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Abstract

Threats on the stability of a financial system may severdcathe functioning of the entire econ-
omy, and thus considerable emphasis is placed on the angly® cause and effect of such threats. The
financial crisis in the current and past decade has showwotigimportant cause of instability in global
markets is the so-calldithancial contagionnamely the spreadings of instabilities or failuresmafivid-
ual components of the network to other, perhaps healthier, compts. This leads to a natural question
of whether the regulatory authorities could have predieted perhaps mitigated the current economic
crisis by effective computations of some stability measfrihe banking networks. Motivated by such
observations, we consider the problem of defining and etiapatabilities of both homogeneous and
heterogeneous banking networks against propagati@yrathronous idiosyncratic shocgs/en to a
subset of banks. We formalize the homogeneous banking retwodel of Nieret al. [38] and its cor-
responding heterogeneous version, formalize the synolmoshock propagation procedures outlined
in [19, 38], define two appropriate stability measures andstigate the computational complexities of
evaluating these measures for various network topologidsparameters of interest. Our results and
proofs also shed some light on the properties of topologidsparameters of the network that may lead
to higher or lower stabilities.

1 Introduction and Motivation

In market-based economies, financial systems perform itapifinancial intermediation functions of bor-
rowing from surplus units and lending to deficit units. Ficiah stability is the ability of the financial
systems to absorb shocks and perform its key functions, ievstnessful situations. Threats on the stabil-
ity of a financial system may severely affect the functionoighe entire economy, and thus considerable
emphasis is placed on the analyzing the cause and effectbfthteats. The concept of instability of a
market-based financial system due to factors such as debtifigaof investments can be traced back to
earlier works of the economists such as Irving Fisher [23] aohn Keynes [30] during the 1930’s Great
Depression era. Subsequently, some economists such asHWimsky [37] have argued that:

such instabilities are inherent in many modern capitalist economies.

In this paper, we investigate systemic instabilities of ltfaaking networks, an important component of
modern capitalist economies of many countries. The findodgis in the current and past decade has shown
that an important component of instability in global finaaenharkets is the so-calldthancial contagion
namely the spreadings of instabilities or failuresrafividual components of the network to other, perhaps
healthier, components. The general topic of interest mphper, motivated by the global economic crisis in
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the current and the past decade, is the phenomenon of fihaostagion in the context dfanking networks
and is philosophically related to the following naturalandion of the question posed by Minsky and others:

Are the instabilities of the banking networks systemic? Could one have predicted, assuming
access to all necessary data, the current economic crisis by effective computations of the
stability of the relevant banking networks ?

To investigate these types of questions, one must firsegbt following issues:
e What is theprecisemodel of the banking network that is studied?
e How exactlyfailures of individual banks propagated through the nekvwtorother banks?
e What is arappropriate stability measur@nd what are the computational properties of such a measure?

As prior researchers such as Allen and Babus [1] pointedj@gh-theoretic concepts provide a conceptual
framework within which various patterns of connectionsamn banks can be described and analyzed in a
meaningful way by modeling banking networks adi@ctednetwork in which nodes represent the banks
and the links represent the direct exposures between b&wksh a network-based approach to studying
financial systems is particularly important for assessingritial stability, and in capturing the externali-
ties that the risk associated with a single or small groumsfitutions may create for the entire system.
Conceptually, links between banks have twaposingeffects on contagion:

e More interbank links increase the opportunity for spregduilures to other banks [25]: when one
region of the network suffers from a crisis, another regitso éncurs a loss because their claims on
the troubled region fall in value and, if this spillover affés strong enough, it can cause a crisis in
adjacent regions.

e More interbank links provide banks with a form adinsuranceagainst uncertain liquidity flows [2],
i.e., banks can insure against the liquidity shocks by exchandg@posits through links in the network.

2 The Banking Network Model

Homogeneous Networks: Balance Sheets and Parameters for e

We provide a precise abstraction of the model as outline83hyhich builds up on the works of Eboli [19].
The network is modeled by a weighted directed gr&pk (V,F) of n nodes andn directed edges, where
each noder € V corresponds to a banBénk,) and each directed edge V') € F indicates thaBank, has

an agreement to lend moneyBank,. Let deg,(v) and deg,(v) denote the in-degree and the out-degree
of nodev. The model has the following parameters:

E = total external asset | = total inter-bank exposure
A=1+E = total asset B = E/A = percent of total external asset to total asset
(thus,| = (1— B)AandE = BA)
w=w(e) = r'T—1 = weight of any edgec F  [0,1] > y = percentage of equity to asset

® = severity of shock® € (0,1], ® > y)




Now, we describe the balance sheet for a nodeV (i.e., for Banky):

Assets

Liabilities

ay =6 tly

deg)ut(v) X W= deg)ut(v) X I_m
interbank asset (money lent)
deg, (V) x w = deg, (v) x L

interbank borrowing (money borrowed)

share of total external asdet

(by—1y) + E—Dvev (by — 1)

n
(by— 1)+ %
sincey ey (by — 1)

= WX Yyey(deg,(v) —deg(v)) =
by + £
total asset

0

by

Ch=YyXay

dy

by =by+cy+dy

deg, (V) x w=deg,(Vv) x
interbank borrowing
(money borrowed)

net worth (equity)
customer deposits

total liability

1
m

a, = ¢, (balance sheet equation)

Note that the homogeneous model is completely describeté-tuple of parametefs, y, 3, E).

Balance Sheets and Parameters for Heterogeneous Networks

The heterogeneous version of the model is the same as itsigemeous counterpart as described above, ex-

cept that the shares of interbank exposures and exterrddssdifferent banks may be different. Formally,
the following modifications are done in the homogeneous node

¢ w(e) > 0 denotes the weight of the edge E along with the constraint thgte.r w(e) = 1.

® Iv=Ye(vv)cr W(€), andby = Y (v v)cF W(E).

e g, =(by—1,)+ayx (E — Svev(by — lv)) for someay, > 0 along with the constrainy ., ay = 1.

Sincey ey (by —

Iy) = 0, this givess, = (b, — 1y) + a,E. Consequentlya, now equald, + aE.

Denoting them-dimensional vector ofv(e)’s by w and then-dimensional vector oft,’s by a, the heteroge-
neous model is completely described by the 6-tuple of paens¢s, v, B, E,w,a).

Idiosyncratic Shock [19, 38]

As in [38], our initial failures are caused hgiosyncratic shocksvhich can occur due toperations risks
(frauds) orcredit risks and has the effect of reducing the external assets of ateélsabset of banks
perhaps causing them to default. Whalggregatedor correlatedshocks affecting all banks simultaneously
is relevant in practice, idiosyncratic shocks are a cleavar to study thestability of the topology of the
banking network. Formally, we select a non-empty subsebdes (banks) @ Vshoek € V. For all nodes

V € Vshock WE Simultaneously decrease their external assets é;dig s, = ®g,, where the parametap €
(0,1] determines the “severity” of the shock. As a result, the netwvorth ofBank, becomes), = ¢, —s,.
The effect of this shock is as follows:

e If ¢, > 0, Bank, continues to operate but with a lower net wortrclf

e If ¢, < 0, Bank, defaults(i.e., stops functioning).



Propagation of an Idiosyncratic Shock [19, 38]

We will add “(t)” to the model

parameterc, defined in this

(* time starts at = 1 and increments in steps of 1 *)

section to show their depen-t=1;Vye(l) =V

dences on timet, i.e, cy(t)
denotesc, at timet, and we

(* start the shock at= 1 on nodes itVshock*)

use the notatiorty to denote for eachbankeVdo

anyt from the set{x|x > tp}.
Let Vaie(t) €V be the set

if V€ Vshockthen cy(1) = ¢, — Pe, elsecy (1) =cy

endfor

of nodes that have not failed (« shock propagation at times=2,3,...,T *)

at time t and let Gae(t) =
(Valive(t), Eaive(t)) be the cor-
responding node-induced sub-
graph of G at time t with
deg,(vt) and deg,(vt) de-
note the in-degree and out-
degree of a node € Vyje(t) in
the graphGajive(t) at timet. In
the continuous-time model, the
shock propagates as follows:
e Vaie(l) =V, and ¢,(1) =
Cv—Sy, If VEVsnock
Cv, otherwise
e If a banks equity ever be-

while (t <T) A (Vaive(t) #0) do

(* transmit loss to next time step *)
for everyu € Vyjive(t) do
min{|cv(t) [, by}
Cu(t+1) =cy(t) — —_—
o deg(v)
(UV)EEqjive(t)
endfor

(* removeBank, from the network if it is supposed to fail at this step *)
Valive(t + 1) = Valive(t)
for everyv € Vyjive(t) do
if cy(t) < 0thenVajve(t +1) = Vajve(t +1) \ {v}
endfor

t=t+1

comes negative, then the bankendwhile

fails subsequently. That is, for

any to > 1, if ¢,(tp) < O then Table 1:Discrete-time idiosynchratic shock propagation from asgtithpock Of

V¢ Valive(to+)-

nodes up tdr steps.

¢ A failed bankBanky at timet =ty (cy(tp) < 0) affects the net worth (equity) of all banks that gave laan t
Banky in the following manner. For each edg& V) € Eajive(to) in the network at timéy, the equitycy(to) is

decreased by an amotiruf
differential equation:

% Thus, the shock propagation is defined by the followingiglart

9 cu(t) min{{cv(t), by}
ot v: oy(t)<0 degn (Va t)
(UN)EEanve(t)

A discrete-timeversion of the above can be obtained by the obvious methodarftizing time and replacing
the partial differential equations by “difference equast With appropriate normalizations, the discrete-
time model for shock propagation is described by a synchusiiterative procedure shown in Table 1 where
t=12,...,T denotes the discrete time step at which the synchronougaifddone T < n).

Parameter Simplification We can assume without loss of generality that in the homagenshock prop-
agation modelv = 1. To observe this, iiv=1/m# 1, then we can divide each of the quantitigsd,, E and

L |ey(to) | > by then the depositors also incur a losshgf- | cy(to) |, but we ignore this for our problem since we are only
interested in the demise of banks. In other words, this mas&limes that all the depositors are insured for their dispdsi the
bank,e.g, in United States the Federal Deposit Insurance Corparatiovides such an insurance up to a maximum level.
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dyv by w; it is easy to see that the outcome of the shock propagatimeedure in Table 1 remains the same.
Moreover, we will ignore the balance sheet equation sthydgas no effect in shock propagation.

3 Related Prior Works on Financial Networks

Although there is a large amount of literature on stabilitfimancial systems in general and banking systems
in particular, much of the prior research is on the empiridé or applicable to small-size networks. Two
main categories of prior researches can be summarizedlawsgol

Network formation

Babus [6] proposed a model in which banks form links with eattier as an insurance mechanism to reduce
the risk of contagion. In contrast, Castiglionesi and Nav§t1] studied decentralization of the network of
banks that is optimal from the perspective of a social planinea setting in which banks invest on behalf of
depositors and there are positive network externalitiethernnvestment returns, fragility arises when “not
sufficiently capitalized” banks gamble with depositors’mag. When the probability of bankruptcy is low,
the decentralized solution well-approximates the firsectdye of Babus.

Contagion spread in a given network

Although ordinarily one would expect the risk of contagiorbe larger in a highly interconnected banking
system, some empirical simulations indicate that shockg imase anextremely complegffect on the sta-
bility of the network in the sense that, higher connectitigtween the banks may sometimes lealbvaer
risk of contagion

Allen and Gale [2] studied how a banking system may respomomtagion when banks are connected
under different network structures. In a setting where gores's have the liquidity preferences as introduced
by Diamond and Dybvig [17], and have random liquidity neduds)ks perfectly insure against liquidity fluc-
tuations by exchanging interbank deposits. The connextosated by swapping deposits, however, expose
the entire system to contagion. Allen and Gale concludeditbamplete networks amaore prongo conta-
gion than networks with maximum connectivity since betiennected networks are more resilient because
the proportion of the losses in one bank’s portfolio is tfamed to more banks through interbank agree-
ments. Freixas, Parigi and Rochet [24] similarly explotesl tase of banks that face liquidity fluctuations
due to the uncertainty about when the consumers will withdtands. Gai and Kapadia [25] argued that
the higher is the connectivity among banks the more will lzecitntagion effect during crisis. Haldane [27]
suggested that contagion should be measured based ondl@mimiectedness of each institution within the
financial system. Liedorpt al.[35] investigated if interconnectedness in the interbakket is a channel
through which banks affect each others “riskiness” and gluttivat both large lending and borrowing shares
in interbank markets increase the riskiness of banks aictitiee dutch banking market.

