly
three times (ii) It is NP-hard to decide whether there is an assignment to the variables that
leaves at most ε · ν equations unsatisfied, or else every assignment leaves at least (1 − ε)ν
equations unsatisfied. (iv) An assignment to the variables in IH can be transformed efficiently
into an assignment satisfying all 60ν equations with two variables without decreasing the
total number of satisfied equations in IH.

We are going to describe briefly the reduction from the MAX-E3LIN2 problem to the Hybrid
problem and give the proof of Theorem 3. For this, let us first give some definitions and
in particular, review some properties of amplifier graphs (see also [BK01] and [BK03]).
One application of amplifier graphs is proving hardness of approximation for Constraint
Satisfaction problems, in which every variable occurs a bounded number of times.

Definition 3 (Regular amplifier). Let G be a graph and X ⊂ V (G). The graph G is a
d-regular amplifier for the set X if the following two conditions hold:

(i) The vertices in X have degree (r − 1), whereas all vertices in V (G)\X have degree r.
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(ii) For every subset S ⊂ V (G) with S 6= ∅, we have the condition that

|E(S, V (G)\S)| ≥ min{|S ∩X|, |(V (G)\S) ∩X|},

where E(S, V (G)\S) is defined as {e ∈ E(G) | |S ∩ e| = 1}.

We refer to the set X ⊂ V (G) as the set of contact vertices, whereas V (G)\X is the set
of checker vertices.

In [BK01], a very special 3-regular amplifier graph was constructed and called wheel
amplifier. Let us give the description of a wheel amplifier.
A wheel amplifierW with 2n contact vertices is constructed by creating a Hamiltonian cycle
on 14n vertices 1, 2, ..., 14n with edge set C(W). Afterwards, a perfect matching M(W) is
chosen uniformly at random from the vertices whose number is not a multiple of 7. The
vertices, that are matched, are our checker vertices and the remaining vertices are the
contact vertices. The union of M(W) and C(W) is the edge set ofW.

Berman and Karpinski [BK01] proved the following theorem on the existence of 3-
regular amplifier graphs.

Theorem 4 ([BK01]). With high probability, wheel amplifier are 3-regular amplifier.

We are ready and give the proof of Theorem 3.

Proof of Theorem 3. For a fixed ε ∈ (0, 1/2), let I an instance of the MAX-E3LIN2 problem,
in which the number of occurences of each variable is bounded by a constant Bε.

For each variable xi in I, we denote by ni the number of equations in which xi appear
in I. For each variable xi, we introduce a set of µ := 7 · ni new variables Vi = {xij}

µ
j=1.

Furthermore, we create a wheel amplifierWi on µ vertices with ni contact vertices. Since di
is bounded by Bε,Wi can be constructed in constant time. In the remainder, we call xj ∈ Vi
a contact variable if the corresponding index is a contact vertex of Wi. The remaining
variable in Vi are called checker variables.

Let us now define the equations of the instance IH of the Hybrid problem: For each
edge {j, k} ∈ M(Wi), we introduce xij ⊕ xik = 0 and refer to those equations as matching
equations. For each edge {l, t} in C(Wi), we create xil ⊕ xit = 0. We refer to the equation
x1 ⊕ x2 = 0 as the cycle border equation. All other remaining are called cycle equations.
Finally, we substitute the `-th appearance of xi in I by the contact variable xiξ with ξ = 7 · `.
Summarizing, we have 2ν equations with three variables in IH, 60ν equations with two
variables and each variable occurs in exactly 3 equations.

We call an assignment φ to the variables of IH consistent if for each variable xi in I,
there is a bi ∈ {0, 1} such that xij = bi for all j ∈ [µ]. By the properties of a amplifier
constructed in Theorem 4, we can transform efficiently an assignment to the variables
of IH into a consistent one without decreasing the number of satisfied equations and the
proof of Theorem 3 follows.
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7 The (1, 2)–ATSP

Given an instance of the Hybrid problem IH, we want to transform IH into an instance
of the (1, 2)-ATSP. Fortunately, the special structure of the linear equations in the Hybrid
problem, produced by the reduction due to Berman and Karpinski [BK99], is particularly
well-suited for our reduction, since a part of the equations with two variables form a
Hamiltonian cycle and every variable occurs exactly three times. The main idea of our
reduction is to make use of the special structure of the wheels in IH. Every wheelWl in IH
corresponds to a subgraph Dl in the instance D12

H of the (1, 2)-ATSP. Moreover, Dl forms
almost a cycle, which can be traversed in two directions. An assignment to the variable
xl will have a natural interpretation in this reduction. The parity of xl corresponds to the
direction of movement in Dl of the underlying tour.

inner loop

outer loop

D3
1

D4 D5

D6

D3
2

D2

D3

D1

Figure 1: An illustration of a tour in D12
H .

The wheel graphs D1, . . . , Dn of D12
H are connected and build together the inner loop of

D12
H (Figure 1). Every variable xli in a wheel Wl possesses an associated parity gadget P l

i

(Figure 2 (a)) in Dl as a subgraph. The two natural ways to traverse a parity gadget will
be called 0/1-traversals and correspond to the parity of the variable xli. Some of the parity
gadgets in Dl are also contained in graphs D3⊕

c (Figure 4 and Figure 5 for a more detailed
view) corresponding to equations with three variables of the form x⊕ y⊕ z = 0 = b3c . Note
that we may assume that equations with three variables are all of the form x⊕ y ⊕ z = 0,
where x, y and z are variables or negated variables. Those graphs are connected and build
the outer loop of D12

H . In the outer loop of the tour, we check whether the 0/1-traversals of
the parity gadgets correspond to an assignment that satisfies the underlying equation with
three variables. If an underlying equation is not satisfied by the assignment defined via
0/1-traversals of the associated parity graphs, we will have to use an arc with weight 2.

7.1 Constructing a Tour from an Assignment

Given a instance of the Hybrid problem IH, we are going to construct the corresponding
instance D12

H of the (1, 2)-ATSP. For every type of equation in IH, we will introduce a
specific graph or a specific way to connect the so far constructed subgraphs. In particular,
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we will distinguish between graphs corresponding to cycle equations, matching equations,
cycle border equations and equations with three variables. First of all, we introduce
graphs corresponding to variables in IH.

vl0i vl⊥i vl1i vl0i vl⊥i vl1i vl0i vl⊥i vl1i

(a) Parity gadget P l
i (b) 1-traversal of P l

i (c) 0-traversal of P l
i

Figure 2: Traversals of the parity gadget P l
i . Traversed arcs are illustrated by thick arrows.

Variable Graphs: For every variable xli in IH, we introduce the parity gadget P l
i consisting

of the vertices {vl1i , vl⊥i , vl0i }, which is displayed in Figure 2(a).

vl0i vl1ivl⊥i
vl0i+1 vl1i+1vl⊥i+1

vl⊥e

vlje

v
l(i+1)
e

vl1j+1 vl⊥j+1

vl0j+1

vl1j vl0jvl⊥j

Figure 3: Connecting the parity gadget P l
e

Matching and Cycle Equations: Let IH be an instance of the hybrid problem, Wl a
wheel of IH and Ml the associated perfect matching. Furthermore, let xli ⊕ xlj = 0 with
e = {i, j} ∈M(Wl) and i < j be an matching equation. For xli⊕xli+1 = 0 and xlj⊕xlj+1 = 0,
we introduce the associated parity gadget P l

e consisting of the vertices vlje , vl⊥e and v
l(i+1)
e .

In addition to it, we connect the parity gadgets P l
i , P

l
i+1, P

l
j , P

l
j+1 and P l

e as displayed in
Figure 3.

