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Abstract

We study the VC-dimension of the set system on the vertex set of some graph
which is induced by the family of its k-connected subgraphs. In particular, we give
upper and lower bounds for the VC-dimension. Moreover, we show that computing
the VC-dimension is NP-complete and that it remains NP-complete for planar graphs
in the case k = 2. This is done by a reduction from a variant of Planar 1-In-3-Sat
which we prove to be NP-complete.

1 Introduction

The notion now called VC-dimension of a set system was introduced by Vapnik and
Chervonenkis [12]. The initial interest was in the contexts of empirical process theory
and learning theory, where it proved to be a fundamental concept. It represents a promi-
nent measure of the “complexity” of the set system. Let H be a set system on a finite
set X. A subset Y ⊆ X is shattered by H if {E ∩Y : E ∈ H} = 2Y. The VC-dimension of
H is defined as the maximum size of a set shattered by H. One might think to apply
the abstract notion of VC-dimension to some concrete settings. A natural choice is the
study of the VC-dimension associated to graphs. Given a graph, we consider set systems
induced by a certain family of subgraphs. In this way we obtain several different notions
of VC-dimension, each one related to a special family of subgraphs. This study was first
initiated in a seminal paper by Haussler and Welzl [6]. They considered the set system
induced by closed neighbourhoods of the vertices. Kranakis et al. [8] investigated the
VC-dimensions induced by other families of subgraphs. They adapted the definition of
VC-dimension to the graph theoretic setting as follows.

Definition 1. Let G = (V, E) be a graph and let P be a family of subgraphs of G. A
subset A ⊆ V is P-shattered if every subset of A can be obtained as the intersection
of V(H), for H ∈ P , with A. The VC-dimension of G with respect to P , denoted by
VCP (G), is defined as the maximum size of a P-shattered subset.
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Note that in this paper we consider only finite undirected simple graphs and we use
standard graph theoretic terminology from [13], unless stated otherwise.

According to Definition 1, we denote by VCtree, VCcon, VCk−con, VCnbd, VCpath, VCcycle

and VCstar the VC-dimensions with respect to families of subgraphs which are tree, con-
nected, k-connected, closed neighbourhood, path, cycle and star, respectively. Note that
the VC-dimension with respect to some families of subgraphs is equal to well estab-
lished quantities in graph theory: if P is the family of complete subgraphs then VCP is
the clique number, while if P is the family of subgraphs induced by independent sets
then VCP is the independence number.

Since a graph of order n has n closed neighbourhoods, then its VC-dimension is
at most blog2 nc [6]. It is not difficult to show that this bound is tight [1]. Indeed,
consider the graph H built as follows. Take a set S of blog2 nc independent vertices. For
each non-singleton subset R ⊆ S, add a vertex vR adjacent to precisely the vertices of
R. The resulting graph H has at most n vertices and VCnbd(H) = blog2 nc. If G is a
graph with maximum degree ∆, then it is easy to see that ∆ ≤ VCstar ≤ ∆ + 1 [8]. The
VC-dimension with respect to trees is the same as the VC-dimension with respect to
connected subgraphs [8]. This is an immediate consequence of the fact that a connected
graph contains a spanning tree.

Kranakis et al. [8] related the VC-dimension of a graph G with respect to connected
subgraphs to the number of leaves `(G) in a maximum leaf spanning tree of G.

Theorem 2 (Kranakis et al. [8]). `(G) ≤ VCcon(G) ≤ `(G) + 1, for any graph G.

From another perspective, a natural question is to investigate the computational com-
plexity of computing VCP (G) for a given graph G and a family of its subgraphs P . We
formulate the decision problem as follows.

Graph VCP Dimension

Instance: A graph G and a number s ≥ 1.
Question: Does VCP (G) ≥ s hold?