Dasgupta [16] explored how linkages between banks, repieddy cross-holding of deposits, can be
a source of contagious breakdowns. His study examined hpasiters, who receive a private signal about
fundamentals of banks, may want to withdraw their depaofitely believe that enough other depositors will
do the same. Lagunoff and Schreft [34] considered a modehiohwagents are linked in the sense that the
return on an agents’ portfolio depends on the portfoliocatmns of other agents. lazzetta and Manna [28]
used network topology analysis on monthly data on depos@Bamge to gain more insight into the way a
liquidity crisis spreads. Nieet al.[38] analyzed how systemic risk depends on the structurbeobainking
system via network theoretic approach to construct banystems and then to analyze the resilience of the
system to contagious defaults. Kleindorfer, Wind and Genf82] argued that network analyses can play a
crucial role in understanding many important phenomenanamfie. Corbo and Demange [15] investigated



how the structure of interbank connections is related tatirgagion risk of defaults, given the exogenous
default of a bank of set of banks. Babus [7] studied how theetiaff between the benefits and the costs of
being linked changes depending on the network structutbpbserved that, when the network is maximal,
the liquidity can be redistributed in the system such thatribk of contagion is minimal.

The particular model used in this paper for studying stghisi the homogeneous model formulated by
Nier et al.[38] and its heterogeneous version. As we have alreadyddbalew, definition of a precise stabil-
ity measure and analysis of its computational complexgués for stability calculation were not provided
for these models before.

4 The Stability and Dual Stability Indices

A banking network is calledlieadif all the banks in the network have failed. Consider a givienanioge-

neous or heterogeneous) banking netw@ky, 3,E, ®) or (G, y,3,E,®,w,a). For a subset of nod&s, let
M g - no_

influencedVv’) = { ve V | vfailsif all nodes inv’ are shocke}l, andSI(G,V’,T) = { 7 ifinfluencedV’) =V
oo, otherwise

The Stability Index The optimalstability indexof a networkG can then be defined as

SI*(G,T) = SI(G,Vshock T) = n\1/i/n{SI(G,V’,T)}

For estimation of this measure, we assume that it is posBiblthe network to fail,i.e., SI"(G,T) < co.
Thus, 0< SI*(G,T) < 1, and the higher the stability index is, the better is théikta of the network
against an idiosyncratic shock. We thus arrive at the natoraputational problem.

Problem name Stability of banking networks (BBILITY 1.¢).

Input: a banking network withb is the shocking parameter, and an integes 1.
Valid solution: A subset’ CV such thaSI(G,V',T) < co.

Objective: minimize|V’|.

We denote an optimal subset of nodes that is a solution of@ToBTABILITY 1 ¢ by Vshock i.€., SI*(G, T) =
SI(G,Vshock T). Note that ifT > n then the SABILITY 7o finds a minimum subset of nodes which, when
shocked, willeventuallycause the death of the network in an arbitrary number of tieygss

The Dual Stability Index Many covering-type minimization problems in combinateritave a natural
maximization dual in which one fixes a-priori the number of@xing sets and then finds a maximum number
of elements that can be covered with these many sets. Forpéxathe usual dual of the minimum set
covering problem is the so-called maximum coverage projgth Analogously, we can define a dual of
the stability measure:

Problem name: Dual Stability of Financial Network (DAL-STABLITY 1o k).

Input: a banking network witth as the shocking parameter, and two intedens > 1.
Valid solution: A subsetv’ CV such thatV'| = k.

Objective: maximize |influencedV’) /k |.

I , influencedV’
Thedual stability indesof a networkG can then be defined &sSI"(G, T,k) = y \En%/x‘ % .
'CV: |V'|=k

The dual stability measure is of particular interest wiHG, T) = o, i.e., the entire network cannot be



made to fail. In this case, a natural goal is to find out if a $igant portion of the nodes in the network can
be failed by shocking a limited number of nodeS3fthis is captured by the definition &fSI*(G, T, k).

Violent Death Vs. Slow Poisoning In our results, we distinguish two cases of death of a network
Violent Death (T = 2): The network is dead by the very next step after the shock.

Slow Poisoning (anyT > 2): The network may not be dead immediately, but does die evilntua

5 Comparison with Other Models for Attribute Propagation in Networks

Models for propagation of beneficial or harmful attributesén been in- e 0
vestigated in the past in several other contexts such asntftumaxi-

mization in social networks [10, 12, 13, 29], disease spngadh urban e

networks [14, 20, 21], and percolation models in physics mwathemat- o e

ics [40]. However, the model for shock propagation in finahoetwork ¢ — 0.4 y=01 E=5
discussed in this paperfisndamentallyery different from all these mod-Figyre 1: A homogeneous net-
els. Some distinguishing features of our model include: work used in the discussion in

(a) Almost all of these models include a trivial solution in whithe at- S€ction 5.

tribute spreads to the entire network if we inject each nodiévidually with the attribute. This is not the
case with our modela node may not fail when shocked, and the network may not lakiflath nodes are
shocked For example, consider the network in Figi)1

e Suppose that all the nodes are shocked. Then, the followiaigte happen.

— Nodea (and similarly nodeb) fails att = 1 since® (deg,(a) + £) > y(deg,(a) + £).

— Nodec also fails at = 1 since® (deg, (c) — deg,,(c) + £) = 0.4 > y(deg,(c) + £) = 0.3.

— Noded (and similarly nodes) do not fail att = 1 since® (—deg,(d) + ) =0< yx £ =0.1
and its equity stays atD—0=0.1.

— At t = 2, noded (and similarly nodee) receives a shock from nodeof the amount24-23 =
0.05< 0.1. Thus, nodes ande do not fail. Since no new nodes fail during> 2, the network
does not become dead.

e However, suppose that only nodeandb are shocked. Then, the following events happen.

— Nodea (and similarly node) fails att = 1 sinced (deg, (a) + £)=0.8> y(deg, (a) + £)=0.2.

— Att = 2, nodec receives a shock of the amounk20.8—0.2) = 1.2 > y(deg,(c)+ £) = 0.3.
Thus, node fails att = 2.

— Att = 3, noded (and similarly nodes) receives a shock of the amouk#;23 = 0.45> yx & =
0.1. Thus, both these nodes failtat 3 and the entire network is dead.

As the above example shows, if shocking a subset of nodessnaaketwork dead, adding more nodes to this
subset mayot necessarily lead to the death of the network, and the dtabieasure iseither monotone
nor sub-modular On the other hand, it is not difficult to construct examplébanking networks such that
to make the entire network fail:

e it may be necessary to shock a node even if it does not faieshocking such a node “weakens” it
by decreasing its equity, and



¢ it may be necessary to shock a node even if it fails due to shgislen to other nodes.

(6) The complexity of the computational aspects of many prevattribute propagation models arise due
to the presence of cycles in the graph; for example, see §t3]dlynomial-time solutions of some of these

problems when the underlying graph does not have a cycleonirast, our computational problems are
may be harceven when the given graph is acy¢liostead, a key component of computational complexity
arises due to two or more directed paths sharing a node.

Stability Dual Stability
Network and result types SI*(G,T) & DSI*(G,T,k) &
assumptions (if any) assumptions (if any)
Acyclic, T =2 (1—¢)inn,
approximation-hardness NP ¢ DTIME (nfoglogn)
Acyclic, T = 2, ) 1 E
approximation ratio © <Iog n-+logy +logg= +log =3
Homogeneous
. 1 -1
Acyc!lc, a-nyT >1, APX-hard (1-et4e),
approximation-hardness P £ NP
In-arborescence, arly > 1, O(n?) time, every node  O(n®) time, every node
exact solution fails when shocked fails when shocked
Acyclic, anyT > 1, (1—¢€)Inn, (1_e*1+g)*1,
approximation-hardness NP ¢ DTIME (nfoglogn) P £NP
Acyclic, T = 2, nd,
approximation-hardness under assumptio(x)"
Heterogeneous Acyc|ic, anyT > 3, 2'09178""

approximation-hardness

NP ¢ DTIME(nPoy(logn)y

O(logn+log (%) +log (%) +log(5; )
+log (é) -+ l0gE + logWmax
+Iogw+logm+|09( . )

Wmin

+109 (g5 ) +199 (s ))

Acyclic, T =2,
approximation rati

*See Theorem 9.2 for definitions of some parameters in thevajspation ratio.
TSee page 37 for statement of assumpignwhich is weaker than the assumptier: NP.

Table 2: A summary of our results;> 0 is any arbitrary constant and0d < 1 is some constant.

6 Overview of Our Results and Implications on Banking Systers

We group our results based on whether the network is homogenar heterogeneous. For each type of
network, we investigate two categories of the stability suea, namelyT =2 vs. T > 2. A summary

of the results proved in this paper appear below in TabléR.of our hardness results hold even if the
given directed graph is acyclicln the sequel, the notation paba,xz,...,%) denotes a constant-degree
polynomial in the variablegg,xo, ..., Xk.



6.1 Homogeneous Networks

T=2 We first show in Theorem 8.1 that, assumiig ¢ DTIME (n'°9'°9") | SI*(G, 2) cannot be approx-
imated to within a factor of1— €)Inn for any constant > 0. This is done by reducing a corresponding
inapproximability result for the dominating set problem ¢@neral graphs to our problem. We complement
this result by showing, in Theorem 8.2, a logarithmic appration for computingSI*(G, 2) that almost
matches our lower bound. Even though our algorithmic probéan be cast as some type of set cover-
ing problem, wecannotexplicitly enumerate all the necessary sets since therex@@nentially manguch
sets. Thus instead we reformulate our problem to that of cimgp an optimal solution of an appropriate
polynomial-size integer linear programming®) problem with non-negative coefficients and then use the
greedy approach of [18] to approximate the optimal solutibthis reformulation. A careful calculation of
the size of the coefficients of theP ensures that we have the desired approximation bound.

Arbitrary T We first show in Theorem 8.3 that computis' (G, T) is APX-hard for anyT > 2, even
if the in- and out-degrees of all nodes are small constanptgiving anL-reduction from the node cover
problem for 3-regular graphs to our problem. Technical darafions arise from making sure that the
transformed graph instance of &ILITY 1 o has no cycles, small diameter (to ensure that no new nodes fai
after a small number of time steps), but yet all nodes mukivi#in a few time steps without each node
being individually shocked.

We next turn our attention to designing efficient algorithimscomputingSI* (G, T) for arbitrary T. If
the given graph is a rooted in-arborescence and assumimg eode can be individually shocked to fail,
we show how to design a@(nz) time exact algorithm via dynamic programming. As a by pradichis
approach, we also show that the stability of this type of netwith bounded degrees is large.

For the dual stability measure, we show in Theorem 10.1é) #ssuming # NP, DSI*(G, T, k) cannot
be approximated to within a factor ¢ — (1/e) + 5) * for any > 0. This is obtained by translating a lower
bound of Feige for the maximum coverage problem [22] to oobl@m. The reduction takes advantage of
the fact that, in dual stability measure, every node of theokk need not fail. If the given graph is a rooted
in-arborescence and assuming every node can be indivdsfadicked to fail, we show how to design an
@] (n3) time exact algorithm via dynamic programming.

6.2 Heterogeneous Networks

Our results for heterogeneous networks show that the probfecomputing stability indices is harder than
in homogeneous networks, as one would naturally expect.

Any T>2 We show in Theorem 9.1 that, assumiNg ¢ DTIME (n'°91°9"), S1*(G,T) for any T > 2
cannot be approximated to within a factor(af— €) Inn for any constane > 0. This is done by reducing
a corresponding inapproximability result for the minimuet sovering problem to our problem. The inap-
proximability result is stronger than the correspondingutefor homogeneous networks in Theorem 8.3.
Unlike homogeneous networks, unequal shares of the totatrext assets by various banks allows us to
“equalize” weighted degrees of nodes and thus an arbitratamce of set cover can be encoded. Fer 2,
Theorem 9.2, using the same linear program as in Theorem®@des an algorithm whose approximation
ratio is logarithmic in the parameters of the network.

For the dual stability measure, we show in Theorem 11.1 timater a complexity-theoretic assumption,
SI*(G, 2,k) cannot be approximated within an approximation ratin®for some constant & & < 1.

Any T >3 For this case, we prove in Theorem 9.3 an even strongerlpgrithmic inapproximability
result that than that in Theorem 9.1, namely that, under sseraption oNP ¢ DTIME (nPo¥(°am) it js



impossible to approximatgl* (G, T) within a factor of LTy polynomial time for any constant € <

1. This is achieved by translatingINREP, a graph-theoretic abstraction of two prover multi-rouncktq@col

for any problem inNP, to our problem preserving the approximation ratio. Marghtécal complications
arise during the reduction procedure, leading to a set oin22rt equations between the parameters that we
must satisfy for our reduction to go through. Intuitiveliettwo provers in NNREP correspond to two
super-nodes in the network that cooperate to fail to a spécé#fet of nodes in the network.

