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Abstract

We establish almost tight upper and lower approximation bounds for the

Vertex Cover problem on dense k-partite hypergraphs.

1 Introduction

A hypergraph H = (V, E) consists of a vertex set V and a collection of hyperedges

E where a hyperedge is a subset of V . H is called k-uniform if every edge in E

contains exactly k vertices. A subset C of V is a vertex cover of H if every edge

e ∈ E contains at least a vertex of C.

The Vertex Cover problem in a k-uniform hypergraph H is the problem of com-

puting a minimum cardinality vertex cover in H. It is well known that the problem

is NP -hard even for k = 2 (cf. [13]). On the other hand, the simple greedy heuris-

tic which chooses a maximal set of nonintersecting edges, and then outputs all

vertices in those edges, gives a k-approximation algorithm for the Vertex Cover

problem restricted to k-uniform hypergraphs. The best known approximation al-

gorithm achieves a slightly better approximation ratio of (1 − o(1))k and is due to

Halperin [11].

On the intractability side, Trevisan [22] provided one of the first inapproxima-

bility results for the k-uniform vertex cover problem and obtained a inapproxima-

bility factor of k
1
19 assuming P 6= NP . In 2002, Holmerin [11] improved the factor

to k1−ǫ. Dinur et al. [7, 8] gave consecutively two lower bounds, first (k − 3 − ǫ)
and later on (k − 1 − ǫ). Moreover, assuming Khot’s Unique Games Conjecture

(UGC) [17], Khot and Regev [18] proved an inapproximability factor of k − ǫ for

the Vertex Cover problem on k-uniform hypergraphs. Therefore, it implies that the

currently achieved ratios are the best possible.
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The Vertex Cover problem restricted to k-partite k-uniform hypergraphs, when

the underlying partition is given, was studied by Lovász [20] who achieved a k
2
-

approximation. This approximation upper bound is obtained by rounding the nat-

ural LP relaxation of the problem. The above bound on the integrality gap was

shown to be tight in [1]. As for the lower bounds, Guruswami and Saket [10]

proved that it is NP-hard to approximate the Vertex Cover problem on k-partite

k-uniform hypergraphs to within a factor of k
4
− ǫ for k ≥ 5. Assuming the Unique

Games Conjecture, they also provided an inapproximability factor of k
2
− ǫ for

k ≥ 3. More recently, Sachdeva and Saket [21] claimed a nearly optimal NP -

hardness factor.

To gain better insights on lower bounds, dense instances of many optimization

problems has been intensively studied [2, 15, 16, 14]. The Vertex Cover problem

has been investigated in the case of dense graphs, where the number of edges is

within a constant factor of n2, by Karpinski and Zelikovsky [16], Eremeev [9],

Clementi and Trevisan [6], later by Bar-Yehuda and Kehat [4] as well as Imamura

and Iwama [12].

The Vertex Cover problem restricted to dense balanced k-partite k-uniform hy-

pergraphs was introduced and studied in [5], where it was proved that this re-

stricted version of the problem admits an approximation ratio better than k
2

if the

given hypergraph is dense enough.

In this paper, we give a new approximation algorithm for the Vertex Cover

problem restricted to dense k-partite k-uniform hypergraphs and prove that the

achieved approximation ratio is almost tight assuming the Unique Games Conjec-

ture.

2 Definitions and Notations

Given a natural number i ∈ N, we introduce for notational simplicity the set

[i] = {1, .., i} and set [0] = ∅. Let S be a finite set with cardinality s and k ∈ [s]. We

will use the abbreviation
(

S

k

)

= {S ′ ⊆ S | |S ′| = k}.

A k-uniform hypergraph H = (V (H), E(H)) consists of a set of vertices V and a col-

lection E ⊆
(

V

k

)

of edges. For a k-uniform hypergraph H and a vertex v ∈ V (H),

we define the neighborhood NH(v) of v by
(

⋃

e∈{e∈E|v∈e} e
)

\ {v} and the degree

dH(v) of v to be |{e ∈ E | v ∈ e}|. We extend this notion to subsets of V (H), where

S ⊆ V (H) obtains the degree dH(S) by |{e ∈ E | S ⊆ e}|.
A k-partite k-uniform hypergraph H = (V1, .., Vk, E(H)) is a k-uniform hypergraph

such that V is a disjoint union of V1, .., Vk with |Vi ∩ e| = 1 for every e ∈ E and

i ∈ [k]. In the remainder, we assume that |Vi| ≥ |Vi+1| for all i ∈ [k − 1] and

k = O(1).
A balanced k-partite k-uniform hypergraph H = (V1, .., Vk, E(H)) is a k-partite k-

uniform hypergraph with |Vi| = |V |
k

for all i ∈ [k]. We set n = |V | and m = |E| as

usual.

