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Abstract

We design a 1—30 approximation algorithm for a penalty-based prize collecting
version of the bottleneck TSP. In this variant of the TSP we look for a tour through
a subset of vertices so that the maximum of (1.) the most expensive edge taken
and (2.) the highest penalty for not visiting a node, is minimized. The presented
algorithm combines linear programming and a rounding method with a heuristic

approach for computing a bottleneck optimal tour.

1 Introduction

The original definition of the prize collecting traveling salesman problem (PC-TSP) was
given by Balas in 1989 [1]. Given a graph G with associated weights, penalties and
prizes, the goal was to find a tour trough a subgraph of G so that the sum of all edge
costs in the resulting tour plus the sum of penalties taken for vertices not visited where
minimized. As an additional constraint, the sum of all prizes from visited vertices had
to fulfill a certain quota in relation to the sum of all available prizes. Without this
constraint, the problem is called penalty traveling salesman problem (P-TSP).

The first result on the penalty TSP was an algorithm with a 2.5 approximation ratio

by Bienstock et al. in 1993 [2], using a LP-based approach. A 2-approximate algorithm
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was given in 1995 by Goemans and Williamson [3]. It uses a primal-dual approach
and also solves the penalty STP with the same approximation ratio. The best known
upper bound for P-TSP today is the 2009 result by Goemans [4] which features an
approximation ratio of 1.91457 and is based on an improvement to the original Goemans

and Williamson algorithm by Archer et al. [5] from the same year.

The bottleneck traveling salesman problem (BN-TSP) was introduced 1979 by Garey
and Johnson [6]. In this variant of the TSP the objective is to minimize the cost of the
most expensive edge in the resulting tour. In their paper, Garey and Johnson showed
the NP-Hardness of the problem and the NP-Completeness of the associated decision
problem. For the metric case, there exists a 2-approximate algorithm, shown by Parker
and Rardin in 1984 [7]. It works by first computing a bottleneck-optimal biconnected
subgraph for the instance in question, and then constructing the square of the bigraph
to find an approximate solution. They also showed that this approximation is optimal,
unless P = NP.

In the penalty bottleneck TSP (P-BN-TSP) we are given a weighted graph G =
(V, E, c) and a penalty function 7 that assign to each vertex a penalty ;. The objective
is to find a sub-graph H C G, so that H is a cycle (also called tour in this context) and
the maximum value of the most expensive edge in H and the highest penalized node not

in H is minimized.

In this paper, we will design an algorithm for P-BN-TSP with an approximation rate
of %, using a similar strategy as used by Bienstock et al. in their " MLP heuristic”, while
taking advantage of some of the unique properties of bottleneck problems. We call it
"modified MLP” (MMLP). It combines a LP-relaxation and a rounding technique with
a known heuristic of the non-prize collecting version of the problem to get a constant
factor approximation algorithm. In this case, we use the BN-TSP heuristic published by
Parker and Rardin, which gives 2-approximations for the BN-TSP on graphs fulfilling
the triangle inequality.

Since the Parker-Rardin heuristic has a worse approximation ratio then the

Christofides heuristic, it is not surprising that MMLP also has a worse approximation



ratio than MLP, at % compared to g However, we have to consider that the lower
bound for metric BN-TSP is proven to be 2, which is consequentially also a lower bound
for P-BN-TSP, while the best known upper bound for metric penalty TSP is below 2.
Also, MMLP’s running time is faster than MLP by a factor of n, since unlike MLP, we

do not have to compute a solution for every possible initial node.

2 The Algorithm

The algorithm works in two steps: First, the LP-relaxation to the ILP describing the
P-BN-TSP is used to determine which of the nodes will be used in the resulting tour. A
constant rounding technique is then applied to the result to achieve integer assignments.
In the second step, the Parker-Rardin heuristic is used to compute the tour through
these nodes.

We will need the following definitions for MMLP: Let G = (V| E,¢) be a complete,
metric, undirected, weighted graph with positive edge costs and 7 : V — Q% be its
assigned penalty function. Let Z* be the cost of the optimal solution for the penalty
BN-TSP and ZMMLF he the resulting cost for the penalty BN-TSP given by the MMLP
heuristic. Let BN* be the cost of the optimal solution for the BN-TSP and let BNPE
be the cost for the solution to the BN TSP given by the Parker-Rardin heuristic.

It can be easily seen that if there exist solutions with a lower bottleneck value then the
solution consisting of the empty tour with all penalties taken, any node with a penalty
value equal to the highest assigned penalty must be part of the resulting tour in all such
solutions. This means we will only have to compare two solutions: The one with an
empty tour, incurring the highest penalty, and one tour including one of the vertices
assigned with the highest penalty. We will denote this vertex by j.

We proceed with the formulation of the underlying ILP, which we will denote by P;:



Z* = minimize max [r?eag(ce:ve),rg%/x(m(l — yz))] (2.1)
subject to Z Te=2y; VieV, (2.2)
ecd({i})
Y w2y VieV,.SCVst|SN{ij}|=1(23)
e€d(S)
0 <z, <1 and integer, (2.4)
0 <y; <1andinteger i+ j, (2.5)
Y = 1. (2.6)

y;,1 € V will be 1 for vertices in the tour and 0 if otherwise, z.e € F will be 1 for
edges in the tour and 0 for edges not in the tour. § denotes cut sets. The objective
function compares the edge with the highest cost and the highest penalty incurred and
takes the greater value. Constraint 2.2 manages penalties: If there are no edges taken
to y;, then y; will be zero, which means that 7; will be fully added to the total cost. 2.3
ensures that any subset that has edges taken is connected by at least two edges to the
tour containing j.