6.3 Implications of Our Results on Banking Systems

Effects of Topological Connectivity Though many researchers agree that the connectivity ofitgunlet-
works is related to its stability, the conclusions drawnsmmewhat contradictory, namely some researchers
conclude that incomplete networks are more prone to camafian networks with maximum connectivity
whereas some other researchers conclude that the higther é@tnectivity among banks the more will be
the contagion effect during crisis. Based on our resultsthenl proofs, we found that topological connec-
tivity does play a significant role in stability of the netwan the following manner.

Even acyclic networks display complex stability behavior Sometimes a cause of the in-
stability of a banking network is attributed tyclical dependencies of borrowing and lending
mechanisms among major banksy, banksa, b andc borrowing from bank$, c anda, respec-
tively. As our results show, computing the stability measurould be difficult even without the
presence of such cycles. Indeed, larger inapproximabiisylts, especially for heterogeneous
results, are possible because slight change in networknedeas can cause a large change in
the stability measure. On the other hand, acyclic smalteegpoted in-arborescence networks
exhibit higher values of the stability measueeg, if the maximum in-degree of any node in a
rooted in-arborescence is 5 and the shock parandeierno more than twice the value of the
percentage of equity to assgtghen by Theorem 8.81"(G,T) > 0.1.

Intersection of borrowing chains may cause lower stability By aborrowing chainwe mean

a directed path from a nodieto another nodd, indicating that banlb effectively borrowed
from bankathrough a sequence of successive intermediaries. Nownasthat there is another
directed path frona to another node. Then, failure ot andc propagates the resulting shock
to a and, if the shocks arrive at the same step, then the totaksieceived by banla is the
addition of these two shocks, which in turn passes to othdesin the network througa For
example, in Fig. 1¢ receives the addition of two shocks transmittedalandb, which in turn
suffices to make, d ande fail.

Effects of Ratio of External to Internal AssetsE /I and percentage of equity to assetg for Homoge-
neous Networks As our relevant results and their proofs show, lower valdes 6 andy may cause the
network stability to be extremely sensitive with respecvaniations of other parameters of the network.
For example, in the proof of Theorem 8.1 we have,limE/i = 0 and lim,_,.. Yy = 0, leading to variation
of the stability index by a logarithmic factor; however, fretproof of Theorem 8.3 we ha## = 0.25 and

y = 0.23 leading to much smaller variation of the stability indby & constant factor only).

Homogeneous vs. Heterogeneous NetworkOur results and proofs show that heterogeneous networks
containing banks with diverse equities tend to exhibit aawitlctuations of the stability index with respect
to parameterse.g, Theorem 9.3 shows a super-polylogarithmic change of thlgilgy index even if the
ratioE/I is large.
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7 Preliminary Observations on Shock Propagation

Proposition 7.1. Let (G = (V,F),y,B,E) be the given (homogeneous or heterogeneous) banking rietwor
Then, the following are true:

(a) If deg,,(v) = 0for some w V, then node v must be given a shock (and, must fail due tortbcksfor
the entire network to fail.

(b) Leta be the number of edges in the longest directed simple path iih&n, no new node fails at any
timet> a.

(c) We can assume without loss of generality that G is weaklyexied,i.e., the un-oriented version of G
is connected.

Proof.
(a) Since deg,,;(v) = 0, no part of any shock given to any other nodes in the netwankreachs. Thus, the
network ofv, namelyc, = ya, stays strictly positive (sincg > 0) and noders never fails.

(b) Let tjast be the latest time a node & failed, and letV (t) be the set of nodes that failed at tirhe-
1,2,... tlast. Then,V(1),V(2),...,V(tiast) is a partition ofV. For everyi =1,2,... tjast— 1, add directed
edges(u,v) from a nodeu € V(i) to a nodev € V(i + 1) if uwas last node that transmitted any part of the
shock tov beforev failed. Note thatu,v) is also an edge d& and for every node € V(i + 1) there must
be an edgéu,v) for some nodes € V (i). Thus,G has a path of length at leagist

(c) This holds since otherwise the stability measures can bg@uoted separately on each weakly connected
component. i

8 Our Results on the Stability Index for Homogeneous Network

8.1 Case off = 2: Violent Demise of the Network
8.1.1 Logarithmic Inapproximability

Theorem 8.1. SI*(G, 2) cannot be approximated to within a factor @ — €)Inn, for any constant > 0,
unlessNP C DTIME (n'°g'oan),

Proof. Thedominating seproblem for an undirected graph (DOMIN-SET) is defined akWes: given an
undirected graph G= (V,F) with n= |V| nodes, find a minimum cardinality subset of nodéesW such
that every node in (V' is incident on at least one edge whose other end-point is'intiis known that
DOMIN-SAT is equivalent to the minimum set-cover problendan L-reduction [8], and thus cannot be
approximated within a factor dfl — &) Inn unlessNP C DTIME (n'°9'09") [22].

Consider an instancé = (V,F) of DOMIN-SET with n nodes andn edges, and |eDPT denote the
size of an optimal solution for this instance. Our (diregtbenking network8 = (7,?) is obtained
from G by replacing each undirected ed@je v} by two directed edgeéu,v) and (v,u). Thus we have
0 < deg,(v) = deg,,(v) < n for every nodev € V. We set the global parameters as follovis:= 10n,
y=n2and® =1.

For a nodey, letNbr(v) = {u|{u,v} € E} be the set of neighbors ofin G. We claim that if a node is
shocked at timé = 1, then all nodes in igv} UNbr(v) fail at timet = 2. Indeed, suppose thais shocked
att = 1. Then,v surely fails because

2 deg,(v)+E

E
e, = degy (V) — degy(V)+ = = 10> = > =210 _yq,

11



Now, consideit = 2 and consider a nodesuch thatv has not failed but a node € Nbr(v) failed at time
t = 1. Then, node surely fails because

min{sy1 — Cu,bu}  min{®e, - yay,deg,(w} . | 10—3 2 _deg.(W+E
ST degyua) deg, (U 7 degn(w) [ T o

n n2

Thus, we have a 1-1 correspondence between the solutior@Mi®-SET and death 03, namelyw’ cV
is a solution of DOMIN-SET if and only if shocking the nodesﬁhmake38 fail at timet = 2. m|

8.1.2 Logarithmic Approximation

The following theorem provides a polynomial-time algomitvith an approximation ratio that is logarithmic
in the parameters of the banking network wheg- 2 that almost matches the lower bound in Theorem 8.1.
We assume > y since otherwise there is no solution to our problem.

Theorem 8.2. There is a polynomial-time greedy algorithm for=T2 that has an approximation ratio of

O (Iogn+ log®/y+log (Y (e-y)) +log ﬁ) .

Proof. Suppose thatg, < 0 for some nodel € V. Then, there exists an optimal solution in which we do
not shock the noda. Indeed, ifu was shocked, the equity ofincreases frone, to ¢, + | Pe,| andu does
not propagate any shock to other nodes. Thug siill fails att = 2, then it also fails at = 2 if it was not
shocked.

Let Vshockdenote the set of nodes that we will select for shocking, fordgvery nodev € V, let oy be
max{ 0, de,}, ifu=v
defined asd,, = %, if ®e, > ¢, and(u,v) € F. Then, our problem reduces to a covering
0, otherwise
problem of the following type:

find a minimum cardinality subs&tnhock € V such that, for every nodg ey, Ovu > Cu-

Note that we cannot even explicitly enumerate, for a nadeV, all subsetsv’ C V \ {u} such that
SvevOvu > Cy, since there are exponentially many such subsets. Let tlaybvariablex, € {0,1} be
the indicator variable for a nodec V for inclusion inVshock However, we can reformulate our problem as
the following integer linear programming problem:

minimize ng
Ve

subject tovu €V : Z/5V7ux\, >y 1)
ve
x € {0,1}

. . . . o) C
Let { = m|\51{ ml\p{éu‘\,}, Cu}. We can rewrite each constraiff dyux, > ¢y as § —-x, > — to ensure
ue ve ' '

¢ ¢

ve ve

that every non-zero entry is at least 1. Since the coeffigiehthe constraints and the objective function are
all positive real numbers, (1) can be approximated by thedyr@lgorithm described in [18, Theorem 4.1]

with an approximation ratio of 2 Inn—+In <max,ev {zue\, % }) Now, observe that:

min (8uu} = mip { @ (degy(v) - degu(+ 1 ) b =0 (@)

Ouu>0 Ouu>0
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min min {,y} = min min {(d)— v) <1+ E > o 98%u(v) } _0 <M)

V V V V
uev vV UEV VeV deg, (V) deg,(v)

min{cy} = gy\p{y <degn(u) + E> } -0 (V_E

ueVv n

¢ =min{ minmin{duy}, [Ei\?{cu}} e (min{|E;¢|, (GD—nV)E7 y_:})

13, S <] ) (14 gy ) - oGl f =otnie e

and thus, mayy {Zuev %} =0 (poly (n, %, (D%y, ﬁ) ) , giving the approximation bound. O

8.2 Arbitrary T: Slow Poisoning of the Network

8.2.1 APX-hardness for anyT > 2

Acyclic Network

We show that $SABILITY 1,¢ is hard for anyl > 2 even for restricted types of directed acyclic graphs (DAG)

Theorem 8.3. For any T > 2, computingSI*(G) is APX-hard even if the banking network satisfiasall
the following conditions:

° 8 is a DAG, and

e deg,(v) < 3anddeg,,(v) < 2for every node v.

Proof. We reduce the 34IN-NODE-COVER problem to SABILITY 1 ¢. 3-MIN-NODE-COVER s defined

as follows. We are given an undirected 3-regular gr@phe., an undirected grap8 = (V,F) in which the
degree of every node is exactly 3 (and this= 1.5|V|). A valid solution (node cover) is a subset of nodes
V/ CV such that every edge is incident to at least one nod#.inThe goal is then to find a node cover
V’ CV such thatV’| is minimized This problem is known to baPX-hard [9].

{v2,v3}
€6 €3 €5 €34 €5 €5 6p
QA O O 0O 9O 9 (@ sink
nodes

o O O O O O
W w U U, u uj supersourcenodes

Figure 2: A 3-regular grapt® = (V,F) and its corresponding banking netwc(_ﬁf; (\7, I?).

Given such an instand® = (V,F) of 3-MIN-NODE-COVER, we construct an instance of the banking
network G = (7, ?) as follows:
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e For every node; € V, we have two nodes;, u in 7 and a directed edges;, u/). We refer tou/ as a
“super-source” node.

e For every edgdvi,v;} € F with i < j, we have a (“sink”) node j in 7 and two directed edges
(&,j,u) and(e j,u;) in F. For notational convenience, the noglg is also sometimes referred to as
the nodeg; ;.

Thus,]7] =3.5|V|, and\?\ = 4|V|. See Fig. 2 for an illustration. Observe that:
e deg, (u) =3 and deg,(u)=1foralli=1,2,...,|V|.

e deg, (U) =1 and deg,(4) =0foralli=1,2,...,|V|. Thus, by Proposition 7.1(a), every node
must be shocked to make the network fail. | 1 P

e deg,(e,;) =0and €12 €365
deg,(&,j) = 2 for all i and j. -
Since deg (g,j) = 0, if a node
@, is shocked, no part of the
shock is propagated to any other
node in the network.

@ failed

« Since the longest path i6s has Onot shockedX

2 edges, by Proposition 7.1(b) .Oarbitrary-
no new node fails at arty> 3. Figure 3: Casgq]ll) : if node u, is shocked then the nodes

- , e 2,6 3 andey 5 must fail att = 2.
For notational convenience, let= V|, & = E?n, ande j,, 6 j, ande j, be the three edgds;, vj, }, {vi,vj, }

and{v,vj,} in G that are incident on the node We will select the remaining network parameters, namely
y, @ and&’, based on the following desirable properties.