Equations with three variables: Let xli ⊕ xsj ⊕ xkt = 0 = b3c be an equation with three
variables in IH. Then, we introduce the graphD3⊕

c (Figure 4), which consists of the vertices
sc, v1c , v

2
c , v

3
c and sc+1. Papadimitriou and Vempala [PV06] used this graph in their reduction

and proved the following statement.

Lemma 1 ([PV06]). There is a Hamiltonian path from sc to sc+1 in Figure 4 if and only if
an even number of dashed arcs is traversed.
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sc

v3c

v2c

v1c sc+1

Figure 4: Gadget simulating x⊕ y ⊕ z = 0.

This construction is extended by replacing the dashed arcs with the parity gadgets P l
e,

P s
b and P k

a , where e = {i, i + 1}, b = {j, j + 1} and a = {t, t + 1}. In Figure 5, we display
D3⊕
c with its connections to the graph corresponding to the cycle equation xli ⊕ xli+1 = 0.

If xi appears negated in the equation with three variables, we connect the parity gad-
gets via (vl1i , v

l0
e ), (vl0i+1, v

l1
i ) and (vl1e , v

l0
i+1).

sc
sc+1

v1c

vl0e

vl⊥e

vl1e

vl⊥ivl0i

vl⊥i+1vl1i+1

vl0i+1

vl1i
vk1a

vk0a

vk⊥a

vs1b
vs⊥b

vs0b

v3c

v2c

Figure 5: GraphD3⊕
c corresponding to xli⊕xsj⊕xut = 0 = b3c connected to gadgets simulating

to xli ⊕ xli+1 = 0.

Cycle Border Equations: Let Wl and Wl+1 be wheels of IH. In addition, let xl1 ⊕ xl2 = 0
be the wheel border equation ofWl. Then, we introduce the vertex bl and connect it to vl02
and vl11 . Let bl+1 be the vertex corresponding to the wheel Wl+1. We draw an arc from vl02
and vl11 to bl+1.
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7.2 Constructing a Tour from an Assignment

In this section, we are going to prove one direction of the reduction. In particular, we are
going to prove the following lemma.

Lemma 2. Let δ ∈ (0, 1) be a constant, IH an instance with n wheels, 60 · ν equations with
two variables and 2 · ν equations with exactly three variables and φ an assignment, which
leaves δ · ν equations in IH unsatisfied. Then there exists a tour in the corresponding instance
D12
H with total cost at most 206ν + n+ 2 + δ · ν.

Proof. Let IH be an instance of the Hybrid problem consisting of the wheels W1, W2, ...,
Wn, 60ν equations with 2 variables and 2ν equations with three variables. Suppose we
have given an assignment φ to the variables of IH leaving δ · ν equations unsatisfied for a
constant δ ∈ (0, 1). We are going to construct the associated Hamiltonian tour σφ in D12

H .
According to Theorem 3, we may assume that all equations with 2 variables in IH are sat-
isfied by φ. Thus, all variables associated to a wheel take the same value under φ. The
Hamiltonian tour σφ in D12

H starts at the vertex b1. From a high-level view, σφ traverses all
graphs corresponding to equations associated with the wheelW1 using the φ(x11)-traversal
of all parity graphs that correspond to variables of W1 ending with the vertex b2. Succes-
sively, it passes all graphs for each wheel in IH until it reaches the vertex bm = s1 as s1 is
the starting vertex of the graph D3⊕

1 .
At this point, the tour begins to traverse the remaining graphs D3⊕

c , which are simu-
lating the equations with three variables in IH. By now, some of the parity graphs ap-
pearing in graphs D3⊕

c already have been traversed in the inner loop of σφ. The outer
loop checks whether for each graph D3⊕

c , an odd number of parity graphs has been tra-
versed in the inner loop. In every situation, in which φ leaves the underlying equation
unsatisfied, the tour needs to use a 2-arc. Hence, the tour in D12

H has total cost at most
3 · 60ν + (3 · 3 + 4) · 2ν + (n+ 2) + δ · ν.

7.3 Constructing an Assignment from a Tour

Let IH be an instance of the Hybrid problem, D12
H the associated instance of the (1, 2)-ATSP

and σ a tour in D12
H . We are going to define the assignment ψσ to variables in IH. In

addition to it, we establish a connection between the total cost of σ and the number of
satisfied equations by ψσ. Let us first introduce the notion of consistent tours.

Definition 4 (Consistent Tour). Let IH be an instance of the Hybrid problem and D12
H the

associated instance of the (1, 2)-ATSP. A tour in D12
H is called consistent if every parity graph

in D12
H is traversed by means of a 0/1-traversals.

Due to the following lemma, we may assume that the underlying tour is consistent.

Lemma 3. Let IH be an instance of the Hybrid problem and D12
H the associated instance of the

(1, 2)-ATSP. Any tour σ in D12
H can be transformed in polynomial time into a consistent tour

with at most the same cost as σ.
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Proof. For every parity graph contained inD12
H , it can be seen by considering all possibilities

exhaustively that every tour in D12
H that is not using the corresponding 0/1-traversals can

be modified into a tour with at most the same number of 2-arcs. Some cases are shown in
Figure 6 and Figure 7.

2 2 2 2

2

2

2

2

Figure 6: It is possible to transform the traversals in the upper row into the traversals in
the lower row without increasing the total cost of the tour.

Let us define the assignment ψσ given a consistent tour σ in D12
H .

Definition 5 (Assignment ψσ). Let IH be an instance of the Hybrid problem, D12
H the as-

sociated instance of the (1, 2)-ATSP. Given a consistent tour σ in D12
H , the corresponding as-

signment ψσ : V ar(IH) → {0, 1} is defined as ψσ(xli) = 1 if σ uses a 1-traversal of P l
i and 0

otherwise.

2

2

2

2

Figure 7: It is possible to transform the traversal in the left column into the traversal in
the right column without increasing the total cost of the tour.

We are going to prove the other direction of the reduction and give the proof of the
following lemma.
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Lemma 4. Let δ ∈ (0, 1) be a constant, IH an instance with n wheels, 60·ν equations with two
variables and 2 · ν equations with exactly three variables. Let σ be a tour in the corresponding
instance D12

H of the (1, 2)-ATSP with length 206ν + (n + 2) + δ · ν. Then, we can convert σ
into a tour π without increasing its length such that the corresponding assignment ψπ leaves
at most δ · ν equations in IH unsatisfied.

Proof. We are going to analyze different parts of the underlying tour. In particular, we
consider different subgraphs of D12

H simulating equations and define a lower bound on
the sum of the length of arcs in the subgraph that are needed to define a tour in D12

H in
dependence whether the associated assignment ψπ is satisfying the underlying equation.
Let us start with graphs corresponding to matching equations.

Matching equations: Suppose we have given the equations xi ⊕ xi+1 = 0, xi ⊕ xj = 0,
xj ⊕ xj+1 = 0 and a tour σ passing the graphs displayed in Figure 3, we are going to
analyze the relation between the cost of the tour and the number of satisfied equa-
tions by ψσ. In some cases, we have to transform σ without increasing the cost in
order to obtain an assignment that satisfies more equations. The following definition
will be useful in this context. We introduce the notion of local cost of a tour σ in
V (e, l) = {vlje , vl⊥e , v

l(i+1)
e , vl0i+1, v

l1
i , v

l0
j+1, v

l1
j }, where e = {i, j}. Futhermore, for an arc (x, y),

we define V
(
(x, y)

)
= {x, y}.

cσ(V (e, l)) =
∑

v∈V (e,l)

∑
a∈σ : v∈V (a)

d(a)

2

In the following, we prove that given a tour with local cost cσ(V (e, l)) = (7 + u), then,
there is an assignment that leaves at most u equations unsatisfied out of xi ⊕ xi+1 = 0,
xi ⊕ xj = 0 and xj ⊕ xj+1 = 0.