1.1 Our results

In Section 2 we extend Theorem 2 by giving upper and lower bounds on the VC-
dimension with respect to k-connected subgraphs, for k ≥ 2. These, similarly to The-
orem 2, are given in terms of the number of leaves in a maximum leaf spanning tree.
In Section 3 we prove that the related decision problem Graph VCk−con Dimension is
NP-complete. Moreover, we show that Graph VC2−con Dimension remains NP-complete
for planar graphs. In order to do this we first introduce a variant of Planar Mono-
tone 3-Sat [2] and we show that it is NP-complete. The following table summarizes the
known results about the complexity of Graph VCP Dimension.
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Family P Graph G Computational Complexity Reference

star in P Kranakis et al. [8]
neighbourhood LOGNP-complete Kranakis et al. [8]
path Σ

p
3 -complete Schaefer [10]

cycle Σ
p
3 -complete Schaefer [10]

k-connected NP-complete Theorem 7
2-connected planar NP-complete Theorem 12

2 Bounds on the VC-dimension

We extend Theorem 2 by considering families of k-connected subgraphs, for k ≥ 2.
Concerning the upper bound, the idea is to construct a spanning tree with at least
VCk−con(G) + k− 1 leaves. We fix a shattered set A of maximum cardinality and choose
an arbitrary vertex r ∈ A as the root. Then we consider some k neighbours of r
in A, say u1, . . . , uk, and we try to “attach” the remaining vertices in A to the graph
({r, u1, . . . , uk} , {ru1, . . . , ruk}) via appropriate paths.

Theorem 3. VCk−con(G) ≤ `(G)− k + 1, for any graph G and k ≥ 2.

Proof. Without loss of generality, we may assume G to be connected. Let A be a shat-
tered set of maximum cardinality. Our aim is to construct a spanning tree T with at
least |A|+ k− 1 leaves. Choose any vertex r ∈ A as the root of T. Since A is shattered,
there exists a k-connected subgraph H such that r is the only element of A contained in
V(H). Clearly dH(r) ≥ k. Let u1, . . . , uk be arbitrary vertices in NH(r). We select the
edges u1r, . . . , ukr. For any w ∈ A \ {r}, let Hw be the k-connected subgraph such that
V(Hw) ∩ A = {r, w}. By Menger’s theorem [13], there exist k independent w− r paths
in Hw, say Pw, 1, . . . , Pw, k. We call w ∈ A \ {r} an upper leaf if there exists i ∈ [k] such that
E(Pw, i) ∩ {u1r, . . . , ukr} = ∅. Otherwise, i.e. if distinct w− r paths in {Pw, 1, . . . , Pw, k}
contain distinct edges in {u1r, . . . , ukr}, we call w a lower leaf.

u1
u2 uk

r

. . .

Figure 1: The black square vertices are the upper leaves, while the gray square vertices are the lower
leaves. The selected paths are dashed.

We set L := {u1, . . . , uk} and we view L as the set of potential leaves for T. For any
w ∈ A \ {r, u1, . . . , uk}, we do the following:
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• If w is an upper leaf, select the path Pw, i of maximal length and add w to L;

• If w is a lower leaf, select the path Pw, 1, add w to L and remove u1 from L.

After removing cycles and appropriate edges from the selected subgraph, we get a
tree T, rooted at r, in which the elements of L are leaves. From now on, we assume that
the procedure of selecting paths is followed by the procedure just described, so that T is
indeed a tree. Moreover, L has cardinality at least |A|+ k− 2. Note that u1 is the vertex
in which we “attach” the paths coming from lower leaves and that it could be replaced
by any other uj. The construction above works for any k, the case k = 1 giving the upper
bound in Theorem 2. Now we consider k ≥ 2.

Claim 4. We may assume that T has no upper leaves.

Proof of Claim 4. Let T′ be a tree constructed as above and with minimal number of
upper leaves. Namely, T′ satisfies the following properties:

• T′ is rooted at r;

• {u1r, . . . , ukr} ⊆ E(T′);

• T′ has at least |A|+ k− 2 leaves;

• T′ has the minimal number of upper leaves.

Let w′ ∈ V(T′) be an upper leaf and let Pw′, i′ be the corresponding w′ − r path. Suppose
first that NPw′ , i′ (w

′) = qw′ 6= r. Let W be the set of upper leaves whose corresponding
selected paths contain qw′ . Note that if qw′ is contained in some w′′ − r path, for a lower
leaf w′′, we trivially get a tree with fewer upper leaves. Therefore, we may assume this
is not the case. For any w ∈ W, there exist k − 1 ≥ 1 independent w − r paths not
containing qw′ . We distinguish two cases, proceeding as follows (see Figure 2):