() If anodeu; is shocked at = 1, it fails:
@ (deg, (U) —degy(U) + &) >y (deg,(u) +&) = P(1+E)>y(1+E) = D>y (2)
(II) If a nodes j is shocked, it does not fail:
deg, (&,j) —deg(a,j) +& <0 = £<2 3
(1) If a nodeu; is shocked at = 1, thenu; fails att = 1, and the nodes j,, & j, ande j, fail at timet = 2
if they were not shocked (see Fig. 3 for an illustration):
min{ @ (deg, (u) — degy(u) +&) — y (degy (ui) + &), degy (u) }

>y (degn (a,jl) + g)

degn(ui)
_ mln{¢(2+é”)3— y(3+&),3} S ve
The above inequality is satisfied provided:
P(2+&)>y(3+48) 4)
1>y& = y< 1 (5)

&

(IV) Consider a sink node j. Then, we require that if one or both of the super-source npaed u’j are
shocked at = 1 but the none of the nodes, u; ande ; were shocked, then we require that one or both of
the corresponding nodesandu; fail att = 2, but the node ; neverfails. Pictorially, we want a situation
as depicted in Fig. 4. This is satisfied provided the follapimequalities hold:
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(IV-1) u; fails att = 2 if uj was shocked (the case of andu; is similar):

min { ® (deg; (U) — deguu(U) + &) — v (deg, (u) + &), deg, (u) }

>y (deg, () + &)

degn (1)
_ min{ (®— y1)(1+£), 1} V318

The above inequality is satisfied provided:
(P—y)(1+&)>y(B+E) = P(1+8)>y(4+28) (6)
1>y(3+8) = y<3+ig (7)

(IV-2) & ; never fails even if botly; andu; have failed:
min { (¢ — Vl)(l+éa), 1} y(3+¢&) < % = min{ (®—y)(1+&),1} <3y <1+§>

The above inequality is satisfied provided:
(¢—y)(l+éa)§3y<1+§> = ¢(1+é")§y<4+%> (8)
1§3v<1+§> =y> 6+23E )

There are obviously many choices =1
of parametersy, ® and & €23
that satisfy Equations (2)— ] / \
(9); here we exhibit just one. v ‘»',{,‘/
Let & = 1 which satisfied ) |
Equation (3). Choosing=
0.23 satisfies Equations (5),
(7) .an.d (9) LetFng —07 ® never fails
?gtlzzzs(;)quatlons (@), ):Figure 4: CasélV): to makee, 5 fail, at least one ofi; or us must be shocked.

Suppose that’ C V is a solution of 3MIN-NODE-COVER. Then, we shock all the super-nodes, and
the nodes inV’. By (I) and(lll) all the super-nodes and the nodes(tin,iev\v/{vi}) fails att = 1, and by
(1) the nodes inJyy, v,jce{8j} failst = 2. Thus, we obtain a solution @ by shocking|V'| + n nodes.

i<j

Conversely, consider a solution of theABILITY 1 ¢ problem ona. Remember that all the super-nodes
must be shocked, which ensures that we need to shécknodes for some integar> 0, and that any node
v; that is not shocked will fail at = 2. By (ll) it is of no use to shock the sink nodes. Thus, the shocked
nodes consist of all super-nodes and a susef cardinalitya of the nodesiy, Uy, ... ,u,. By (IV) for every
nodeeg ; at least one of the nodes or u; must be inU. Thus, the set of nodel/ |uj € U} form a node
cover ofG of sizea.

That the reduction is an L-reduction follows from the obséion that any locally improvable solution
of 3-MIN-NODE-COVER has between/3 andn nodes. o

@ failed
O not shocked
O arbitrary
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8.2.2 Algorithmic Results for anyT > 1
Restricted Acyclic Network: Polynomial-Time Solution for arbitrary T

Note that theAPX-hardness result of Theorem 8.3 has constant values for ®adhd y, and requires
deg, (V) = 2 for some nodes. It is natural to ask if the problem is computationally haverif deg,,(v) <

1 for every nodev. We show that with this and some mild additional restrictittve network may be highly
stable (e, SI"(G,T) is large), andsI*(G, T) can be computed in polynomial time for afly> 1. Recall
that an in-arborescence rooted at node-in-arborescence) is a digraph with dg¢r) =0, deg(u) =1
for any other node # r, and whose underlying undirected graph is a spanning tree.

Theorem 8.4. If the banking network G is a rooted in-arborescence MG, T) > g, Where

dedh® = max.v {deg, (v)} is the maximum in-degree over all nodes of G. Moreover, utiteassumption
that any individual node of the network can be failed by shmgkSI* (G, T) can be computed exactly in
O (n?) time.

Remark 8.5. Thus, for example, wheted®* = 3, y = 0.1 and ® = 0.15, we getSI*(G,T) > 0.22 and the
network cannot be put to death without shocking more @2# of the nodes. The proof gives an example
for which the lower bound is tight.

In the rest of this section, we prove the above theorem.G.et (V,F) be the given in-arborescence
rooted at node. We will use the following notations and terminologies:

e U— Vvandu~» vdenote a directed edge and a directed path of one of more,adgpsctively, from
nodeu to nodev.

e If (u,v) € F thenv is theparentof u andu is achild of v. Similarly, if u~» v exists inG thenv an
ancestorof u andu adescendendf v.

e Let O(u) = {v|u~ vexists inG} denote the set of all proper ancestorsupfindA(u) = {v|v ~
u exists inG } U {u} denote the set of all descendentaudincluding the nodeu itself). Note that for
the networkG to fail, at least one node io(u) U {u} must be shocked for every node

Suppose that we shock a nodef G (and shock no other nodes &{u)). If u fails, then the shock splits
and propagates to a subset of nodeA(n) until each split part of the shock terminates because of éne o
the following reasons:

e the component of the shock reaches a “leaf” ne@éth deg,(v) = 0, or
e the component of the shock reaches a nodadth a sufficiently highc, such thaw does not fail.
Based on the above observations, we define the followingtijiesn

Definition 8.6 (see Fig. 5 for illustrations) Theinfluence zonef a shock on u, denoted ®(u), is the set
of all failed nodes \& A(u) within time T when u is shocked (and, no other nodA(m) is shocked). Note
that ue iz(u).

Note that, for any node, iz(u) can be computed i®(n) time.

Lemma 8.7. For any node uliz(u) | < 1+ deg, (u) (1; — 1).
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shocked®
failed (due to shock)®

not shocked and not faile@

Figure 6: A tight example for the bound
inLemma 8.7 & = 0).

Figure 5: Influence zone of a shock on

Proof. For notational simplicity, let” = E/n. If the nodeu does not fail when shocked, arfails but it
has no child, thefiz(u) | < 1 and our claim holds sinc® > y. Otherwise u fails and each of its dggu)
children at level 2 receives a part of the shock given by

o — min{ QLU 1E)yGegu)1 ) )

degy ()
<o <1+ ﬁ) - y<1+ %) <P(1+8)-y(1+¢8)

Consider a child of u. Each node’ € A(v) that fails due to the shock subtracts an amoumt(deg,, (V) + &) >
y(1+ &) from O provided this subtraction does not result in a negativeevallhus, the total number of

failed nodes is strictly less thantideg, (u) % = 1+ deg,(u) <$ — 1) : O

Remark 8.8. The bound in Lemma 8.7 is tight as shown in Fig. 6.

L+dedh®( £ -1 _
Lemma 8.7 immediately implies th&t* (G, T) > n/( i ed: (y >) > q)dgdn'ax. We now provide a poly-

nomial time algorithm to computel* (G, T) exactlyassuming each node can be shocked to fail individually
For a noday, define the following:

e Forevery nodel € 0(u), SIg,ns(G, T,u,U) is the number of nodes in an optimal solution GR8ILITY T.¢
for the subgraph induced by the nodegifu) (or o, if there is no feasible solution of i@BILITY T ¢
for this subgraph under the stated conditions) assumingptlosving:
— U was shocked,
— uwasnotshocked, and
— no node in the path’ ~ u excludingu’ was shocked.
e SIg,5(G,T,u) is the number of nodes in an optimal solution afABILITY 7 ¢ for the subgraph in-

duced by the nodes ifA(u) (or o, if there is no feasible solution ofi@BILITY 1 ¢ under the stated
conditions¥ assuming that the nodewas shocked (and therefore failed).

2Intuitively, a value ofw signifies that the corresponding quantity is undefined.
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We consider the usual partition of the nodeszahto levels level(r) = 1 andlevel(u) = level(v) + 1 if uis
a child ofv. We will computeSIg, (G, T,u) andSIg,ns(G, T, u,v) for the nodesu level by level, starting
with the highest level and proceeding to successive lowaide By Observation 7.1(a), the rootmust
be shocked to fail for the entire network to fail, and tt81§, (G, T,r) will provide us with our required
optimal solution.

Every nodeu at the highest level has dg@u) = 0. In generalSI§, 5(G, T,u) andSIg,ys(G, T,u,U') can
be computed for any nodewith deg,,(u) = 0 as follows:

Computing SIg,s(G, T,u) whendeg,(u) = 0: SIg,5(G, T,u) = 1 by our assumption that every node can
be shocked to fail.

Computing SI5,ns(G, T,u,U') whendeg,(u) = 0:

e If ueiz(u') then shocking node makes node fail. Since nodeu fails without being shocked,
we haveSIg,ns(G, T,u,u') = 0.

e Otherwise, node does not fail. Thus, there is no feasible solution &gl \s(G, T,u,u') =

Note that we only count the number of nodeduw) in the calculations o815, ys(G, T,u,u’) andSIg,s(G, T, u).
Now, consider a node at some level with degy, (u) > 0. Letvy,Va, ..., Vyeq () b€ the children ofi at
level £+ 1. Note that(v1) = O(v2) = - -+ = O(Vgeg, (u))-

Computing SIg, (G, T,u) whendeg, (u) > 0: By our assumptionu fails when shocked. Note that no
node inA(u) \ {u} can receive any component of a shock given to a nodé\i(u) sinceu failed.
For each child; of uwe have two choicesy is shocked and (and, therefore, fails)ygis not shocked.

Thus, in this case we ha®is,5(G, T, u) = 1+ y2eh min{ I5,s(G, T, W), Slsans(G, T vi, )}

Computing SIg,ns(G, T,u,Uu') whendeg, (u) > 0: Sinceu' is shocked and is not shocked, the following
cases arise:

e If ugiz(U') then theru does not fail. Thus, there is no feasible solution for thegsaph induced
by the nodes if\(u) under this condition, an8Ig,\s(G, T,u,u') =

e Otherwise,u € iz(U'), and thereforeu fails whenu' is shocked. For each chilg of u, there
are two options:v; is shocked and fails, ov; is not shocked. Thus, in this case we have

Slsans(G, T,u,U) = degn( >m|n{ I5as(G, T, Vi), Slsans(G, T, vi,u )}

Let /max be the maximum level number of any nodeGn Based on the above observations, we can design
the dynamic programming algorithm as shown in Fig. 7 to camaun optimal solution of B\BILITY 1o
onG. Itis easy to check that the running time of our algorithrig?).

9 Our Results on the Stability Index for Heterogeneous Netwdxs

9.1 Logarithmic Inapproximability forany T > 1

Theorem 9.1. Assuming\NP ¢ DTIME (n'°9'°9”), for any constan® < € < 1and any T> 2, it is impossible
to approximateSTABILITY 1 ¢ Within a factor of(1— €) Inn in polynomial time even if G is a DAG.

Proof. The (unweighted) 6T-CoVER problem is defined as follows. We have an univeZsef n elements,
a collection ofm sets. over . The goal is to pick a sub-collectio’” C . containing aminimum
number of sets such that these sets “covet’i.e., Usc o S= % . It is known that there exists instances of
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(* preprocessing *)
YueV: computeiz(u)
(* dynamic programming *)
for £ = fmax, fmax—1,...,1do
for each node at level/ do
if degn( ) = 0then
Sl5,s(G,T,u) =1
vu e O(u): if ueiz(u) then SIg,ns(G, T,u,u) = 0elseSIg, \sSt(G, T,u,u') =
else  (*deg,(u) >0%)
Sl5,s(G.T,u) = 1+ 35 min{SI*SAS(G7T7Vi) Isans(G, T, i, )}
vu e O(u): if ugiz(u') then SIg (G, T,u,u) = co
elseSIg, ys(G, T,u,u) = y e )mm{SISAS(G T V), SI’gANS(G,T,vi,u’)}
endif
endif
endfor

endfor
return Slg,s(G,T,r) as the solution

Figure 7: A polynomial time algorithm to compu8# (G, T) whenG is a rooted in-arborescence and each
node ofG fails individually when shocked.

u
/4 ={U1,U2,U3,U4} ; 3 s S 3
S ={9,9,%,%}
St = {u, Uz, Us} Figure 8: An instancé% ,.#) of
S = {us, s} SET-COVER and its correspond-
S = {us} ing banking networlG = (V,F).
& = {U]_, U2}

SET-COVER that cannot be approximated within a factor(@f- &) Inn, for any constant & & < 1, unless

NP C DTIME (n'°9 '09”) [22]. Without any loss of generality, one may assume thatyeglementu € %

belongs to at least two sets.if since otherwise the only set containingnust be selected in any solution.
Given such an instancg”,.’) of SET-COVER, we now construct an instance of the banking network

G = (V,F) as follows:
e We have a special nodg.
e For every seGe ., we have a nod§, and a directed edg&, B).
e For every element € 7/, we have a node, and directed edggsi, S) for every seSthat containau.