1.Case ψσ(xi) ⊕ ψσ(xi+1) = 0, ψσ(xi) ⊕ ψσ(xj) = 0 and ψσ(xj) ⊕ ψσ(xj+1) = 0: No-
tice that the local cost of σ in V (e, l) can be bounded from below by 7, since each of
the 7 vertices needs to be visited. Assuming ψσ(xi) = ψσ(xj) = ψσ(xj) = ψσ(xj+1) = 1,
the tour σ traverses (vl1i , v

l0
i+1), (vl1j , v

lj
e ), (vlje , v

l⊥
e ), (vl⊥e , v

l(i+1)
e ) and (v

l(i+1)
e , vl0j+1). The case

ψσ(xi)=ψσ(xi+1)=ψσ(xj)=ψσ(xj+1)=0 can be discussed analogously. In both cases, we
obtain cσ(V (e, l)) = 7 while ψσ is satisfying all 3 equations.

2.Case ψσ(xi) ⊕ ψσ(xi+1) = 0, ψσ(xi) ⊕ ψσ(xj) = 1 and ψσ(xj) ⊕ ψσ(xj+1) = 0: In
both cases, we have cσ(V (e, l)) ≥ 8, which corresponds to the fact that ψσ leaves
the equation xi ⊕ xj = 0 unsatisfied. Note that a similar situation holds in case of
ψσ(xi) = ψσ(xi+1) = 0 and ψσ(xj) = ψσ(xj+1) = 1.

3.Case ψσ(xi) ⊕ ψσ(xi+1) = 0, ψσ(xi) ⊕ ψσ(xj) = 0 and ψσ(xj) ⊕ ψσ(xj+1) = 1:
Given ψσ(xi) = ψσ(xi+1) = 1 and ψσ(xj) 6= ψσ(xj+1) = 0, we are forced to use two 2-arcs
increasing the cost by 1. Thus, we obtain cσ(V (e, l)) ≥ 8. The case ψσ(xi) = ψσ(xi+1) = 0
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and ψσ(xj) 6= ψσ(xj+1) = 1 can be analyzed analogously. A similar argumentation holds
for ψσ(xi)⊕ ψσ(xi+1) = 1, ψσ(xi)⊕ ψσ(xj) = 0 and ψσ(xj)⊕ ψσ(xj+1) = 0.

4.Case ψσ(xi) ⊕ ψσ(xi+1) = 1, ψσ(xi) ⊕ ψσ(xj) = 0 and ψσ(xj) ⊕ ψσ(xj+1) = 1:
Given ψσ(xi) 6= ψσ(xi+1) = 0 and ψσ(xj) 6= ψσ(xj+1) = 0, we are forced to use four 2-arcs
in order to connect all vertices. Consequently, it yields cσ(V (e, l)) ≥ 9. The case, in which
ψσ(xi) 6= ψσ(xi+1) = 0 and ψσ(xj) 6= ψσ(xj+1) = 0 holds, can be discussed analogously.

vlje

vl⊥e

v
l(i+1)
e

2

z

2

vl0i+1

vl1j

vl1i

vl0j+1

x vl1j−1

vl0i+1

vlje

vl⊥e

v
l(i+1)
e

vl1j

z

vl0j+1

vl1i

2

x vl1j−1

2

(a) (b)

Figure 8: 5.Case with ψσ(xi) = ψσ(xi+1) = 1 and ψσ(xj) 6= ψσ(xj+1) = 1.

5.Case ψσ(xi) ⊕ ψσ(xi+1) = 0, ψσ(xi) ⊕ ψσ(xj) = 1 and ψσ(xj) ⊕ ψσ(xj+1) = 1: Let σ
be characterized by ψσ(xi) = ψσ(xi+1) = 1 and ψσ(xj) 6= ψσ(xj+1) = 1. We may assume
that σ uses the arc (vl1i , v

l0
i+1). The corresponding situation is illustrated in Figure 8 (a).

We transform σ such that it traverses the parity graph P l
j in the other direction and

obtain ψσ(xj) = 1. This transformation induces a tour with at most the same cost. On
the other hand, the corresponding assignment ψσ satisfies at least 2 − 1 more equations
since xlj ⊕ xlj−1 = 0 might get unsatisfied. In this case, we associate the local costs of 6
with σ. In the other case, in which ψσ(xi) = ψσ(xi+1) = 0 and ψσ(xj) 6= ψσ(xj+1) = 0 or
ψσ(xi)⊕ψσ(xi+1) = 1, ψσ(xi)⊕ψσ(xj) = 1 and ψσ(xj)⊕ψσ(xj+1) = 0 holds, we may argue
similarly.

6.Case ψσ(xi) ⊕ ψσ(xi+1) = 1, ψσ(xi) ⊕ ψσ(xj) = 1 and ψσ(xj) ⊕ ψσ(xj+1) = 1:
Given a tour σ with ψσ(xi) 6= ψσ(xi+1) = 1 and ψσ(xj) 6= ψσ(xj+1) = 0, we transform σ
such that it traverses the parity graph P l

j in the opposite direction meaning ψσ(xj) = 0.
This transformation enables us to use the arc (vl0j+1, v

l1
j ). Furthermore, it yields at least

one more satisfied equation in IH. In order to connect the remaining vertices, we are
forced to use at least two 2-arcs. In summary, we associate the local cost 9 with this
situation in conformity with the at most 2 unsatisfied equations by ψσ. The case, in which
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ψσ(xi) 6= ψσ(xi+1) = 0 and ψσ(xj) 6= ψσ(xj+1) = 1 holds, can be discussed analogously.

In summary, given a tour σ passing the graphs displayed in Figure 3 with local cost
(7 + u), then, we can efficiently modify σ without increasing the total cost such that the
assignment ψσ leaves at most u equations unsatisfied out of xi ⊕ xi+1 = 0, xi ⊕ xj = 0 and
xj ⊕ xj+1 = 0.

As for the next step, we are going to analyze the parts of a tour passing graphs cor-
responding to equations with exactly three variables.

Equations with three variables: Let xli ⊕ xsj ⊕ xrk = 0 = b3c be an equation with
three variables in IH. Let xli ⊕ xli+1 = 0, xsj ⊕ xsj+1 = 0 and xrk ⊕ xrk+1 = 0 be the associated
cycle equations in IH. For notational simplicity, we set e = {i, i + 1}, d = {k, k + 1}
and b = {j, j + 1}. Let us also define local cost of σ in V 3⊕

c = {sc, sc+1} ∪ Vc, where
Vc = {v1c , v2c , v3c} ∪ V (P l

e) ∪ V (P k
a ) ∪ V (P s

b ).

cσ(V 3⊕
c ) =

∑
(sc,v)∈σ

d((sc, v))

2
+

∑
(v′,sc+1)∈σ

d((v′, sc+1))

2
+
∑
v∈Vc

∑
a∈σ : v∈V (a)

d(a)

2

We are going to analyze the the number of satisfied equations by ψσ in dependence to the
local cost of σ in V 3

c . In the first step, we transform the tour traversing the graphs P l
i , P

l
i+1

and P l
e such that σ uses the ψσ(xli)-traversal of P l

e. We also apply similar modifications to
the graphs P s

b and P r
d . Afterwards, due to the construction of D3⊕

c and Lemma 1, we are
able to transform σ such that it has local cost in V 3⊕

c of 3 · 3 + 4 if it passes an even number
of parity graphs P ∈ {P l

e, P
k
d , P

s
b } while using a simple path through D3⊕

c . Otherwise, it
yields cσ(V 3⊕

c ) ≥ 13 + 1.
In the following, we are going to analyze the gadgets corresponding to the equation

xli ⊕ xli+1 = 0, where xli also appears in xli ⊕ xsj ⊕ xrk = 0. For this, we introduce local cost
of σ in V (e, l) = {vl1i , vl0i+1}.

cσ(V (e, l)) =
∑

v∈V (e,l)

∑
a∈σ : v∈V (a)

d(a)

2

In particular, we are going to prove that given a tour σ with local cost cσ(V (e, l)) = 2, then,
we can efficiently modify σ without increasing the total cost such that the assignment ψσ
satisfies xli ⊕ xli+1 = 0.