1. If one of these paths intersects for the first time an already selected path in a vertex
not in {u2, . . . , uk}, then select this path;

2. Otherwise, we have a w− {u2, . . . , uk} fan. Then select the path containing u2.

If 1. holds for each w ∈ W, then qw′ becomes an additional leaf and we get a tree
with at least |A|+ k− 1 leaves. Otherwise, we get a tree with at least |A|+ k− 2 leaves
(we have replaced u2 by qw′) and with fewer upper leaves, a contradiction. Therefore,
it remains to consider the case NPw′ , i′ (w

′) = r. By maximality of the length of Pw′, i′ ,
we have that there exists an w′ − r path containing ujr, for some j ∈ [k]. Then, after
“moving” the lower leaves to uj, we get a contradiction again.
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u1
u2 uk

r

. . .

qw′

w′
w

(a) Case 1.

u1
u2 uk

r

. . .

qw′

w′
w

(b) Case 2.

Figure 2: Illustration of the two possible cases in the Proof of Claim 4. The subpaths of paths not contain-
ing qw′ are dashed.

Now we want to build a tree, rooted at u1, with at least |A| + k − 1 leaves. By
Claim 4, it is enough to do the following: for any 1 6= i ∈ [k], select a u1 − ui path in H
not containing {u2, . . . , ui−1, ui+1, . . . , uk} ∪ {r} and add r to L. If the resulting tree T is
not spanning, then find an edge between a vertex not in V(T) and a vertex in V(T) and
add it to E(T). Since this procedure does not decrease the number of leaves in T, we get
a spanning tree with at least |A|+ k− 1 leaves.

By considering the complete graph on k + 1 vertices, our bound is tight in the sense
of the following.

Proposition 5. For any k ≥ 2, there exists a graph G such that VCk−con(G) = `(G)− k + 1.

As for a lower bound, we note that having a sufficiently large complete subgraph is
enough to guarantee shattering by k-connected subgraphs.

Theorem 6. Let G be a graph of order n, size m, and maximum degree ∆. For k ≥ 2,

VCk−con(G) ≥ `(G)− k + 1−
 

n + 2−
� n− 2

∆− 1

�
− n2

n2 − 2m

!
.

Proof. By Turán’s theorem [13], if m >
�
1− 1

r

� n2

2 , then G contains Kr+1 as a subgraph.
Therefore, a set of size r + 1− (k + 1) can be shattered by k-connected subgraphs. The
condition above is equivalent to r < n2

n2−2m and so, taking r =
l

n2

n2−2m − 1
m
, we get

VCk−con(G) ≥
&

n2

n2 − 2m
− 1

'
+ 1− (k + 1).

Now we want to find an upper bound for `(G). Let T be a spanning tree of G and let
di = |{v ∈ V(T) : dT(v) = i}| be the number of vertices of degree i in T. We have that

∆X
i=1

di = n, and 2(n− 1) =
X

v∈V(T)
dT(v) =

∆X
i=1

idi.
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Therefore, we consider the following integer linear programming

max d1

s.t. n− 2 =
∆X

i=2
(i− 1)di.

Equivalently, we seek to find

min
∆X

i=2
di

s.t. n− 2 =
∆X

i=2
(i− 1)di.

It is not difficult to see that the minimum is equal to
  n−2

∆−1

£
. Summarizing, we get

VCk−con(G) ≥
&

n2

n2 − 2m
− 1

'
− k

≥ n2

n2 − 2m
− 1− k +

�
`(G)− n +

� n− 2
∆− 1

��

≥ `(G)− k + 1−
 

n + 2−
� n− 2

∆− 1

�
− n2

n2 − 2m

!
.

3 The decision problem

In this Section we investigate the computational complexity of Graph VCk−con Dimen-
sion. Consider the following decision problem, usually called Set Multicover:

Set Multicover

Instance: A set S = {a1, . . . , an}, a collection of subsets S1, . . . , Sm ⊆ S,
and integers k and t.

Question: Is there an index set I ⊆ {1, . . . , m} such that
S

i∈I Si = S, each
ai is covered by at least k distinct subsets, and |I| ≤ t?

Being a generalization of the well-known Set Cover (also known as Minimum Cover

[4]), it is NP-complete. We use it to prove the following Theorem.

Theorem 7. Graph VCk−con Dimension is NP-complete.