Thus,|V| =n+m+1, and|F| < nm+m. See Fig. 8 for an illustration. We set the shares of inteanakts
for each bank as follows:

e For each seGec ., if Scontainsk > 1 elements then, for each element S, we set the weight of

the edgee = (u,S) asw(e) = 3.
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e For each sebe .7, we set the weight of the edd& 8B) as 1.
Thus,| = 4m. Also, observe that:;
e ForanySe ., bs=3,andis=1.

e For anyu e %, b, = 0. Also, sinceu belongs to at least two sets.if and any set has at mast- 1

elementsZ < 1, < 3.

e by =mandig =0.

e Since deg (u) = 0 for any elementi € %, if a nodeu is shocked, no part of the shock is propagated
to any other node in the network.

e Since the longest path 1@ has 2 edges, by Proposition 7.1(b) no new nod8 fails for T > 3.

Let the share of external assets for a node (bgutig denoted by, (thus,y v Ey = E). We will select the
remaining network parameters, namgly® and theky values, based on the following properties.

() If the node®B is shocked at = 1, it fails:
CD(bQ; —ls3—|—EQ;) > y(bg;+E%) = CD([TH— EQ;) > y(m+ E\B) = 0>y (10)

(IN ForanySe .7, if nodeSis shocked at = 1, thenSfails att = 1, and, for every € S, nodeu fails at
timet = 2:

min{ ® (bs—1s+Es) — y (bs+Es), bs}

degn 9 Z YR
min{ ®(2+Es) — y(3+Esg), 3
_ in{ ®(2+Es) — y(3+Es), }>VEu
B
The above inequality is satisfied if:
¢(2+E5)>Y(3+E5+‘S|Eu) (12)
®(2+Es)—y(3+Eg) <3 (12)

() For anyu € %, consider the node, and letS;,S,...,S, € . be thep sets that contaim. Then,
we require that if the nod® is shocked at = 1 then® fails att = 1, every node among the set of nodes
{S1,S,...,S} that was not shocked &t= 1 fails att = 2, but the nodes does not fail if the none of the
nodesu,S;, S, ..., S, were shocked, This is satisfied provided the following irsdities hold:

(I-1) Any node among the set of nodéS;, S, ..., Sy } that was not shocked at= 1 fails att = 2. This
is satisfies provided for any sBk . the following holds:

min{cD (b%— l%—l—E%) — Y(b%—l-E%), bsB}
degn(B)

>y (bs+Es) = min{(d:—y) <1+E—nf> , 1} > y(3+Es)

The above inequality is satisfied provided:

Eg - Eg Eg
(P—vy) <l+ﬁ> >Vy(3+Es) = CD(l—i— m) > V<4—|-Es—|- m> (13)
1
1>y(B+Es) = y< 31 Es (14)
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(I1I-2) udoes not fail if the none of the nodesS;, S, ..., S, were shocked:

mi”{(q’—V) <1+ E—ﬁ) : 1}—V(3+Es)§ VTE“ = min{(q)—v) <1+E—r:> , 1} < V<3+Eg+%>

The above inequality is satisfied provided:
_ )< = )< ==, =
(P y)<l+m>_y<3+Es+n> ¢<l+m>_y<4+Eg+m+n> (15)

(P—y) <1+E—nf> <1l=

There are many choices of parametgr® andE,’s satisfying Equations (10)—(16); we exhibit just one:

1
= (16)

I
<
\Y
©

|

1
VSe.#:Es=0 Ey=0 YUeZ: Eyj=—— y=01 ®=04+——

100n 10000

Suppose that”’ c . is a solution of &T-CovER. Then, we shock the nodd and the node§ for each
Se .. By (l) and(ll) the node® and the nodeS for eachSe .’ fails att = 1, and by(ll) the nodesu
for everyu € % failst = 2. Thus, we obtain a solution & by shocking|.”’| + 1 nodes.

Conversely, consider a solution of theABILITY 1 ¢ problem onG. If a nodeu for someu € % was
shocked, we can instead shock the n8der any setSthat containg, which by(ll) still fails all the nodes
in the network and does not increase the number of shockesbndthus, after such normalizations, we may
assume that the shocked nodes consigt ahd a subset”’ C . of nodes. ByIl) and(lll) for every node
u e 7 atleast one set that containsnust be in”’. Thus, the collection of sets i’ form a cover of%
of size|cS|. i

9.2 Logarithmic Approximation for T =2

For any positive numbet > 0, letx = max{x,1/x} andx = min{x,1/x}. Let Wy, = nglr; {w(e)}, Wmnax=
e. wie
E1,EoCE

w(e (e) } The fol-
Yecky W(€)#T e, W(E Z %

lowing theorem provides a polynomial-time algorithm Wlth)garlthmlc approximation ratio wheh = 2.

méalx{w )} am.n_mln {av} Omax = max{av} ands_ min {

Theorem 9.2. There is a polynomial-time greedy algorithm for=F 2 that has an approximation ra-
tio of O(Iogn +log (Vo) +log (Y/y) +log (Y(®-y)) + 10gE + log (1/E) + 10gWmax + |09 Wrnin -+ 109 Omax +

109 (Yui) +100 (o) + 10g (o) ).
Proof. We can reuse the proof of the corresponding approximatiomdonogeneous networks in Theo-

rem 8.2 to obtain an approximation ratio of nn+In (max,ev {zue\, < }) wherel = ml\p{ ml\p{éu v} Cu}
ue ve
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provided we recalculate mgax, {Zuev 5}“}. Then,

[,“65‘ {Ouu} = IJ;I\[) {d) ( Z w(e Z w(e +a\,E> } :Q(poly(s,d),g,m))

(V,ueF e=(uVv)e

Oyu>0 Ou,u>0
w(e)
aE e=(w)eF| g _ _
ru@vnégy {Ouv} = gwtpgy (P—y) |1+ We) ® Sin(e) —Q(poly(n ,® y,<1>,§,wmax,wm.n,am.n))
uv>0 &= e=(V,v)eF e=(V.,v)eF
min{cu} =min y ( W(e) +ay E) } =Q pOIy(nil7y7E7 amimein)
ueV ueVv { (.k_(\/zu)eF ( >

Z mln{ mlnmln{éuv} mln{cu}} Q(pOIy( 7¢—V7q)7 V7E7M7 amimM))

ueVv v

ZW( e)

ayE —(v, -
maxZ/cS\,u < nmax (®d—y) |1+ Sw(e — E&Z;;F = O(poly(n, E., Winax Wrnin, Omax ) )
e=(V,v)eF e=(V,v)eF

and thus, maxy {zuev < } (poly (n Py t(e- v)‘l,E,El,—wmax,w—min,amax,wmin‘l,amin‘l,wmax‘l)),
giving the desired approximation bound. o

9.3 Stronger Poly-logarithmic Inapproximability forany T > 3

In this section, we prove a stronger lower bound result foxESLITY 1 ¢ for heterogeneous networks pro-
vided we are interested in the stability of the network inrfoumore time steps.

Theorem 9.3. Assuming\P ¢ DTIME (nPo¥(°9m)) ' for any constan® < & < 1and any T> 3, it is impos-
sible to approximat&STABILITY 1o Within a factor of2los” “nin polynomial time even if G is a DAG.

Proof. The MINREP problem (with minor modifications from the original setup)defined as follows. We
are given a bipartite graps = (V'®t, V9"t F) such that the degree of every node@fs at least 10, a

partition ofV'® into ‘V;—Eft' equal-size subseg®™ VJeft Vel and a partition ok/"9" into ‘Vl; 1 equal-
size subsety;' ", vy, Vo,

These partitions define a natural “bipartite super-gra&iper= (Vsupes Fsupe in the following manner.
Gsuperhas a “super-node” for evely®" (fori = 1,2,...,a) and for every\/jrlght (for j=1,2,...,B). There
exists an “super-edgdi j between the super-node gl and the super-node ftsr’rj”ght if and only if there
existsu € V/* andv € Vjrlght such that{u,v} is an edge of5. A pair of nodesu andv of G “witnesses” the

super-edgey j of H providedu is in V®", vis in Vjrlght and the edgdu,v} exists inG, and a set of nodes
V’ CV of G witnesses a super-edge if and only if there exists at leaspair of nodes irSthat witnesses
the super-edge.

The goal of MNREPis to findVy C V'€ andV, C V"9 such thaw;, UV, withesseverysuper-edge dfl
and thesizeof the solution, nameljv; | + |V»|, is minimum For notational simplicity, let = [V'eft| 4 [\v/1ight|.

The following result is a consequence of Raz’s parallel tidpe theorem [33, 39].

Theorem 9.4. [33] Let L be any language iNP and 0 < d < 1 be any constant. Then, there exists a
reduction running in B°Y(°9" time that, given an input instance x of L, produces an instasfdV INREP
such that:
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e if x € L thenMINREP has a solution of siza + ;

e if x ¢ L thenMINREP has a solution of size at leagtr + f3) - 2log' =,

Thus, the above theorem provides 'agjién-inapproximability for MNREP under the complexity-
theoretic assumption &fP ¢ DTIME (nPoYiedm),

MINREP instance
G= (\/Ieft,vright, F)
g Gsuper= (Vsupels Fsupea

Super-node

—_—— — — —

OO
FIF|! 1R R N
| |

| Fsuperl

___hi__

Figure 9: Reduction of an instance ofiNREP to STABILITY T for heterogeneous networks.

LetF = {{u,v} [ue v, VEeright, {u,v} € F}. We now show our construction of an instance of

STABILITY 1,0 from an instance of MNREP. Our directed graplﬁ = (7,?) for STABILITY 1,0 iS cON-
structed as follows (see Fig. 9 for an illustration):

Nodes:

e For every nodes € V/®" of G we have a corresponding no@gin the set of node‘s(m in 8 and for

every nodes € V{'?" of G we have a corresponding nodéin the set of node‘sa(jrlght in G. The total
number of such nodes s

right

e For every edgdu,v} of G with u € V* andv € eright

of nodeslf.j in G. There argF | such nodes.

, we have a corresponding nofig  in the set
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—
e For every super-edda j of Gsypes We have a nodh; j in 8 There argFgsypef Such nodes.

e We have one “top super-nodesp, one “side super-node/sige, and 2F | additional nodessy, ws, . . ., FF |,

F F
Mm1,M2,.. .,m||:|. Letm = U‘j:‘]_wj andm = U|j:|1[.‘qj.

Thus,n+3|F|+2 < |V | = N+ |F| + |Feupel + 2+ 2|F| < n+4|F| + 2.
Edges:
e For every nodel of G, we have an edgéu,vtop) in 8 There aren such edges.

o For every edgdu,v} of G, we have two edge&fy v, ) and(fg v, V) in G. There are #| such
edges.

e For every super-edga ; of Gsyperand for every edgéd,, in F j, we have an edgém, fﬁ’v) in 8
There argdF| such edges.

e Let pi,p2,..., P be any arbitrary ordering of the edgesHn Then, for everyj = 1,2,... ,|F|, we
have the edgeSisige, ), (@, m;j) and(mj, pj). The total number of such edges i& 8

Thus,|E| = n+6|F|.

Distribution of internal assets: We set the weight of every edge to 1, Thus; n+ 3 oy er yrign deg(u) +
4|F| =n+6|F|.

Let dequ) > 10 be the degree of nodec V'®t UV"9", Observe that:

. =n, andi, = 0. Since deg, (Viop) = 0, by Proposition 7.1(a) the nodg, must be shocked to
top St P P

‘top
make the network fail.

e b =|F|, andiy, = 0. Since deg(Vsize) = 0, by Proposition 7.1(a) the noggge must be shocked
to make the network fail.

e Foranyue Vetyvioht b — degu) andig = 1.

e For any nodefy; v, by, , =1 andis; , = 2.

o For every noddy |, b— =0 andi— = |F j|. Since deg hi; ) = 0 for any nodeh, ;, if such a node
is shocked, no part of the shock is propagated to any othex indthe network.

o Foreveryj, by =i =by, =15, =1.

e Since the longest directed path@has 4 edges, by Proposition 7.1(b) no new nodé& ifails for
t>4.

Let the share of external assets for a node (barit¢ denoted by, (thus, 3,y Ey = E). We will select
the remaining network parameters, namglyp and the set oE, values, based on the following desirable
properties and events. For the convenience of the readktise aelevant constraints are also summarized

in Table 3. Assume that no nodeanJi.,j ﬁ?) U (Ui,j {ﬁ.?}) were shocked dt= 1.