1. Case (ψσ(xli) ⊕ ψσ(xli+1) = 0): Note that cσ(V (e, l)) is bounded from below by 2. In
both cases, we transform the tour such that it uses the ψσ(xli)-traversal of P l

e without
increasing its total cost. Exemplary, we display such a scenario for the case ψσ(xli) = 1 and
ψσ(xli+1) = 1 in Figure 9 (a) and the transformed tour in Figure 9 (b). In both cases, we
have cσ(V (e, l)) = 2.
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(a)

vl⊥e

vl0i+1 vl⊥i+1vl⊥i vl1i

vl1evl0e

2

2

vl1i+1vl0i

v3c v2c

(b)

vl⊥e

vl0i+1 vl⊥i+1vl⊥i vl1i

vl0e

vl0i vl1i+1

v3c v2c
vl1e

Figure 9: Case (ψσ(xli) = 1 and ψσ(xli+1) = 1).

2.Case (ψσ(xli) = 1 and ψσ(xli+1) = 0): Let us assume that ψσ(xli) ⊕ ψσ(xsj) ⊕ ψσ(xrk) = 0
holds. Due to Lemma 1, it is possible to transform the tour such that it uses the
0-traversal of the parity graph P l

e without increasing the total cost. In the other case,
i.e. ψσ(xli) ⊕ ψσ(xsj) ⊕ ψσ(xrk) = 1, we will change the value of ψσ(xli) achieving in
this way at least 2 − 1 more satisfied equation. Let us examine the scenario and
the corresponding transformation in Figure 10 (a) and (b), respectively. The tour
uses the 0-traversal of the parity graph P l

e, which enables σ to pass the parity check in
D3⊕
c . In both cases, we obtain cσ(V (e, l)) ≥ 3 in conformity with the 1 unsatisfied equation.

3.Case ψσ(xli) = 0 and ψσ(xli+1) = 1: Assuming ψσ(xli) ⊕ ψσ(xli) ⊕ ψσ(xli) = 0, the
tour will be modified such that the parity graphs P l

i and P l
e are traversed in the same

direction. Since we have ψσ(xli)⊕ ψσ(xli)⊕ ψσ(xli) = 0, we are able to uncouple the parity
graph P l

e from the tour through D3⊕
c without increasing its total cost.

Assuming ψσ(xli)⊕ψσ(xli)⊕ψσ(xli) = 1, we transform σ such that the parity graph P l
e is

traversed when σ is passing through D3⊕
c meaning v3c → vl0e → vl⊥e → vl1e → v2c is a part of

the tour. In addition, we change the value of ψσ(xli) yielding at least 2 − 1 more satisfied
equations. In both cases, we associate the local cost of 3 with σ. On the other hand, ψσ
leaves at most one equation unsatisfied.

In summary, given a tour σ passing the graphs corresponding to xli ⊕ xli+1 = 0,
xsj⊕xsj+1 = 0, xrk⊕xrk+1 = 0 and xli⊕xsj⊕xrk = 0, it is possible to transform σ in polynomial
time into a tour π without increasing the total cost such that sum of the local cost of π in
V 3⊕
c , V (e, l), V (a, k) and V (b, s) is 4+3 ·3+3 ·2+u and the number of unsatisfied equation

by ψπ out of xli⊕xli+1 = 0, xsj⊕xsj+1 = 0, xrk⊕xrk+1 = 0 and xli⊕xsj⊕xrk = 0 is bounded by u.
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vl⊥e
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y 2
2

v3c v2c

Figure 10: Case ψσ(xli) = 1, ψσ(xli+1) = 0 and ψσ(xli)⊕ ψσ(xsj)⊕ ψσ(xrk) = 1.

Cycle border equations: Let xl1 ⊕ xl2 = 0 be a cycle border equation. We also
define local cost of a tour σ in V l

b = {bl, bl+1} ∪ V 12
l , where V 12

l = {vl02 , vl11 }.

cσ(V l
b ) =

∑
(bl,v2)∈σ

d((bl, w))

2
+

∑
(v1,bl+1)∈σ

d((bl, w))

2
+
∑
v∈V 12

l

∑
a∈σ : v∈V (a)

d(a)

2

Let us analyze the local cost of σ.
Case ψσ(xl1) ⊕ ψσ(xl2) = 0: Since we account half the length of arcs that are leaving bl
and entering bl+1 and also half the length of arcs that are leaving and entering vl02 and vl11 ,
cσ(V l

b ) is bounded from below by 1 + 1 + 2 · 0.5. In both cases (ψσ(xl1) = ψσ(xl2) ∈ {0, 1}),
it is possible to construct a tour with cσ(V l

b ) = 3.
Case ψσ(xl1) 6= ψσ(xl2): Let us assume that ψσ(xl1) 6= ψσ(xl2) = 0 holds. We note that there
is a vertex v ∈ {vl02 , vl11 } such that σ is using a 2-arc to enter v. Also, in order to enter the
vertex bl+1, we see that we need to use another 2-arc. It implies that cσ(V l

b ) ≥ 4. In the
case (ψσ(xl1) 6= ψσ(xl2) = 1), we may argue similarly and get cσ(V l

b ) ≥ 4.

In summary, given a tour σ passing the graphs corresponding to xl1 ⊕ xl2 = 0, it is
possible to transform σ in polynomial time into a tour π without increasing the total cost
such that π has local cost in V l

b of 3 if the equation xl1 ⊕ xl2 = 0 is satisfied by ψσ and at
least 4 otherwise.
Finally, we note that half of the weight of the arcs entering and leaving a vertex v⊥ of a
parity gadget is bounded from below by 1.

Suppose that we have given a tour σ in D12
H with total cost 206ν + n + 2 + δ · ν.

17



2

21

2

3

2

2
1

14

4
4

2

2

2

2

2

1

1

4

4

4

Figure 11: It is possible to transform the traversals in the left columns into the traversals
in the right columns without increasing the total cost of the tour.

We are going to subtract the lower bound on the local cost for each part of the tour. It
implies that the number of unsatisfied equations is bounded from above by

206ν + n+ 2 + δ · ν − (3 · 60ν + 2ν · 13 + n+ 2) = δ · ν

and the proof of the lemma follows.

We are ready to give the proof of Theorem 1.(i).

Proof of Theorem 1.(i). Given an instance I1 of the MAX-E3LIN2 problem with n variables
and 2γ equations, for all δ > 0, there exists a constant kδ such that if we repeat each
equation kδ time, we get an instance I(k)1 with 2ν = k2γ equations and n variables such
that (n+ 2)/2ν ≤ δ holds.