Proof. First we show that the problem is in NP. Our proof is based on the following
elementary Lemma. Since we could not find it in the literature, we give its short proof.
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Lemma 8. Let G and G′ be two k-connected graphs such that |V(G) ∩V(G′)| ≥ k. Then
G ∪ G′ is k-connected as well.

Proof. Let S ⊂ (G ∪ G′) be a subset such that |S| < k. Let v and w be two distinct
vertices in (G ∪ G′)− S. If both v and w are in G or in G′, then there is a v − w path
in (G ∪ G′)− S by assumption. Otherwise, since |V(G) ∩V(G′)| ≥ k, there exists u ∈
V(G) ∩V(G′) ∩V((G ∪ G′)− S). Moreover, since G− S and G′ − S are connected, there
exist a v− u path in G− S and a u− w path in G′ − S. But then there is a v− w walk in
(G ∪ G′)− S and so a v− w path as well.

Let G = (V, E) and s ≥ 1 be an instance of Graph VCk−con Dimension. For a subset
V′ ⊆ V with |V′| ≥ s, by Lemma 8, we can check in polynomial time whether V′ is
shattered. Indeed, it is enough to check all the O(|V|k+1) subsets of V′ of size at most
k + 1.

Now we prove NP-hardness by a reduction from Set Multicover. Given an instance
of Set Multicover, our reduction constructs a graph G = (V, E) as follows (see Fig-
ure 3). The set of vertices V is formed by four pairwise disjoint sets A, B, C and D. The
set A has n · (t + k + 1) vertices, arranged in n columns of t + k + 1 vertices each (for
1 ≤ j ≤ n, each element in the j-th column corresponds to a copy of aj). B = {v1, . . . , vm},
where vi corresponds to the set Si, C consists of k vertices and D of t + m + 1 vertices.
The vertices in C are connected to each other in order to form the complete graph Kk
and each vertex in C is connected to all vertices in B and D. Finally, vi ∈ B is connected
to every copy of aj ∈ A if and only if aj ∈ Si.

... ... ...

. . .

. . .

A

B

C

D

Kk

Figure 3: The graph G for the reduction. A thick edge joining a vertex v to Kk means that v is adjacent to
all the vertices of Kk.

We claim that there is an index set I ⊆ {1, . . . , m} such that
S

i∈I Si = S, each ai is
covered by at least k distinct subsets and |I| ≤ t if and only if VCk−con(G) ≥ |V| − (t+ k).

First suppose that such an index set I exists. We claim that the set

V′ = A ∪ D ∪ {vi ∈ B : i /∈ I}
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is shattered. Indeed, any W ⊆ V′ is of the form W = W ′ ∪W ′′, where W ′ ⊆ A and
W ′′ ⊆ D∪ {vi ∈ B : i /∈ I}. But then W can be written as W = V(G[C∪ B∪D∪W ′])∩V′

and G[C∪ B∪D∪W ′] is k-connected by the well-known Expansion Lemma [13]. Finally,
since |I| ≤ t, we have |V′| ≥ |V| − t− k.

Conversely, let V′ be a shattered set of maximum cardinality. Then |V′| ≥ |V| −
(t + k). Suppose there exists c ∈ C ∩ V′. Then no vertex in D can be shattered, and
so |V′| ≤ |V| − (t + m + 1) < |V| − (t + k). Therefore, no vertex in C is in V′ and
D ⊆ V′. By the Expansion Lemma and since all the vertices in any fixed column in A
have identical neighbourhoods, then either all or no vertices in any column are in V′.
Since any column contains t+ k+ 1 vertices, we have that A ⊆ V′. Therefore, the number
of vertices in B which are in V′ is at least |V| − (t+ k)− |A| − |D| = m− t. We claim that
I = {i : vi ∈ B \V′} is a yes-instance of the Set Multicover problem. Indeed, since V′ is
shattered, any vertex in A has at least k neighbours in B \V′. In other words each ai ∈ S
is contained in at least k of the subsets S1, . . . , Sm. Moreover, |I| ≤ m− (m− t) = t.