(I) Suppose that the node, is shocked at = 1. Then, the following happens.
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deg(u) +Eg 1
) 17) | © _— 18 o< 19 0] 1
>y ( ) >y< 14 Evtop ( ) 4 Evrt]op ( ) =Y +de@u)—l+Eﬁ (
® (dequ) —1+Ey) — (deg(u) +Ey)  @®(degv)—1+Ey)—y(degv)+Ey)
deg(u) + degV) >y (1+ Efw) (
E
o<y ( degqu) + Ey > N dequ) (
degu) —1+Ey degu) —1+Ey
®(dequ)—1+Ey)—y(dequ)+Eg) P(deqgv) —1+Ey)—y(deqv)+E)
degu) * degv) -y (1+ Ef?V) > VES (
Ev.
1 y<2+ ‘E‘de‘FEwJ‘)
VE— <1 (24) P<y <l+ —) (25) | ©> (26)
i, j EtUJ (1+ VS|de>
IF|
(IF]+ Evgge) > 1
q>>y< (29) | ® <y+ (27) P<y(ltg—)
3|F|+|F|ij+|F|EMj+EVside l—{—%} Emj
Ev..
1+ Eg. 34 —side L E 4+ B
o<yl1s —|—Ew, . 1E (30) o<y IF| EwJ = . 1E (
1+ Vside 1+ “Vside 1+ Vside 1+ Vside
IF| [F [F] [F]
1 Evo Evo VSI e
o>y 6+ Fegu T rdequ + degu) + deq\/) + ndelqpv) + deg(v) +Efy v+ + B +Ex (
Evgide Evo Evo
1+ |FTi + deg{u) + nde}gpu) + deg(v) + ndetg(pv)
Evo E"si e Evo Eg+1
® < y<1+ — +degu) + Eﬁ) degu) o) o>y 6+ pf* + B + B + ndéqpm + 555 + deg +Etov (
> Evo E\,0 Evgige Evg Evy—-1
1+—=2 1+—=2 2+ e+ degu) + g + degy)
3+ VS|de+E.+EV
ooyl T = (35)

Ey, Eyg
e R A R

1 Vio Evo Vs e
6+ deg(u) + ndetg(pu) e(ju) + degjv) + ndetg(pv) + deg(v) + Efﬁv + \F(|j + ij + Emj

<
qD — V 1 Vtop Vtop E E E
+ deg(u) + ndegu) + deg(v) + ndegVv) + ||:\ = + xj L
+ 1 Vt Vi
1+ degu) + ndeg(pu) + degjv) + ndegpv) + \ ij + Emj'
1 Evo Evo, side ﬁ
o<y 6+ Gegu T ndequ T deg(u) + deq\/) + ndetqpv) + degv) + Efﬁv + |F|d +Exy +Ea T (
- Evio Evg
1+ Gogw + ndegw T degw) T ndeg +5 2t — B + Ey
Ey_.
2+ Vs'de—FEw. 1 2+ vélde+Ew- +1+E. 1
qJ S y El"slie J + E"side (38) q) S y ‘ E|VSide J J + Evside
1+ & —Eg, 1+ F —Eg, 1+ F — Eg; + Ey, 1+ l — Eg; + Ey,
6 1 Evop Ev Busige E E E E—’
d<y +de@‘“>+”de@(“>+de@1u> er> \F| e B A Bt (
N Evo E"sn e
2+ degu) + rdequ) — degv) + degv) + 8 — Ex; + Eq
1 Evo Vsn e
d<y 6+ deg(u) + ndetg(pu) + deg(u) eg{v) \F(|j + EWJ +Ety v +Exy n 1 (
a o 1 Vol E"si e
2+ gagiy + ndsgy ~ degy) g + A~ E=i +Es 2+ gegy + rdeqy — e + degy T = — Es +Exy

Table 3: List of all inequalities to be satisfied in the probTheorem 9.3.
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(I-a) wop fails att = 1:
® (thop - thop + EVtop) > y(thop + EVtop) = (n + EVtop) > y(n + EVtop) = (17)
—
(I-b) Each nodeu e \/ﬁ UV"9ht that was not shocked ait= 1 fails att = 2:

min {CD (thop - thop + EVtop) - y(thop + EVtop )7 thop}
degy (Viop)

>y (by +Eg)

min {(D(I’]—i— Evtop) - y(n+ EVtop)7 n}

= - >y (dequ)+Eg)

These constraints are satisfied provided:

@ (n+ EVtop) - y(n + EVtop)
n

>y (dequ)+Eg) = |[d>y <1+ w) (18)

E
14+ 5

®d(n+ E\,top) —y(n+ E\,top) <n=|0<y+

(19)

EVtop
n

1+

(I-c) If the nodesu’, V and fw v werenotshocked at = 1, then the part of the shock, say, given
to wiop that is received by nodéy  att = 3 is:

: mi”{m(thop*'Vtop+EVtop)*V(b"top*EVtop)'b\’top} : mi"{q’m’top*’Vtop*EVtop)*V<b\’top+EVtop)‘thop}
m'”{ Tegn viop) ~y(bg+Eg).bg o min TogTiop] ~y(by+Ey),by
9= deg, () + deg,(V)

i { min{CD(n+Evtop)n_V(n+EVtop>"n} —y(dequ)+Eg), degu)}
dedqu)
min { min{ @ (n+Eygp >n—V<n+vap>v”} —y(degv) +Evy), de@(V)}
degv)

_|_

On the other hand, if the nodk; v andexactlyone of the nodedr and v, say U, werenot
shocked at = 1, then the part of the shock, say, given toviop that is received by nodéﬁ‘v
att=3is:

min { min{CD(n-‘rvap L—V(”‘*‘EVtop)*n} —y(dedu)+Eg), degu)}
dequ)

(I Suppose that some nodeé is shocked at = 1. Then, the following happens.

O-l —

(I-a) NodeU fails att = 1:

1
dbg—1g+Eg)>ybg+Eg) = ¢>y<l+degu)—1+Eﬁ>> (20)
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(I-b) Nodefy v € F.; fails att = 2 and nodeﬁij fails att = 3 if both U and V were shocked at

t=1:
min{®(by — 1y +Ey)—y(by +Ey), by}  min{®(by —1y+Ey)—y(by+Ey), by}
deg (T + deg, (V) >y (bros +Ere)

min{® (dequ) —1+Eg) — y(degu):— Eg ), dequ)}

dequ)
N min{ ® (degv) — 1+ Evd)e&\/x)/(degw) +Ey),degv)} v <1+ Efw)

- f min{® (by 15 +Eg)—y(by+Eg).b in{ P (by —1y+Ey )—y(by+Eg).b
mm{m'”{ (bg ’ﬁzegﬁn()ﬁ);( i +Ey )by} | min{®(by 'vdegvn()vx)/( v+Ev).by } —V(bfﬁ.vJFEfa,v)vbfﬁ.v}
degn(fﬁﬁ)
> (b +E53)

min{min{tb(deg(u)—l—l-Eﬁ)—y(degu)-i-Eﬁ),deg(u)} 4 min{ ® (degVv)—1+Ey )—y(degVv)+Ey ),degv)} v (1+ Ef@v) 7 1} > VEWJ

degu) degv)

These constraints are satisfied provided the inequalitigs-(20) are satisfied, and the following

holds:
® (dequ) —1+Eg)—y(dequ)+Eg) @ (deqv)—1+Ey)—y(degv)+Ev)
degu) * degVv) >y <l+ Ef?fv) (21)
® (degu) — 1+ Eg) — y (degu) +Eg ) < degu) = [® <y ( d:;fﬁ”jﬁgﬁ) - g:)eg:l = @

®(degu) —1+Ey ) —y(dequ) +Eg) N ®(degv) —1+Ey ) —y(degv)+Ev)
dequ) deqv)

_y (1+ Efw) > Ve | @3)

thﬁj <1 (24)

(11  When the nodesige is shocked at = 1, the following happens.
(ll-a)  Vsige fails att = 1:
q)(szide_ leide+ EVside) > y(szide+ EVside) = CD(“:‘ + EVside) > V(’F‘ + EVside) = o> 14

which is same as (17).
(ll-b) If a nodew; € wis shocked at = 1, it does not fail:

1
O (De, — 1 + Ew ) < y(be +Ex,) = ¢§v<l+—> (25)
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(Ill-c) Any nodew; €  fails att = 2 irrespective of whethexs; was shocked or not:

mm{dJ ( side leide + EVside) — y(b\/side + EVside)> b\/side}

degp (Vside)

>y (bw; +Eg;)

These constraints are satisfied provided:

E"side
cD(szide — ’Vside+ EVside) — y(szide+ EVside) > Y(bwv + va ) =|d> v (2+ IF| * ij ) (26)
degn (Vside) ! ! (1+ El"éiTle>
1
® (szide - leide+ EVside) - y(b\/side+ EVside) < szide =|®=< v 1+ Evgige (27)
[F|

(lNl-d) If a nodem; € m is shocked at = 1, it does not fail (and thus, bill-b) , it does not fail at
t =2 also):

1
P (D) — I + By ) S V(b +Enp) = ¢§V<1+E—> (28)

]

(Ill-e) Any nodem; € m fails att = 3 irrespective of whethen; was shocked or not:

min{mln{d) side— Vsidet Eveige) — (szide+EVside>’szide} _ V(bwj + ij ), bwj}

degn (Vside)
deg, (=)
mln{ mm{q)(“:’—i_ EVSidE) _ y(“:‘ + Evside)7 “:‘}
IF|

>V (byy +Ey) =

- y(l+EtU] )7 1} > y(1+EmJ)

These constraints are satisfied provided all the previonstrants hold and the following holds:

CD(|F| + EVside) — V(|F|‘|’ EVside)
F

(IF |+ Evgee) )
—Y1+Es ) >y (1+Ey) = |P> = IE .
y( wJ) V( m,) y<3|F|+|F|EwJ-+|F|Emj+EVside (29)

CD(|F| + EVside) — V(|F| + EVside)

1+E 1
—Y(1+Eg)<1 = ¢<y<1 t“J)+1 E (30)
+

F V5|de Vside
Fl 1+ Pl
(I-f) Consider a directed pas () from pj = fy v 10 Vsige The maximum
value of its proportion of shock receive lpy from is path, saywy, is obtained by shocking all

the nodesssige, @, mj and is given by (assuming all previous inequalities hold):

[ o] ot o 2 ) (0 1) (o1 124)) 0
min degn (=) — (Y () + Exj) — P (b — 1y +E) ), by

%2= degp (=)

. . Evsi e EVsi e
= mm{mm{q><1+ !FT —ij> - y<2+ !FT +ij>,1} - (y(1+Emj)—<DEmj),1}
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Similarly, the minimum value of its proportion of shock ra@eby p; from this path, sayy,
is obtained by shocking only the noslgqe and is given by (assuming all previous inequalities

hold):
@ (bvgige ’Vside+EVside) 7 (bvgige* Evsige)
i degn (Vside) B V(bw- +Ew'>
mm{ : ddegn(t:u,-) — — y(bs +Eg)), by,
o) =
2 degn(mj)

; EVsie EVsie
= m|n{¢<1+ |FT > - y<2+ |FT +ij> — y(1+Emj),1}

We want nodef; v to fail att = 4 assuming it did not fail already. Sindg; v did not fail
att = 2, at most one of the nodég and V was shocked. There are two cases to consider:

when neltherﬁ nor V was shocked, or when exactly one of these nodes&ayas shocked
(assuming all previous inequalities hold):

_ E.. E..
a§+01:m|n{d><l+’\|':—s'?e> — v<2+“V:—ST‘~‘+EwJ> - y(1+Em,-),1}

min { min{¢(n+EV‘°")n_y(n+EV‘°p)’n} —y(dequ)+Eg), deQu)}
* degu)
" { MO0 Brg) A Erp 0}y (degiy) + ). deQ(V)}
+

degv)

>y (bfﬁ,v T Efﬁ‘v)

mm{d)( |‘|’:S"|’e> — y<2+%+EwJ> —y(1+ Emj),l}
min{® (1+ 2 ) —y (14 5 —y (degu) + E) , deg(u) }
* deg(u)

mln {d) <1+ V‘°"> y(1+ EV‘°'°> y (degVv) +Ev), deg{v)}
deqv)

>y <1+ Efﬁj)

in{®(by —1y+Ey)—y(by+Ey),b
oi+0 1+m'n{ (by — 1y +Ey)—y(by+Ey) by}

b E
deg, (V) ( fav + fﬁv)
£ c min { min{ @ (1 By )r:y(n+Ev‘°p)’n} —y(dequ)+Eg), degu)}
; Vside | _ Vside _
mln{d><1+ |F|> y<2+ F| +E°°j> y(l+Emj)’l}+ degu)
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min{ ®(by — 1y +Ey)—y(by +Ey),by }
* deg,(V) a4 <bfﬁ~7 N Ef?-v)