Then, from I
(k)
1 , we generate an instance IH of the Hybrid problem and the correspond-

ing directed graph D12
H . Due to Lemmata 2 and 4, and Theorem 3, we know that for all

ε > 0, it is NP-hard to tell whether there is a tour with cost at most 206ν + n+ 2 + ε · ν ≤
206 · ν+αν or all tours have cost at least 206 · ν+ (1− ε)ν+n+ 2 ≥ 207 · ν−α · ν, for some
α that depends only on α and δ. Finally, we note that the ratio between these two cases
can get arbitrarily close to 207/206 by appropriate choices for ε and δ.

8 The (1, 4)-ATSP

In order to prove the claimed hardness results for the (1, 4)-ATSP, we use the same con-
struction as described in Section 7 with the difference that all arcs in parity graphs have
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Figure 12: It is possible to transform the traversals in the left columns into the traversals
in the right columns without increasing the total cost of the tour.

weight 1, whereas all other arcs contained in the directed graph D12
H obtain the weight 2.

Let us call this new weighted graph D14
H . The induced asymmetric metric space (VH, dH)

is given by VH = V (D14
H ) with distance function dH which is defined by the shortest path

metric in D14
H bounded by the value 4.

In other words, given x, y ∈ VH, the distance between x and y in VH is

dH(x, y) = min{length of a shortest path from x to z in D14
H , 4}.

The only difficulty that remains is to prove that every tour in (VH, dH) can be trans-
formed efficiently into a consistent tour without increasing the total cost. This statement
can be proved by considering all possibilities exhaustively. Some cases are displayed in
Figure 11 and 12.

We are ready to give the proof of Theorem 1.(iii).

Proof of Theorem 1.(iii). Suppose we are given IH an instance of the Hybrid problem con-
sisting of nwheels, 60ν equations with two variables and 2ν equations with three variables,
we construct in polynomial time the associated instance (VH, dH) of the (1, 4)-ATSP.

Let φ an assignment to the variables of IH leaving δ · ν equations unsatisfied in IH with
δ ∈ (0, 1). Then, there exists a tour with total cost at most

60ν · (2 + 2) + 2ν · (3 · 4 + 2 · 4) + 2 · (δ · ν) + 2(n+ 2).

On the other hand, if we are given a tour σ in (VH, dH) with total cost 280 ·ν+2 ·(δ ·ν)+
2(n + 2), it is possible to transform σ in polynomial time into a tour π without increasing
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the total cost such that the associated assignment ψπ leaves at most δ · ν equations in IH
unsatisfied.

Similarly to the proof of Theorem 1, we may assume that 2(n + 2)/ν ≤ τ holds. Ac-
cording to Theorem 3, we know that for all ε > 0, it is NP-hard to decide whether there is
a tour with total cost at most 280ν + 2(n+ 2) + 2ε · ν ≤ 280 · ν + 2αν or all tours have total
cost at least 280 ·ν+2(1−ε)ν+2(n+2) ≥ 282 ·ν−2α ·ν, for some α which depends only on
ε and τ . The ratio between these two cases can get arbitrarily close to 282/280 = 141/140
by appropriate choices for ε and τ .

vL1il vR1
il

vL0il vR0
il

Parity graph P l
i 1-traversal 0-traversal

Figure 13: 0/1-Traversals of the parity gadget P l
i .

9 The (1, 2)-TSP

In order to prove Theorem 1 (ii), we apply the reduction method used in the previous
section to the (1, 2)-TSP. As for parity gadgets, we use the graph depicted in Figure 13
with its corresponding traversals. The traversed edges are displayed by thick lines. The
vertices in the set {vL1il , vR1

il , v
L0
il , v

R0
il } are called contact vertices of P l

i .

Let IH be an instance of the hybrid problem produced in the reduction in Theorem 3.
Let xli ⊕ xlj = 0 be a matching equation in IH, and xli ⊕ xli+1 = 0 and xlj ⊕ xlj+1 = 0 the
corresponding the cycle equations. We connect the associated parity gadgets P l

i , P
l
i+1,

P l
{i,j}, P

l
j and P l

j+1 as displayed in Figure 14.

P l
{i,j} P l

i+1

P l
j

P l
j+1

P l
i

Figure 14: The construction simulating xli ⊕ xlj = 0, xli ⊕ xli+1 = 0 and xlj ⊕ xlj+1 = 0.
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For equations with three variables x⊕ y⊕ z = 0 = b3c in IH, we use the graph G3⊕
c depicted

in Figure 15. Engebretsen and Karpinski [EK06] used this graph in their reduction and
proved the following statement.

sc sc+1

v1c

v2c

Figure 15: Graph G3⊕
c simulating to x⊕ y ⊕ z = 0.

Lemma 5 ([EK06]). There is a simple path from sc to sc+1 in Figure 15 containing the vertices
v ∈ {v1c , v2c} if and only if an even number of parity gadgets is traversed.

Let xi ⊕ xi+1 = 0 be a cycle equation and xi ⊕ y ⊕ z = 0 an equation with three
variables in IH. We denote the parity graphs that simulate xi ⊕ xi+1 = 0 by P l

i and P l
i+1.

Furthermore, we denote the parity gadget for xi as P(x,i), which is a subgraph in G3⊕
c

simulating xi ⊕ y ⊕ z = 0. Then, we connect vR1
il with vL1(i+1)l and vR0

il with vR1
(x,i). Finally, we

create {vL0(i+1)l, v
L1
(x,i)}.

For each cycle border equation xl1⊕xl2 = 0 in IH, we introduce the path pl = b1l −b2l −b3l . In
addition, we connect b3l and b1l+1 to the parity gadgets P l

1 and P l
2 in a similar way as in the

reduction from the Hybrid problem to the (1, 2)-ATSP. More precisely, we add the edges
{bl, vL02l }, {bl+1, v

R0
1l }, {bl+1, v

L1
2l } and {bl, vR1

1l }.
For the last cycle equation xn1 ⊕ xn2 = 0, we create the path b1n+1 − b2n+1 − s1, where s1 is

a vertex of G3⊕
1 . This is the whole description of the corresponding graph GH.

We are ready to give the proof of Theorem 1.(ii).

Proof of Theorem 1.(ii). Let IH be an instance of the Hybrid problem consisting of n
wheels, 60ν equations with two variables, 2ν equations with three variables. and G12

H
the associated instance of the (1, 2)-TSP.

Suppose we are given an assignment φ to the variables of IH leaving δ · ν equations
unsatisfied with δ ∈ (0, 1), then, we can construct a tour G12

H with total cost at most
8 · 60ν + (3 · 8 + 3) · 2ν + 3(n+ 1) + 1 + δ · ν.
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Figure 16: It is possible to transform the traversals in the upper row into the traversals in
the lower row without increasing the total cost of the tour.

On the other hand, if we are given a tour σ inG12
H with total cost 534ν+3(n+1)+1+δ ·ν,

it is possible to transform σ in polynomial time into a tour π without increasing the total
cost such that all parity gadgets in G12

H are traversed by means of 0/1-traversals. Some
cases are displayed in Figure 16. Moreover, we are able to construct in polynomial time an
assignment to the variables of IH, which leaves at most δν equations in IH unsatisfied.

Similarly to the proof of Theorem 1, we may assume that (3n + 4)/ν ≤ τ holds. Ac-
cording to Theorem 3, we know that for all ε > 0, it is NP-hard to decide whether there
is a tour with total cost at most 534ν + 3(n+ 1) + 1 + ε · ν ≤ 534 · ν + αν or all tours have
total cost at least 534 · ν + (1− ε)ν + 3(n + 1) + 1 ≥ 535 · ν − α · ν, for some α depending
only on ε and τ . The ratio between these two cases can get arbitrarily close to 535/534 by
appropriate choices for ε and τ .