3.1 Planar Monotone 1-In-3-Sat

A natural way to prove NP-hardness of a planar problem is to reduce from another planar
problem, such as Planar 3-Sat. Our hardness proof for Graph VC2−con Dimension is
indeed based on a variant of Planar Monotone 3-Sat, which was shown to be NP-
complete by de Berg and Khosravi [2]. Since their problem has already found many and
diverse applications in NP-hardness proofs [3, 7, 5, 11], we think that our variation may
be useful as well.

Let U = {x1, . . . , xn} be a set of n boolean variables and let C = C1 ∧ · · · ∧ Cm be a
3-CNF formula defined over U , where each clause Ci is the disjunction of exactly three
literals. 1-In-3-Sat is the problem of deciding whether C is satisfiable in 1-in-3 sense,
namely if there exists a truth assignment to the variables such that exactly one literal in
each clause is true. Given an instance C of 1-In-3-Sat, the associated graph G(C) is the
bipartite graph having one vertex for each variable vi and one vertex for each clause Cj,
and an edge

¦
vi, Cj

©
if and only if vi or vi appears in Cj. An instance C of 1-In-3-Sat

is planar if G(C) is planar. A planar instance of 1-In-3-Sat has a rectilinear representation
if G(C) can be drawn as follows: the vertices are drawn as rectangles, with all the
rectangles representing the variables on a horizontal line, and the edges are vertical
segments (see Figure 4 for an example).

Mulzer and Rote [9] showed that the following problem is NP-complete.

Planar 1-In-3-Sat

Instance: A planar 3-CNF formula C defined over U , together with a
rectilinear representation.

Question: Is C satisfiable (in 1-in-3 sense)?

A clause with only positive literals is a positive clause, a clause with only negative
literals is a negative clause and a clause with both positive and negative literals is a mixed
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x1 x2 x3 x4 x5

x1 ∨ x4 ∨ x5

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4

x3 ∨ x4 ∨ x5

x2 ∨ x3 ∨ x5

Figure 4: A rectilinear representation of a planar instance of 1-In-3-Sat.

clause. An instance of 1-In-3-Sat is called monotone if it does not contain any mixed
clause. Given a planar monotone instance C of 1-In-3-Sat, a monotone rectilinear represen-
tation of C is a rectilinear representation where all the positive clauses are drawn above
the variables and all the negative clauses are drawn below the variables. Therefore, we
can define the following variant of Planar 1-In-3-Sat:

Planar Monotone 1-In-3-Sat

Instance: A planar monotone 3-CNF formula C defined over U , together
with a monotone rectilinear representation.

Question: Is C satisfiable (in 1-in-3 sense)?

As pointed out before, the 3-Sat variant of the problem above was shown to be NP-
complete by de Berg and Khosravi [2]. With a slight modification of their idea we can
show the following Theorem. For the sake of completeness we include a detailed proof.

Theorem 9. Planar Monotone 1-In-3-Sat is NP-complete.

Proof. Obviously, Planar Monotone 1-In-3-Sat is in NP. We prove NP-hardness by
a reduction from Planar 1-In-3-Sat. Let C = C1 ∧ · · · ∧ Cm be an instance of Planar

1-In-3-Sat defined over the variable set U = {x1, . . . , xn}, together with a rectilinear
representation. A literal-clause pair (xi, Cj) is inconsistent if xi appears in Cj and Cj is
above the variables in the rectilinear representation. Similarly, (xi, Cj) is inconsistent if
xi appears in Cj and Cj is below the variables in the rectilinear representation. Note
that a rectilinear representation without inconsistent literal-clause pairs is monotone.
The idea is to convert the given instance into an equivalent instance with a monotone
rectilinear representation by decreasing successively the number of inconsistent literal-
clause pairs. Given two variables x and y, the inequality gadget x 6= y is defined as
the formula (x ∨ a ∨ y) ∧ (a ∨ b ∨ c) ∧ (b ∨ c ∨ d), where a, b, c and d are new variables
used only inside the gadget. Note that it has a monotone rectilinear representation, as
depicted in Figure 5.
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x a b c d y x y

6=

x ∨ a ∨ y

a ∨ b ∨ c

b ∨ c ∨ d

≡

Figure 5: Inequality gadget x 6= y, together with a monotone rectilinear representation.

Lemma 10. x 6= y is satisfiable (in 1-in-3 sense) if and only if exactly one between x and y is
true.