: EVsie EVsie
m|n{¢<1+ \FT> - y<2+ !FT +ij> — y(1+Emj),1}

min{d) <1+ Evr‘]"") - y<1+ %) —y (degu) +Eﬁ>),deg(u)}
* dequ)
in{ ®(deg V) — —y(deg V deg VvV
+m|n{ (deg V) 1+E§e)gn(yv()eg )+ Ev ), dedq )}>V<1+Efﬁ‘7)

These constraints are satisfied provided all the previonstrints hold and the following holds:

= Eu,
q><1+ |VFT> — y<2+ |VFS'T9+EwJ> —y(14+E4)+

(1+2) —y(1+52) —y (degu) +Eg) @ (1+2) —y(1+22) — y (degv) + Ev)

1+E
dequ) * degVv) >y (1+Er)
1 Evo Evo VSI e
=|o>y (6+ deg(u) + ndetg(pu) + dequ) + degjv) + ndefqpv) + deg(v) + Efﬁv + |F(|j + ij + Emj ) (31)
- Evsige Evo Evo
1+ 2 + Gogw + ey + deqy) T ndeg

Ey..
- £ 3+ 5ae LB 1B, 1
¢<1+|VF—S'T8>—V<2+|VF—ST8+EwJ>—V(1+EmJ)SlE ¢<V< T "1 42
+

E
E E 14 e 4 d E
¢<1+_%%>__V<1+_%%>“VWGQU%+E3)Sdeqw = ¢»<y< o dedu) + ﬁ) degu

1+% 1+ V“’p
(33)
Evo E\,0
q) 1+ EVside _ 2+ EVside+E _ (1—|—E )+¢(l+%)_y(1+%)—y(degU)—{—Eﬁ)
FI ) Y\ R ) YT dedu)
®(deg V) —1+Ey)—y(deg V)+Ey)) oy (1+Ef )
deg, (V) L
Vside Ev Ep+1
P>y <6+ s B B ndetqpu) G + g + Efﬁv) (34)
EVSI e Vo E 1
2+ e+ degu) + g T degy)

(IV) By (ll-b) node hIJ fails att = 3 prowded both the nodes’ and V were shocked at= 1.

Our goal is to make sure that node does not fail in any other condition (assuming the node
itself was not shocked). Assumlng the nod@s v and fw v were not shocked, the maximum

amount of shock thaty v € F. j can receive is when all the nodes befdg in the path

.ﬂ were shocked and no more than one of the nodes V was
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shocked. Based on this, the following constraints must faidh; ; not to fail.

min{ol + 07— y(bfm7 + Efﬁ‘v) , bfﬁ‘v} B V(brﬁ + Em)
deg,(f¢ v) - IR

min { 0 By Y0 Bt} y (degu) +Ey), deQKU)}

n
min dequ)

min { min{q)(n-&-Evtop )n_V(n'i'EVtop)’n} —y(degv)+Ev), degv)}
degv)

_|_

. . Ev. Ev.
+m|n{m|n{¢<1+“V:—ST*-‘—ij> — y<2+ ylv=sTe+ij> , 1} — (V(1+Ey) — ®E)), 1} —y<l+ Efw) 1

. 1 EVt 1 Ev 1 Ev Eﬁ 1 Ev EV
o) op 'top _ ‘top top
m'”{ (degu) T hdegu) Tdegv) Th deg(v)) V<3+ dequ) ndegu) T degu) " degv) T ndegqv) T degv) T Efﬂ)

. EV'd EV'd yEm
+min{ ® 1+ﬁ_EwJ+EmJ -y 3+ﬁ+EwJ+EmJ , 10,15 < “: ’
I.’J

These constraints are satisfied provided all the previonstrints hold and the following holds:

EV'e

3+ 8 4 By + Ep 1
EVS|e E"sie

14+ 58 By + By | 148 —Ey +Ex

(35)

= E,.
d><1+“V:—STe—EwJ+Emj> —y<3+ ’§'79+EwJ+Emj> <l=|d<y

1 Evo Ewo Evgige
6+ Gegu + ndelg(pu) + deg(u) + deg(v) + ndetgpv) + degv) +Efyy T 78 + B + By

® = 4 1 E"wp "tOP EVSlde E E
+ deQu) + ndeg(u) + deg(v) + ndegv) + B + B
1
* 1 Evop Evop Evsige (36)
1+ degu) + ndegu) + degjv) + ndegVv) + F| ij + Emj

E—>

1 Evo Evo V5| e hi,
6+ Goq + ndeqw + degu) + deq\/) + ndetg(pv) + deg(v) +Etgy + 88+ Bxy + Exy + 5

by

(37)

Vtop

1+ deg(u) ndegju) + degjv) + ndef&pv) + |VI§I\de B ij + Emj
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On the other hand, if exactly one of the nod&sor V', say U, was shocked dt= 1, then the
maximum amount of shock thdt; v € Fj can receive is is modified, and the new conditions
for our desired goal become as follows.

min{aﬁ— min{d)(bvfleéEgvn()%})/(varEv)‘,bv} Ny, - V(bfﬁﬁ + Efﬁ‘v) , bfﬁﬁ} B y(bm_ + Em)
deg, (fy v) - [kl

. min{cb(n+Evmp)fy(n+Evmp),n} }
min —y(dequ)+E), dequ .
{ " Y (deg) +Eq), deg) +mm{q’(bv—lerEv)—V(bv+Ev),bv}
degu) deg, (V)

min

- E., E.,
+m|n{m|n{¢<l+ |VFSTQ_E“J> - y<2+|VTSTe+EwJ> , 1} — (y(1+Eq) —¢Emj),1}—y<1+Efﬁtv) 1

E
MLy

iy

il

_ 1 Eviop 1 Ev 1 Eviop Ey Ev
min {q’ (“ dequ) " ndegu) degv) | degv)) Y\ ?" dequ) T ndequ) " degu) " degv)
i indo (14 B _g oy B g ) g 1+E ®E. ), 1 1+E 1
+ming min +ﬁ— @ | —Y + |F| +Eg |, —(V( + F-Dj)_ mj)a —V< + fﬁj)a

vEm

S ]
IFijl

These constraints are satisfied provided all the previonstrants hold and the following holds:

Ev..
E . E ) 2_|_ S|de+E i l
o(1efer g ) (2 S ) samlosy( e e 3®)
1+ ‘Eu'ie _ ij 1+ |éu|1e _ ij
EVside Evside
e 1+ Fl —Eg | -V 2+—|F| +Ez ) = (Y(14+Ey) —®E,) <1 (39)
Ev..
2+ e + By + 1+ Ey 1
=|o<y M 2+ — (40)
1+ |I§ITE_EwJ+Emj 1+ ‘E‘?G_ij—’_Emj
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1 Eviop 1 Ev 1 Eviop Eg Ev
® <1+ dequ) h degu) degVv) der)) y<2+ dequ) *h dequ) * dequ) * deg(v))
Ey, E YE
+o( 1+ V5|de_Ew. —y 2+ V5|de_|_Ew_ — (y(l—{—Em)—QJEm)—y(l_{_Efﬁv) §¢
Rl Rl o v = TR

YE—
hj. Cohij

1 Vo VSI e
6+ deg(u) + ndetg(pu) + deQu) er) + \F(\j + EwJ + Efﬁv + EmJ + TRl

<y Erop E (41)
2+ deg(u) + ndegu) degjv) + degv) + ||§\e ij + En::j
1 Ey, 1 Ev 1 Ey Eq Ev
(1 R —vl2 top
< * dequ) * ndequ) degv) * degv) y\et dequ) h dequ) * dequ) * deqv)
Ev. E,.
+® <l+ |\|/;‘lt|16 — ij> - V<2+ |‘|’;‘u|je —{—ij> - (y(1—|— E;I:j) —CDEmj) — y<1—|— Efﬁ.?) <1
1 Evo VSI e
d<y 6+deg(u) + ndetg(pu) + deQu) + degjv) + \F(\j + EU’J + Efﬁ,v + EmJ n 1
N Vo Bugige 1 Evo EVsi N
2+ deg{u) + ndet@(pu) deg(v) * de@(V) * \F? ~ B + B 2+de@(U) +ndeTEIpU) deQ(V) +de@(V) \F(Ij — By + By
(42)

There are many choices of parametgr® andE,’s satisfying inequalities (17)—(26); we exhibit just one:

y=4n10  @=n100 yyevetyyht g, =1 B, =n®  Ey,=n’F|
- . 1
VueVetyyve Vit B =1 Vhij € FsypeV fuy € Fijj: Ep=1 VjiEg=Ey=7

Remembering that 18 degu) < n for any nodeu € VUVt and|F | < |F|, itis relatively straightfor-
ward to verify that all the inequalities are satisfied forsalfficiently largen. Note that

IF|
E = Buop T Bugae Eﬁ"‘ ZEfﬁV +ZE + Z (Es; + ZEmJ =n’+n? ‘FH‘”"‘— |F |+ [Fsupet
uEVIe uvright fuvie hi, JEFsuper =1
and thus the ratio of total external assets to total inteamsétE /I is large. We can now finish our proof by
selectingd such that lo§ % n = log* ¢ 7‘ 1 and showing the following:

(completeness)If M INREP has a solution of size + 83 on G then thers|* (8,T> <a+p+2.

(soundness)If everysolution of MINREP on G is of size at leasfta +B)2'°9176” thenSI* (8,T) >
a+B olog*?n
> :

Proof of Completeness M INREP has a solution of sizex + f3)

LetVy C V" andV, C V"9 be a solution of MNREP such thafVi| + V2| = a + B. We shock the nodes
Viop andVsige, and every nodal for everyu € Vet uvi9ht. By (1-a) vp fails att = 1, and by(l-b) and

(Il-a) every node imi"zl\/i'EﬂUU? V9" fails on or before = 2. By (lll-a) , (Il-b) and(lll-c) every node
in {Vshock} U U fails on or beforet = 3. SinceV; andV, are a valid solution of MNREP , for every
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super-edgey j there existas € V; andv € V;, such thau € Vie!t, v e Vrlght and{u,v} € F; since we shock

the nodesu andV by (ll-a) both U andV fail att = 1, by (Il-b) the nodefy v fails att = 2, and by
(ll-c) the nodeh.7J fails att = 3. Thus, the networﬁ fails att = 3 andsI* (8,T> =a+B+1lfort>4.

Proof of Soundness (every solution oM INREP is of size at leas{ o + B)Z'Oglf‘s”)

We will prove the logically equivalent contrapositive ofrataim, i.e., we will show that ifSI* (8 T)

aiB olog"°n then MINREP has a solution of size strlctly less thém + B)2°¢" ", Consider a solution of
STABILITY T.0 ON 8 that shocks at most = ‘”B 206" °n nodes. Note that the nodeg, and vsige Must
be shocked at = 1 by Proposition 7.1(a). B(/I a) and(lll-a) , the nodeskop and vsige fails att = 1, by
(I-b) and(lll-c) every node ir\/m UVT>9*“U w fails att = 2, by (lll-e) every node ir&fails att = 3i)>y
(IN-f) every nodefy; ; fails att = 4 unless it was shocked at= 1 and by(IV) a nodeh j fails only if by j,

fovruovru € Fij Or boththe nodest’ andV were shocked dt= 1. We “normalize” this given solution in the
following manner (each step of the normalization assumatstiie previous steps have been already carried
out):

¢ If a node fromm Uw was shocked dt= 1, we do not shock it. Bfll) this has no effect on the failure
of the network.

e Ifanodefy v € ?J was shocked, we do not shock it but instead shock the nadasd V if they
were not already shocked in the given solution. ThIS at mosbtes the number of nodes shocked

and, by(ll-b) , the nodef, fails att = 2 and the node. j fails att = 3 if it was not shocked dt= 1
Thus, after this sequence of normalization steps, we mayrasshat nof; v node was shocked

e lfa noderﬁ was shocked at= 1, we do not shock it but instead shock the no@&snd V' (for
someu andv such that{u,v} € F ;) if they were not already shocked in the given solution. 'Iéhls

most doubles the number of nodes shocked andlii) , the nodef, fails att = 2 and the noddaI J

_>
fails att = 3. Thus, after this sequence of normalization steps, we mssynae that ndy ; node was
shocked.