Parity graph P l
i 1-Traversal of P l

i . 0-Traversal of P l
i .

Figure 17: 0/1-Traversals of the graph P l
i .

10 Approximation Hardness of the (1, 4)-TSP

In order to prove the claimed approximation hardness results for the (1, 4)-TSP, we cannot
use the same parity graphs as in the construction in the previous section since tours are
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not necessarily consistent in this metric. For this reason, we introduce the parity gadgets
displayed in Figure 17 with the corresponding traversals.

In order to define the new instance of the (1, 4)-TSP, we replace all parity gadgets in
G12
H by graphs displayed in Figure 17. In the remainder, we refer to the whole construction

as the graph G14
H .

The construction for a matching equation xli⊕xlj = 0, and its associated cycle equations
xli ⊕ xli+1 = 0 and xlj ⊕ xlj+1 = 0 are displayed in Figure 18.

P l
{i,j}

P l
jP l

j+1

P l
i+1P l

i

Figure 18: Construction simulating xli ⊕ xlj = 0, xli ⊕ xli+1 = 0 and xlj ⊕ xlj+1 = 0.

All edges contained in a parity graph have weight 1, whereas all other edges have
weight 2. The remaining distances in the associated metric space VH are induced by the
metric in G14

H bounded by the value 4 meaning

dH({x, y}) = min{length of a shortest path from x to y in G14
H , 4}.

This is the whole description of the associated instance (VH, dH) of the (1, 4)-TSP. We
are ready to give the proof of Theorem 1.(iv).

Proof of Theorem 1.(iv) . Suppose we are given IH an instance of the Hybrid problem con-
sisting of nwheels, 60ν equations with two variables and 2ν equations with three variables,
we construct in polynomial time the associated instance (VH, dH) of the (1, 4)–TSP problem.

For a constant δ ∈ (0, 1), we are given an assignment φ to the variables of IH leaving
δ · ν equations unsatisfied in IH. Then, we can construct a tour in (VH, dH) with total cost
at most 60ν · (2 + 8) + 2ν · (3 · 10 + 2 · 3) + 6n+ 8 + 2 · δν.

On the other hand, if we are given a tour σ in (VH, dH) with length 672ν+6n+8+2·δν, it
is possible to transform σ in polynomial time into a tour π such that it uses 0/1-traversals
of all parity graphs contained in G14

H without increasing the total cost. Some cases are
displayed in Figure 19 and 20. Furthermore, we are able to construct in polynomial time
an assignment to the variables of IH, which leaves at most 2δν equations in IH unsatisfied.

Similarly to the proof of Theorem 1.(i), we may assume that (6n + 8)/ν ≤ τ holds.
According to Theorem 3, we know that for all ε > 0, it is NP-hard to decide whether there
is a tour with total cost at most 672ν + 6n+ 8 + ε · 2 · ν ≤ 672 · ν + α · 2ν or all tours have
cost at least 672 · ν+ (1− ε) · 2ν + 6n+ 8 ≥ 674 · ν−α2 · ν, for some α that depends only on
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Figure 19: It is possible to transform the traversals in the left column into the traversals in
the right column without increasing the total cost of the tour.

ε and τ . The ratio between these two cases can get arbitrarily close to 674/672 = 337/336
by appropriate choices for ε and τ .

11 The Shortest Superstring Problem

In this section, we construct a reduction from the Hybrid problem to the SSP and give the
poof of Theorem 1.(vi). Let us first give a high-level view of the reduction in order to build
some intuition.

11.1 Main Idea of the Reduction

Let xi⊕xi+1 = 0 be a cycle equation of a given instance IH of the Hybrid problem. A parity
gadget for xi ⊕ xi+1 = 0 in the instance SH of the SSP is a subset Si ⊂ SH containing two
strings s1i and s2i . The strings s1i and s2i can be overlapped by two letters in two different
ways: s1i

2→ s2i or s2i
2→ s1i . We refer to those special alignments as 0/1-alignments and

they define the value that we will assign to xi. The basic idea of the construction is the
following: The 0/1-alignments of two consecutive cycle equations are structured in such
a way that they can be overlapped by one letter if they use the same 0/1-alignment. The
parity information of the variables in the Hybrid problem will be transported by means of
0/1-alignments to the gadgets that are simulating equations with exactly three variables. If
the underlying equation with three variables is left unsatisfied by the assignment defined
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Figure 20: It is possible to transform the traversals in the left column into the traversals in
the right column without increasing the total cost of the tour.

via 0/1-alignments, it is not possible to overlap all the 0/1-alignments of the variables, that
are involved, by one letter implying a longer superstring for SH.

11.2 Description of the Instance SH of the SSP

Given an instance IH of the Hybrid problem, we define a set of corresponding strings for
every equation in IH and their specific alignment. We assume that all variables in IH
appear unnegated in equations. Therefore, equations with three variables are of the form
x⊕ y ⊕ z = 0 or x⊕ y ⊕ z = 1. We begin with the description of the strings corresponding
to cycle border equations.

Strings for cycle border equations: Given a cycle border equation x1 ⊕ x2 = 0,
we introduce six associated strings. The string LxC l

x is used as the initial part of the super-
string corresponding to this wheel, whereas Cr

xRx is used as the end part. Furthermore, we
introduce strings that represent an assignment that sets either the variable x1 to 1 or the
variable x2 to 0: C l

xx
m0
2 xl11 C

r
x and xl11 C

r
xC

l
xx

m0
2 . The strings, that represent an assignment

that sets either the variable x1 to 0 or the variable x2 to 0, are given by C l
xx

r1
2 x

m0
1 Cr

x and
xm0
1 Cr

xC
l
xx

r1
2 . The following two alignments are called the 0-alignment of the four strings.

C l
xx

m0
2 xl11 C

r
x

2→ xl11 C
r
xC

l
xx

m0
2 and xm0

1 Cr
xC

l
xx

r1
2

2→ C l
xx

r1
2 x

m0
1 Cr

x. On the other hand, we the
define the 1-alignment as xl11 C

r
xC

l
xx

m0
2

2→ C l
xx

m0
2 xl11 C

r
x and C l

xx
r1
2 x

m0
1 Cr

x
2→ xm0

1 Cr
xC

l
xx

r1
2 .

Next, we describe the strings corresponding to matching equations.

Strings for matching equations: Let xi⊕ xj = 0 be a matching equation in IH with i < j.
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Then, we introduce two strings of the form xr0j x
l0
j x

r1
i x

l1
i and xr1i x

l1
i x

r0
j x

l0
j . We define the

0-alignment and 1-alignment as xr0j x
l0
j x

r1
i x

l1
i

2→ xr1i x
l1
i x

r0
j x

l0
j and xr1i x

l1
i x

r0
j x

l0
j

2→ xr0j x
l0
j x

r1
i x

l1
i ,

respectively.