Proof. If x 6= y ≡ (x ∨ a ∨ y) ∧ (a ∨ b ∨ c) ∧ (b ∨ c ∨ d) is satisfiable, then a = false

(otherwise there would be at least two true literals in the last clause) and so exactly one
between x and y is true. Conversely, setting a = false, b = true, c = false and d = true

gives an assignment that satisfies x 6= y.

We now show how to reduce the number of inconsistent pairs of the form (xi, Cj).
The remaining case can be treated similarly. The process is as follows:

• Introduce two new variables x and y.

• In clause Cj, replace xi by x.

• Introduce the inequality gadgets xi 6= x and x 6= y.

• In each clause containing xi, drawn above the variables and connecting to xi to the
right of Cj, replace xi by y (see Figure 6).

xi xi x y

· · · xi · · · · · · x · · ·

6= 6=

=⇒

Cj

Figure 6: Removing an inconsistent pair (xi, Cj).

Lemma 11. Let C ′ be the formula obtained after the process above. Then C is satisfiable (in
1-in-3 sense) if and only if C ′ is satisfiable (in 1-in-3 sense).

Proof. Suppose there is a truth assignment to U that satisfies C. C ′ is defined over U ∪F ,
where F is the set of new variables appearing in the gadgets xi 6= x and x 6= y. We use
the same truth assignment for U and we set x := xi and y := xi. By Lemma 10 there exists
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a truth assignment that satisfies C ′. Conversely, suppose there is a truth assignment to
U ∪ F that satisfies C ′. We claim that such an assignment restricted to U satisfies C.
Indeed, by Lemma 10, we have that x = xi and xi = y. But then all the modified clauses
in C are satisfied.

By eventually growing or shrinking some of the rectangles in C to make room for the
gadgets xi 6= x and x 6= y, we can find a monotone rectilinear representation for the new
instance C ′. Finally, since there are at most 3m inconsistent literal-clause pairs, it is clear
that the reduction is polynomial time.

3.2 The decision problem for planar graphs

Finally, we show that Graph VC2−con Dimension remains NP-complete for planar
graphs by a reduction from Planar Monotone 1-In-3-Sat. For an instance C of Planar

Monotone 1-In-3-Sat, our reduction constructs a planar graph GC by adding several
planar gadgets to the graph associated to C.

Theorem 12. Graph VC2−con Dimension is NP-complete for planar graphs.

Proof. Clearly, membership in NP follows from Theorem 7. To prove NP-hardness we
use a reduction from Planar Monotone 1-In-3-Sat. Let C be an instance of Planar

Monotone 1-In-3-Sat. Suppose that C is the conjunction of m clauses, say C1, . . . , Cm,
defined over the variable set U = {x1, . . . , xn}. We modify the associated graph G(C) to
get a planar graph GC as follows. First we define a shamrock as the graph constructed
successively from a triangle C, called the centre of the shamrock, by adding q ears of
length two to every pair of vertices of C. These q ears constitute a leaf of the shamrock.
For a fixed planar drawing of a shamrock, the exterior vertex in a leaf is called the peak
of the leaf, while the other vertices are called the veins of the leaf. For every clause, we
introduce a shamrock with p veins in every leaf (for a p to be chosen later) as depicted in
Figure 7(a). Each peak of a leaf in the shamrock corresponds to a literal in the clause. For
every variable x, we introduce a variable gadget as depicted in Figure 7(b). It consists of
two parts. The first part is a 4-cycle with two specified opposite vertices corresponding
to the literals x and x, called the literal vertices, and with two horizontal vertices. The
second part is a shamrock with p veins in every leaf and no peaks which is connected to
the 4-cycle via three edges with endpoints in the centre of the shamrock. Note that two
of these edges join x and x to the centre of the shamrock. Clearly, a monotone rectilinear
representation of C defines a total ordering of the variables according to their position
on the horizontal line. We connect every pair of consecutive variables x and y (y is the
successor of x in the total ordering) through a variable connector gadget as depicted in
Figure 7(c). It consists of p + 1 independent paths: one of them is of length one while
the remainings are all of length two. Finally, we connect clause and variable gadgets via
edges joining every peak in a shamrock with the corresponding literal in the variable
gadget. We do this according to the monotone rectilinear representation of G(C) and we
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define p := 5m + 6n + 1. Clearly, the above construction can be done in polynomial time
and the resulting graph GC = (V, E) is planar (see Figure 8 for an example). We claim
that VC2−con(GC) ≥ |V| − (5m + 6n) if and only if C is satisfiable (in 1-in-3 sense).

y

z

x

(a)

x

x

(b)

...