These normalizations result in a solution afABILITY 1 ¢ Of Size at most 2in which the nodesqop, Vside

et righit left
a subset/l cVve and a subset'z C V"9 of nodes. Our solution of MIREP ISV = { V| Ve Vl} CcV®
andV, = { V| Ve V2} C Vright of S|ze Z—2 < 2z Since failure of everyy j is attributed to shocking two
nodesU andV such thatfy v € F. j» every super-edgh, j of G is witnessed by the two nodesandv. O

10 Our Results on the Dual Stability Index for Homogeneous N&vorks

For anyT > 1 our first result in Theorem 10.1(a) provides an inapproxifitg gap of about;®; ~ 1.582.
The second result exhibits a polynomial time algorithm footed in-arborescences assuming every node
can be individually shocked to fail.

Theorem 10.1. For any T > 1, the following results hold:

(@) Assumingd® # NP, DSI*(G, T, k) cannot be approximated to within a factor(df— e 1+ 5)_1, for any
0 >0, even if G is a DAGH is the base of natural logarithm).
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(b) IfGis arooted in-arborescence th&SsI*(G, T, k) < 1+dedn® (i; - 1) , Wherededh® = m%x{degn (v)}
ve

is the maximum in-degree over all nodes of G. Moreover, utiteassumption that any individual
node of the network can be failed by shocking|*(G, T, k) can be computed exactly in(6%) time.

Proof.

(a) The maxk-cover problem is defined as follows. An instance of the @obls an univers&/ of n
elements, a collection of sets.” over %, and a positive integex. The goal is to pick a sub-collection
' C .# of k sets such that the number of elements covered, nah&&jyy/ S\, is maximized Let OPT
denote the maximum number of elements covered by an optiohatian of the maxx-cover problem. It
was shown in [22] that, assumiy# NP, the maxk-cover problem cannot be approximated to within a
factor ofﬁ for any constand > 0. More precisely, [22] provides a polynomial-time redantior a

restricted but stilNP-hard version of the Boolean satisfiability problem (3-C)NFStances of max-cover
with Kk = |%|0r for some constant @ a < 1, and shows that

(1) if the CNF formula is satisfiable, thedPT = |7 |;

(2) if the CNF formula is not satisfiable, th@PT < (1— 2 4+ g(k)) |% |, whereg(k) — 0 andk — co.

Our reduction from max-cover to DUAL-STABLITY 1 is as follows. In our graphG = (V,F), we have
an element node for every elementi € %, a set nod& for every selSe ., and directed edggs, é) for

every element € % and setS< . such thau € S Thus,n= |V| = |Z|+ || and|F| =
now set the remaining parameters as follo@s= n, y = n~2 and® = 1. Now, we observe the following:

e If an element node s shocked, it does not fail sincé (deg, (G) — deg,,({) +£) < 0 whereas
y(deg, (0)+E) =n"2>0.

o IfasetnodeSis shocked, it fails sinc® (deg, (S) — deg,, (S) + £) > 2 whereay (deg, (S) + £) <
n+1 < 1.

e If a set nodeSis shocked, then every element nadi®ru € Sfails att = 2. To observe this, note that

min { ® (deg, (S) — deg,( Biegnz 5 y (deg, (0)+ %) , deg, (5} . 2—n%1 - n:;lz,,(degn (§)+§>

e Since the longest directed pathGhas one edge, no new nodes fails duting2.

Based on the above observations, one can identify the detsestin maxk-cover with the set nodes selected
for shocking in DUAL-STABLITY 1 on G to conclude thaDSI*(G, T, k) = OPT + k. Thus, using1) and
(2), inapproximability gap is

% |+« B % |+ || L1
(L-g+90)|2Z|+k  (1-L+9w)|Z|+|2|" 1-3+9

as|% | — o foranys >0

(b) The boundSI*(G, T,k) < 1+ degjﬂ""x(% - 1> follows directly using Lemma 8.7 and the definition of

DSI*(G, T, k). To provide a polynomial time algorithm f@SI*(G, T, k), we suitably modify the algorithm
described in the proof of Theorem 8.4. We redefig, (G, T,u,v) andSlg,s(G, T,u) in the following
manner:

3However, this exact construction will not work in the prodfitheorem 8.1 since the entire network needs to fail in thaopr
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e For every nodel € [0(u) and every integer & k < k, DSIg,ns(G, T,u, U, K) is the number of nodes
in an optimal solution of MAL-STABLITY 1o, (Or « if there is no feasible solution of UAL-
STABLITY 1,0 ) for the subgraph induced by the nodeg\iju) assuming the following:

U was shocked,

u was not shocked,
no node in the path’ ~ u exceptu’ was shocked, and

total number of shocked nodesAtu) is exactlyk.

e For every integer & k < k, DSIg,g(G,T,u,k) is the number of nodes in an optimal solution of
DUAL-STABLITY 1,0« for the subgraph induced by the nodeshifu) (or «, if there is no feasible
solution of SABILITY 1 ¢ under the stated conditions) assuming that the nodes shocked (and
therefore failed), and the number of shocked nodes ) is exactlyk.

Computing these quantities becomes slightly more comiputaty involved as shown below.
Computing DSIg, (G, T,u,k) whendeg, (u) = 0:

DSI5,s(G, T,u,1) = 1 andDSIg, 5(G, T,u,k) = —oo for anyk # 1.
Computing DSI§,ns(G, T, u, U, k) whendeg,, (u) = O:

e If uciz(u) then shocking node makes nodeu fail. Thus, SI§,\s(G, T,u,u',1) = 1 and
SI5ans(G, T, u, U k) = —oo for anyk # 1.

e Otherwise, node does not fail. ThusDSIg, \s(G, T,u,u’) = —oo.

Computing DSIg,s(G, T,u) whendeg, (u) > 0: In this case we have

DSI%, (G, T,u,k) =1+ min

k
{me{ DSI5,s(G. T, Vi, k), DSI5s(G. Tvi,u k) } }

Computing DSI§,ns(G, T, u, U, k) whendeg, (u) > 0: Sinceu’ is shocked andi is not shocked, the fol-
lowing cases arise:

e If ug¢iz(u') then theru does not fail. Then,

degn ()
DSIgs(G. T k)= min <>—k{ > min{DSléAs<G,T,vi,m,SIEANS<G,T,vi,u’,m}}
egn (u) ™ i=

e Otherwiseu € iz(U'), and therefore fails whenu' is shocked. Then,

degy (u)
DSI¢ G T,uu,k=1 min min{DSI* G,T,vi, k), DSIE G,T,v, U,k }
sans( ) +k1+k2+..-+kdegn<u)—k{ i; sas( i:Ki), DSlsans( iU k)

N

degn ()
It only remains to show how we compute min min{ DSI5s(G, T, Vi, ki), DSI’gANS(G,T,vi,u’,k.-)}
k1+k2+”'+kdegn(u):": £

for F € {k—1,k} in polynomial time. It is easy to cast this problem as an imsteof the unbounded integral
knapsack problem in the following manner:

y
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e We have deg(u) objectsOy, 0z, ..., Ogeq (), €ach ofunlimitedsupply and each afeight1.
e Thecostof selectingk; objects of the type; is min{ DSIg,s(G, T, Vi, ki), DSIgans(G, T, Vi, U ki) }

e Thegoalis to select a total oéxactlyF objects such that the total costnignimum

The standard pseudo-polynomial time dynamic programmiggrithm for Knapsack can be used to solve
the above instance i@ (kdeg,(u)) = O (n?) time. Thus, the total running time of our algorithmag(n®).
i

11 Our Results on the Dual Stability Index for HeterogeneoudNetworks

We show in the theorem below that, for= 2, the dual stability measure cannot be approximated with
within a large approximation factor provided a complextgoretic assumption is satisfied. To understand
this assumption, we recall the following definitions andrtologies from [5].

e A random(m,n,d) hyper-graphH is a random hyper-graph of nodes,m hyper-edges each hav-
ing having exactlyd nodes obtained by choosing each hyper-edge independevttiyraformly at
random. For our purpose, assume ttas a constant, andh > n® for some constant > 3. Let
Q: {0,1}9 — {0,1} denote ad-ary predicate, and le¥qm be a distribution oved-local functions
from {0,1}" to {0,1}™ by defining the randond-local function fy o: {0,1}" — {0,1}™ to be the
function whosé™ output is computed by applying the predic&éo thed inputs that are indexed by
thei™™ hyper-edge of.

e Thek densest sub-hypergraph probleDds() is defined as follows: given an hyper-gra@h-= (V,F)
with n=|V| andm = |F| such that every hyper-edge contag@actly dnodes and an integer > 0,
select a subsét’ C V of exactly k nodes which maximizes the number of edges induced by the
selected nodesge., maximizes| { {uy, Uz, ..., Ug} € F |1, Wp, ..., ug €V} |.

The essence of the complexity-theoretic assumption isftifat a suitable choice o, .%o m is a collection
of one-way functions, theDSy is hard to approximate within a large approximation fackdore precisely,
the technical assumption is as follows:

(x) If Fomis 1/o(1/+/nlogn)-pseudorandom, then far = ni~% for some constant > 3 there exists
instance<s = (V,F) of DS, with m > n® such that it is not possible to decide in polynomial time if
there is a solution obS, with at Ieast%1 edges (the “yes” instance), or if every solution of

nz\~d
1_0(1>) m 7 ”
DSk has at most— =*— edges (the “no” instance).
nz

Theorem 11.1. Under the technical assumptidi) stated abovePSI*(G,2,«) cannot be approximated

with a ratio of rf for some constand > 0 even if G is a DAG.

Proof. Given an instanc& = (V,F) of DSy as stated irfx), we construct an instance graﬁw: (7,?)
as follows:

e For every nodel € V, we have a nodel € 7 and for every edge= {uy,Uz,...,Uuq} € F, we have a

node € (also denoted byu, U, ..., ug ;) inV. Thus, the total number of nodesgfis \7\ =m+n.

e For every hyper-edge= (uz,up,...,Uq) € F, we haved edgede,u; ), (e, up),...,(euUq) € F. We set
the weight (share of internal asset) of every efge;) to 2. Thus|l| =2dm

37



Let the share of external assets for a node (bayiks V be denoted by (thus, Yve v Ey =E). We
will select the remaining network parameters as follows: daxhe € F, E¢z = 1.99d, and for eachu eV,
Ey =0. Thus,E =1.99dm Finally, we set® = 1 andy = 1/2. We prove the following:

1+o0(1 )

(completeness)If DSk has a solution witlw > ( )
nCT a )

hyper-edges then th@SI*(a 2 K) >K+a.

soundness)If everysolution ofDS, has at mo A/ hyper-edges thebSl| K) <K+
(soundness)If lution ofDSy h sp— ow)my dges thensi* (G, 2, B.
nz2

Note that withc = 5 (and, thusn > n®), and sufficiently largel andn, we have

1- 53 (1+0(1)) m 1 (1+o(1)) m
cra T EED TR e
K+P nt-% + (1*2(713)) mooai-d (170(1)) m
nz2

which proves the theorem wiih = 1/4.

Proof of CompletenessDS, has a solution witha hyper-edges)

LetV’ CV be a solution 0DS, with at leasia hyper-edges. We shock all the node¥dpck= {ﬁ lueV'}.
Every shocked nodar fails att = 1 since® (by — Iy + Ey) = 2deg,(U) > deg,(U) = y (bg + Eg).
Now, consider a hyper-edge= (uz, Uy, ...,Uq) € F such thauy,up,...,uqg € V'. Then, the nodég fails at
t = 2 since

d min{® (by — 1y +Ey) -y (by +Eg), by}
! ! ! ! = =d>099d =y (bg+E
i= degn(UI)) y( ¢ ?)

Proof of Soundness (every solution dDSy has at mostf hyper-edges)

We will prove the logically equivalent contrapositive ofralaim,i.e., we will show that ifDSI* (8, 2, K) >

B + k thenDSk has a solution of with strictly more thgB hyper-edges. First, note that we can assume
without loss of generality that, for any hyper-edge F, the node€ is not shocked. Otherwise, if we shock
node €, then it does not fail since at= 1 since® (bg — I¢ + E¢) = —0.01d < 0.995d = y (bg + E3),
and in fact doing so increases its equity t65d. Since the equity of€ increased by shocking it, if this
node failed in the given solution then it would also fail ifwas not shocked. So, we can instead shock a
nodeU that was not shocked in the given solution; such a node misttsrcek < n.

Note that we have already shown in the proof of the completepart that, for ang= (uy, Uy, ...,uq) €
F, if the d nodests, U3, . .., Ug are shocked thef® fails att = 2. Thus, our proof is complete provided we
show that such a nod€ doesnotfail att = 2 if at leastone of the nodesi, U3, ..., Ug is notshocked. Let
Sc {Uf,U3,...,U4} be the set of shocked nodes among thikeedes. Theng does not fail at = 2 since

min{® (bg — 1y +Ex) —v (bw +Eg) , by}
ueS degn(UI))

<d-1<0995d =y (bg +Eg)

for all sufficiently larged. m|
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