Strings for Equations with Three Variables: We now concentrate on equations
with exactly three variables. Let x ⊕ y ⊕ z = b3j be an equation with three variables
in IH. For every equation x ⊕ y ⊕ z = b3j , we define two corresponding sets Sα(b3j)
and Sβ(b3j), both containing three strings. Finally, the set S(b3j) is defined as the union
Sα(b3j) ∪ Sα(b3j). We distinguish whether x ⊕ y ⊕ z = b3j is of the form x ⊕ y ⊕ z = 1
or x ⊕ y ⊕ z = 0. An equation of the form x ⊕ y ⊕ z = 0 is represented by Sα(b3j)
containing the strings xr1αxl1yr1yl1, yr1yl1xm0αCj and xm0αCjx

r1αxl1. Sβ(b3j) consists of
xr1βxl1zr1zl1, zr1zl1Cjxm0 and Cjxm0xr1βxl1. The strings in Sα(b3j) can be overlapped by two
letters in a cyclic fashion to obtain three different constellations. A suitable constellation
can be used to connect with 0/1-alignments corresponding to cycle equations. The
string xr1αxl1yr1yl1

2→ yr1yl1xm0αCj
2→ xm0αCjx

r1αxl1 = s1xcj represents the assignment

x = 1, whereas the constellation yr1yl1xm0αCj
2→ xm0αCjx

r1αxl1
2→ xr1αxl1yr1yl1 = s1ycj is

representing y = 1. Finally, the string xm0αCjx
r1αxl1yr1αyl1xm0αCj = s0xlcj can be used to

overlap with Cjx
m0xr1βxl1zr1zl1Cjx

m0 = s0xrcj consisting of the strings in Sβ(b3j) in the case

x = 0, y = 0, and z = 0. zr1zl1Cjxm0 2→ Cjx
m0xr1βxl1

2→ xr1βxl1zr1zl1 = s1zcj is used in the
case z = 1.
The sets Sα(b3j) and Sβ(b3j) representing equations of the form x ⊕ y ⊕ z = 1 can be
constructed analogously. Next, we describe the strings corresponding to cycle equations.

Strings for cycle equations: Let Wx be a wheel in IH and M(Wx) its associated
perfect matching. We suppose that {i, j} and {i+ 1, j′} are both contained in M(Wx) with
i < j. Then, we introduce the corresponding strings for xi ⊕ xi+1 = 0: If i + 1 < j′ holds,
we have xm0

i xm0
i+1x

l1
i x

r1
i+1 and xl1i x

r1
i+1x

m0
i xm0

i+1. We define the 0-alignment and 1-alignment as
xm0
i xm0

i+1x
l1
i x

r1
i+1

2→ xl1i x
r1
i+1x

m0
i xm0

i+1 and xl1i x
r1
i+1x

m0
i xm0

i+1
2→ xm0

i xm0
i+1x

l1
i x

r1
i+1, respectively. In the

case (i + 1 > j′), we use xm0
i xr0i+1x

l1
i x

m1
i+1 and xl1i x

m1
i+1x

m0
i xr0i+1. The strings for the remaining

cases can be defined analogously.
If the variable xi appears in an equation of the form xi ⊕ y ⊕ z = 0, we introduce three
strings for xi−1 ⊕ xi = 0: xl1i−1x

r1β
i xl1i−1x

r1α
i , xl1i−1x

r1α
i xm0

i−1x
m0
i and xm0

i−1x
m0
i xl1i−1x

r1β
i . The

strings for the case (xi ⊕ y ⊕ z = 1) can be defined analogously.

11.3 Constructing the Superstring from an Assignment

In this section, we are going to construct a superstring given an assignment to the variables
of IH and give the proof of the following lemma.

Lemma 6. Let δ ∈ (0, 1) be a constant, IH an instance with n wheels, 60 · ν equations with
two variables and 2 · ν equations with exactly three variables and φ an assignment leaving
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δ · ν equations in IH unsatisfied. Then, it is possible to construct efficiently a superstring for
SH with length at most 332 · ν + 8 · n+ δ · ν and compression at least 4n+ 204 · ν − δ · ν.

Proof. For a fixed constant δ ∈ (0, 1), let φ be an assignment to the variables of IH leaving
δ · ν equations unsatisfied. According to Theorem 3, we may assume that all variables that
are associated to a wheel take the same value under φ. Let {Wp}np=1 be the set of wheels
associated with IH. For each wheelWp, we are going to construct the corresponding string
spφ according to the assignment φ. The superstring for SH is defined by the concatenation
s1φ s

2
φ · · · snφ. Let {xpi }zi=1 be the set of variables that is associated to the wheel Wp. Let

us assume that φ(xp2) = 1 holds. Then, we use the 1-alignments of all sets associated
to equations with exactly two variables in the wheel Wp. The string spφ begins with the
following substring.

LpC
l
p

1→ C l
px

r1
2 x

m0
1 Cr

p
2→ xm0

1 Cr
pC

l
px

r1
2

Let us assume that x2 ⊕ xj = 0 is a matching equation in IH. Then, we align xm0
1 Cr

pC
l
px

r1
2

with the 1-alignment of the strings associated with x2 ⊕ xj = 0, x2 ⊕ x3 = 0 and so on.

xm0
1 Cr

pC
l
px

r1
2

1→ xr12 x
l1
2 x

r0
j x

l0
j

2→ xr0j x
l0
j x

r1
2 x

l1
2

1→ xl12 x
r1
3 x

m0
2 xm0

3
2→ xm0

2 xm0
3 ...

Let us consider the case that xi−1 ⊕ xi = 0 is an equation with two variables and xi also
appears in an equations with three variables of the form xi ⊕ y ⊕ z⊕ = 0 = bj. We assume
that we have xi = 1, z = 1 and y = 0. Then, we make use of the following alignments.

xl1i−1x
r1β
i xl1i−1x

r1α
i

2→ xl1i−1x
r1α
i xm0

i−1x
m0
i

2→ xm0
i−1x

m0
i xl1i−1x

r1β
i

1→ xr1βi xl1i z
r1zl1

2→

zr1zl1Cjx
m0
i

2→ Cjx
m0
i xr1βi xl1i

1→ xl1i x
r1
i+1x

m0
i xm0

i+1
2−→ xm0

i xm0
i+1x

l1
i x

r1
i+1...

The string spφ ends with the substring xl11 C
r
pC

l
px

m0
2

2→ C l
px

m0
2 xl11 C

r
p

1→ Cr
pRp. If we have given

φ(xp2) = 0, then, we use the 0-alignments of the sets corresponding to equations with two
variables.

We are going to describe which strings we use for equations with three variables. Let
x ⊕ y ⊕ z = 0 be an equation with exactly three variables in IH. Let us first consider the
two cycle equations xi−1 ⊕ x = 0 and x ⊕ xi+1 = 0. We note that the two associated 0/1-
alignments can be overlapped by one letter if both use the 0-alignment. Let us assume that
the associated strings are using 1-alignments. Then, we want to overlap the constellation
for x = 1 of the strings in Sα(b3j) with each 1-alignment by one letter. That means if we
have an assignment to x, y and z that satisfies x⊕ y⊕ z = 0, we can use the corresponding
constellations (for which the associated variable takes the value 1) of the strings in the sets
Sα(b3j) and Sβ(b3j) such that the two resulting fragments can be overlapped by one letter
from each side with strings corresponding to equations with two variables.

On the other hand, if the assignment is not satisfying, then, we can use at least one
constellation to overlap with 1-alignments of strings. But, all in all, we lose an overlap of
one letter compared to the number of overlapped letters in case of a satisfying assignment.

In summary, for each equation with two variables, we use a 0/1-alignment, which yields
59ν strings with length 6. (Except in the case when the variable appears in an equation with
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three variables. We will add 2 for each equation with three variables to the length of the
superstring.) For each equation with three variables, we use an appropriate constellation
and obtain 2 · 2ν strings with length 8. For cycle border equations, we use 0/1-alignments
as well. It yields two strings of length 6 and two strings of length 2.