(c)

Figure 7: Gadgets for the reduction of Planar Monotone 1-In-3-Sat to Graph VC2−con Dimension. (a)
Clause gadget corresponding to the clause (x∨ y∨ z). (b) Variable gadget. (c) Variable connector
gadget.

First suppose that ϕ is a satisfying truth assignment for C. We say that a literal
vertex in a variable gadget or a peak in a clause gadget is a true (false) vertex if the
corresponding literal is assigned to true (false) by ϕ. Let A ⊆ V be defined as follows.
It contains the vertex set of the centre of any shamrock in GC . Moreover, for any variable
gadget, it contains the horizontal vertices as well as the false vertex and, for any clause
gadget, it contains the false vertices. Note that |A| = 5m + 6n. Therefore, it is enough
to show that V \ A is shattered. Consider the induced subgraph GC [A]. It consists of a
3n-cycle through the false vertices in the variable gadgets, together with the centres of
any variable and clause gadget in GC joined to the cycle via exactly two edges (since for
any variable x exactly one between x and x is assigned to false and since in any clause
exactly two literals are assigned to false). Clearly, GC [A] is 2-connected. Note that any
vertex in V \ A belonging to a shamrock can be joined to GC [A], independently on any
other vertex of V \ A, via its two neighbours on the centre. Moreover, any true literal in
a variable gadget can be joined to GC [A], independently on any other vertex of V \ A,
via the two horizontal vertices adjacent to it. In both cases, by the Expansion Lemma
[13], the resulting subgraphs are 2-connected. Therefore, V \ A can be shattered.

Conversely, let V′ be a shattered set of maximum cardinality. Then |V′| ≥ |V| −
(5m + 6n). Consider a shamrock in GC and one of its three leaves. Then, by maximality,
either all or no veins of the leaf are in V′. Since there are 5m + 6n + 1 veins, we have
that every vein in every shamrock in GC is in V′. Therefore, no vertex w belonging to the
centre of a shamrock is in V′, otherwise it would not be possible to shatter the singleton
set consisting of a vein adjacent to w. Similarly, all the vertices in the variable connector
gadgets are in V′ and no horizontal vertex is in V′. Note that at most one literal vertex in
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C3 C4C2C1

Figure 8: Example reduction of Planar Monotone 1-In-3-Sat to Graph VC2−con Dimension.

a variable gadget is in V′, otherwise it would not be possible to shatter the set consisting
of a vein in a variable gadget and a vertex in a variable connector gadget. Moreover, at
most one peak in a clause gadget is in V′, otherwise it would not be possible to shatter
the set consisting of a vein in the clause gadget and a vertex not in the clause gadget.
But then, since |V′| ≥ |V| − (5m + 6n), exactly one literal vertex in every variable gadget
and exactly one peak in every clause gadget are in V′. Without loss of generality we may
assume that no literal vertex which does not appear in any clause (and therefore having
degree 3 in GC) is in V′. But then, if a literal vertex is in V′, the corresponding peaks
are in V′ as well, otherwise it would not be possible to shatter vertices in a clause and
vertices not in that clause. Therefore, based on the shattered set of maximum size V′,
we set a literal to true if the corresponding literal vertex is in V′ and to false otherwise.
From the considerations above it is clear that the resulting assignment is well-defined
and that it satisfies C (in 1-in-3 sense).
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4 Conclusion and further work

This paper represents a little step in the systematic study of the VC-dimensions of graphs
initiated by Kranakis et al. [8]. We have concentrated on the VC-dimension with respect
to k-connected subgraphs. First we have given upper and lower bounds. In this context
it would be interesting to improve the lower bound in Theorem 6. Then we have proved
NP-completeness results for the associated decision problem. It would be interesting to
check whether the problem for planar graphs becomes easier for large values of k. We
intend to further study the complexity of the problem when the input graph belongs
to other classes than the one of planar graphs. Moreover, we intend to focus on the
VC-dimension with respect to other classes of subgraphs.
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