We now solve the LP-relaxation of our program using the ellipsoid method and trans-
form our solution into a feasible solution to the P-BN-TSP: To convert the fractional
results of P to integers, we round any y; of value % or greater to 1, and to 0 otherwise.

We then define T' = {i € V|y; = 1} as the set of nodes with a rounded value of 1 and
compare the highest penalty value of the nodes not in 7" with the resulting bottleneck
value when we use T as input to the Parker-Rardin heuristic to compute the value for

the highest weight edge in the tour.

ZMMEP” — max | BNPR(T), max(m(1 - yi))] (2.7)



As final step, we compare this result with the cost of the solution representing the

empty tour, given by the penalty of j:

ZMMLP _ iy [ZMMLP*, wj} (2.8)

3 Analysis

In this section, we will prove our main theorem:

Theorem 3.1.
10

MMLP has a worst-case approximation ratio of =, i.e.

ZMMLP 10
<

7 ? (3'1)

To show this, it is sufficient to show that 2.7 holds. We will now provide the LP-
relaxation of the ILP solving the bottleneck TSP:

minimize Igleag(cexe) (3.2)
subject to Z r,>2 VSCV,S#0, (3.3)
e€d(S)
Y ze=2 VieV, (3.4)
ees({i})
0 < z. (3.5)

We also need the following:

Lemma 3.2.

BNLP BNLP 1
BN* 2 BNPR, Z 2

Where BN is the cost of the LP-relazation for the bottleneck TSP



Proof.

BNLP BNLP
BN* = BNFPE

This can be easily seen, since by definition, the optimal solution can never be worse

then any other feasible solution.

BNLP l
BNPE =— 2

This follows from the facts that the Parker-Rardin heuristic has a worst-case ap-
proximation rate of 2, and the inability of the LP-based heuristic to be better than the

optimum solution. O

Lemma 3.3.
The bottleneck value of the solution given by the LP-relazation of the bottleneck TSP

does not change when we remove constraint 3.4.

Proof.

The constraint 3.3 guarantees at least 2-connectivity between all vertices, while con-
straint 3.4 limits the resulting network to a Hamiltonian cycle. Since the objective value
only depends on the maximum of the weights of all edges taken, it can be seen easily that
the resulting value for the bottleneck will not change, even if the solution is no longer

Hamiltonian. O]

We can now proof theorem 3.1:
Let z and ¢ be the optimal solutions produced by the LP-relaxation of P;. We use
a constant rounding technique to obtain vectors & and ¢ (These vectors are no longer

necessarily feasible solutions to P;).

Vee E .

P (3.6)



VieV:

. 1 ify >3
Yi = K (3.7)
0 otherwise.

The definition of g; leads us to the following observation:

g < 2(1-5) Vi (3.8)

Now we define a modified version of the LP that, given a subset of vertices T C V,

results in a tour visiting only vertices in 7T'.

minimize max(c.z.) (3.9)
eckl

subject to Z T, >2 VS CVsuchthat TNS #0,TN(V\S)#0D, (3.10)

e€d(S)

Y z.=2 VieT, (3.11)
e€d({i})

> xe=0 Vi¢T, (3.12)
e€s({i})
0< .. (3.13)

Using lemma 3.3, we obtain a shortened version of this LP, which we denote as P:

minimize magc(cexe) (3.14)
ec

subject to Z Te>2 VS CV suchthat TONS £0,TN(V\S)#D, (3.15)
e€d(S)

0 < .. (3.16)

Let £ be the optimal solution of P. We obtain the following using lemma 3.2:

BN < 2max c .. (3.17)

ecE



Now we prove that z is feasible for P,: It is easy to see that Z satisfies 3.16 by
definition 3.6. To show that & satisfies 3.15 we use the feasibility of Z in P;, the definition

of T, constraint 2.3 and equation 3.6 to get

3 6
> Te> 2> 2 =+ VS C V suchthat TNS #0, TN (V\S)# 0.
e€d(S)

Considering any S C V such that TN (V' \ S) # 0 we get

er— erz

e€d(S 666

|

_2

C«OIO‘l

Which shows that & satisfies 3.15. From the optimality of £ we also know

max CeZp > max Cole
eeE S

(3.18)

(3.19)

(3.20)

Finally we can now start from 2.7 and use these results to prove our main theorem:

ZMMLP" _ ax [ BNPR(T), max(mi(1 — gi))}
L 1€

IN

max _2 : Igleaé((cexe), Iznez%/x(m(l — yz))} from(3.17)

IN

max |2 - max(cete ), mz%/x(m(l — g)z))} from(3.20)
L 1€

ecE

i > 5

< : 2z 21— 6,3.
< max |2 Iglea]g((cegxe),glez%/x(m2(l yl))] from(3.6,3.8)
< max [ smax(e,2,), 2 - max(m(1 - 7))

max | — - max(c,T - max(m; (1 —
- ecE - 72 Tiev V! Yi

10
< . 7 (1 — 7,
< g o[ st — )
<z
-3

(3.21)
(3.22)

(3.23)
(3.24)
(3.25)
(3.26)
(3.27)

[]
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Application to Related Problems

The similar general method used in MMLP can also be applied to a number of related
problems, like the penalty-sum bottleneck TSP (PS-BN-TSP), which minimizes the max-
imum of the sum of all penalties incurred and the highest edge cost paid. Using MMLP

for PS-BN-TSP we obtain the same approximation ratio of %. However, our observation

about highest penalty nodes being part of optimal tours does no longer hold in this case,

which means we will have to run the algorithm on every possible initial node and then

compare the results to get a final solution.
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