All these fragments can be overlapped each by one letter except in the case when the
equation with three variables is not satisfied. In this case, we lose an overlap of one letter.
Thus, we obtain a string with length at most (6− 1) · 60ν + 2 · (8− 1) · 2ν + 2 · 2ν + 8n+ δν.
This string achieves a compression at least

60ν(2 · 4) + 2ν(6 · 4 + 2 · 4) + (2 · 4 + 2 · 2)n− (332ν + 8n+ δν) = 204ν + 4n− δν

and the proof of the lemma follows.

11.4 Defining an Assignment from a Superstring

In this section, we are going to prove the other direction of our reduction. Given a su-
perstring for SH, we are going to define an assignment to the variables of IH and give the
proof of the following lemma.

Lemma 7. Let δ ∈ (0, 1) be a constant, IH an instance with n wheels, 60 · ν equations with
two variables and 2 · ν equations with exactly three variables. If there is a superstring for SH
with length 344 · ν + 8 · n + δ · ν and compression 4n + 204 · ν − δ · ν, then, it is possible to
construct efficiently an assignment that leaves at most δ · ν equations in IH unsatisfied.

Proof. Let s be a superstring for SH with length 344 · ν + 8 · n + δ · ν. First, we are going
to apply local transformation in order to define our assignment to the variables of IH.
Let us consider the two strings si = xr1i x

l1
i x

r0
j x

l0
j and sj = xr0j x

l0
j x

r1
i x

l1
i that are associated

to a matching equation. Note that si as well as sj can have an overlap of at most one
letter with strings in SH\{si, sj}. Since a 0/1-alignment of si and sj yields an overlap of
two letters, we can rearrange the strings in s such that s′ is a superstring for SH with
at most the same length as s and s′ contains a 0/1-alignment of si and sj as substring.
Due to this transformation, we may assume that the underlying superstring contains only
0/1-alignments of strings corresponding to equations with two variables. In addition, the
0/1-alignment of the strings corresponding to xi⊕xi−1 = 0 defines the value that we assign
to the variable xi.

Let us analyze gadgets for matching equations: Suppose we are given the five equations
xi−1⊕xi = 0, xi⊕xi+1 = 0, xj−1⊕xj = 0, xi⊕xj = 0 and xj ⊕xj+1 = 0. Let S be the set of
strings corresponding to the equations above. Since the length of the strings is exactly 4, we
can convert S into an instance (VS, dS) of the (1, 4)-ATSP. We notice that we obtain a similar
structure as in the reduction to the (1, 2)-ATSP (see Figure 21). Analogously to Lemma 4,
we define transformation such that if (3 − u) of the 0/1-alignments can be overlapped by
one letter, then, the associated assignment leaves at most u equations unsatisfied out of
xi ⊕ xi+1 = 0, xi ⊕ xj = 0 and xj ⊕ xj+1 = 0.
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s2i+1

s1j

s2j

s1i+1

s1e

s2j+1

s1j+1

s2i

s1i

s2e

Figure 21: The construction simulating xi⊕xi+1 = 0, xi⊕xj = 0 and xj⊕xj+1 = 0. Dotted
and straight arrows represent arcs a with d(a) = 3 and d(a) = 2, respectively. For all other
arcs a, we have d(a) = 4.

Let us now consider gadgets corresponding to equations with three variables: Due to
rearrangements we may assume that the superstring contains one of the constellations
that are associated to the equation x⊕ y ⊕ z = 0 = b3j . Therefore, we obtain two strings s1j
and s2j , which can be overlapped by one letter with 0/1-alignments of cycle equations. For
b ∈ {0, 1}, we denote by sbix and sb(i+1)x the b-alignment of the strings corresponding to the
equation xi−1 ⊕ x = 0 and x⊕ xi+1 = 0, respectively. The strings sbky, s

b
(k+1)y, s

b
tz and sb(t+1)z

have a similar meaning.
Let us first assume that for γ ∈ {x, y, z}, the strings sbiiγ and s

bi+1

(i+1)γ are using the
same 0/1-alignment, that is, we have bi+1 = bi. We are going to show that we can use
the constellations to overlap with the 0/1-alignments each by one letter if the equation
x ⊕ y ⊕ z = 0 is satisfied: Let us assume that x = 0, y = 0 and z = 0 holds. Then, we get
s0ix

1→ s0xlcj
1→ s0xrcj

1→ s0(i+1)x, s
0
ky

1→ s0(k+1)y and s0tz
1→ s0(t+1)z. We count 5 letters that can be

overlapped in this case.
For x = 0, y = 0 and z = 1, we have s0tz

1→ s1zcj
1→ s0(t+1)z, s

0
ix

1→ s0(i+1)x and s0ky
1→ s0(k+1)y.

We obtain only 4 letters that we overlapped in this case. Observe that by using s0xlcj
1→ s0xrcj ,

it is not possible to achieve more letters that we can overlap. The other cases x+ y+ z = 1
can be discussed similarly.
Assuming (x + y + z = 2), it is possible to overlap s1j and s2j with the 0/1-
alignments of the variables that take the value 1. Note that s1ix can be either the
string xl1i−1x

r1βxl1i−1x
r1α 2→ xl1i−1x

r1αxm0
i−1x

m0 2→ xm0
i−1x

m0xl1i−1x
r1β or xl1i−1x

r1αxm0
i−1x

m0 2→
xm0
i−1x

m0xl1i−1x
r1β 2→ xl1i−1x

r1βxl1i−1x
r1α. In each case, we obtain 5 letters that we can over-

lap.
Suppose we have x+ y + z = 3. Then, it is possible to align s1j and s2j from both sides with
0/1-alignments. Note that it is not possible to overlap the remaining two 0/1-alignments.
Thus, we obtain in total 4 letters that we can overlap.
Summarizing, in the cases, when x ⊕ z ⊕ y = 0 is left unsatisfied, it yields one less letter,
that is overlapped.
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Finally, we observe that if the two strings sbiiγ and sbi+1

(i+1)γ corresponding to a variable γ have

not the same 0/1-alignment, that is bi 6= bi+1, only one of the strings sbiiγ and sbi+1

(i+1)γ can be

aligned with either s1j or s2j . In addition, it is not possible to overlap sbiiγ with sbi+1

(i+1)γ by one
letter. This corresponds to the fact that the cycle equation is not satisfied. The gadgets for
cycle border equations can be analyzed very similarly. In conclusion, given a superstring
for SH with length 344 · ν + 8 · n+ δ · ν and compression 4n+ 204 · ν − δ · ν, it is possible to
extract efficiently an assignment that leaves at most δν equations in IH unsatisfied.

We are ready to give the proof of Theorem 1.(v) and 1.(vi).

11.5 Proof of Theorem 1.(v) and 1.(vi).

For a fixed δ > 0, we are given an instance IH of the Hybrid problem with n wheels, 2ν
equations with three variables and 60ν equations with two variables such that 8n/ν ≤ δ
holds. Then, we construct the associated instance SH. Due to Lemmata 6, 7 and Theo-
rem 3, we know that for all ε > 0, it is NP-hard to tell whether there is a superstring with
length at most 344 · ν + 8 · n + ε · ν ≤ 344 · ν + (δ + ε)ν or all superstrings have length at
least 344ν + (1 − ε)ν + 8 · n ≥ 345 · ν − ε · ν. The ratio between these two cases can get
arbitrarily close to 345/344 by appropriate choices for ε and δ.

Similarly, we conclude that for all ε > 0, it is NP-hard to tell whether there is a super-
string with compression at least 204 · ν + 4 ·n− ε · ν ≥ 204 · ν− ε · ν or all superstrings have
compression at most 204ν − (1− ε)ν + 4 · n ≤ 203 · ν + (ε+ δ) · ν.
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