For a k-partite k-uniform hypergraph H = (V1, .., Vk, E(H)) and v ∈ Vk, we in-

troduce the v-induced hypergraph H(v), where the edge set of H(v) is defined by
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{e \ {v} | v ∈ e ∈ E(H)} and the vertex set of H(v) is partitioned into Vi ∩ NH(v)
with i ∈ [k − 1].

A vertex cover of a k-uniform hypergraph H = (V (H), E(H)) is a subset C of

V (H) with the property that e ∩ C 6= ∅ holds for all e ∈ E(H). The Vertex Cover

problem consists of finding a vertex cover of minimum size in a given k-uniform

hypergraph. The Vertex Cover problem in k-partite k-uniform hypergraphs is the

restricted problem, where a k-partite k-uniform hypergraph and its vertex partition

is given as a part of the input.

We define a k-partite k-uniform hypergraph H = (V1, .., Vk, E(H)) as ǫ-dense

for an ǫ ∈ [0, 1] if the following condition holds:

|E(H)| ≥ ǫ
∏

i∈[k]

|Vi|

For ℓ ∈ [k − 1], we introduce the notion of ℓ-wise ǫ-dense k-partite k-uniform

hypergraphs. Given a k-partite k-uniform hypergraph H, if there exists an I ∈
(

[k]
ℓ

)

and an ǫ ∈ [0, 1] such that for all S with the property |Vi ∩ S| = 1 for all i ∈ I the

condition

dH(S) ≥ ǫ
∏

i∈[k]\I

|Vi|

holds, we define H to be ℓ-wise ǫ-dense.

3 Our Results

In this paper, we give an improved approximation upper bound for the Vertex

Cover problem restricted to ǫ-dense k-partite k-uniform hypergraphs. The approx-

imation algorithm in [5] yields an approximation ratio of

k

k − (k − 2)(1 − ǫ)
1

k−ℓ

for ℓ-wise ǫ-dense balanced k-partite k-uniform hypergraphs. Here, we design an

algorithm with an approximation factor of

k

2 + (k − 2)ǫ

for the ǫ-dense case which also improves on the ℓ-wise ǫ-dense balanced case for

all ℓ ∈ [k−2] and matches their bound when ℓ = k−1. A further advantage of this

algorithm is that it applies to a larger class of hypergraphs since the considered

hypergraph is not necessarily required to be balanced.

As a byproduct, we obtain a constructive proof that a vertex cover of an ǫ-dense

k-partite k-uniform hypergraph H = (V1, .., Vk, E(H)) is bounded from below by

ǫ|Vk|, which is shown to be sharp by constructing a family of tight examples.

On the other hand, we provide inapproximability results for the Vertex Cover

problem restricted to ℓ-wise ǫ-dense balanced k-partite k-uniform hypergraphs un-

der the Unique Games Conjecture. We also prove that this reduction yields a
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matching lower bound if we use a conjecture on the Unique Games hardness of

the Vertex Cover problem restricted to balanced k-partite k-uniform hypergraphs.

This means that further restrictions such as ℓ-wise density cannot lead to improved

approximation ratios and our proposed approximation algorithm is best possible

assuming this conjecture. In addition, we are able to prove an inapproximability

factor under P 6= NP .

4 Approximation Algorithm

In this section, we give a polynomial time approximation algorithm with improved

approximation factor for the Vertex Cover problem restricted to ǫ-dense k-partite

k-uniform hypergraphs.

We state now our main result.

Theorem 1. There exists a polynomial time approximation algorithm with approxi-

mation ratio
k

2 + (k − 2)ǫ

for the Vertex Cover problem in ǫ-dense k-partite k-uniform hypergraphs.

A crucial ingredient of the proof of Theorem 1 is Lemma 1, in which we show

that we can extract efficiently a large part of an optimal vertex cover of a given

ǫ-dense k-partite k-uniform hypergraph H = (V1, .., Vk, E(H)). More precisely, we

obtain in this way a constructive proof that the size of a vertex cover of H is

bounded from below by ǫ|Vk|. The procedure for the extraction of a part of an

optimal vertex cover is given in Figure 1.

We now formulate Lemma 1:

Lemma 1. Let H = (V1, .., Vk, E(H)) be an ǫ-dense k-partite k-uniform hypergraph

with k ≥ 1. Then, the procedure Extract(·) computes in polynomial time a collection

R of subsets of V (H) such that the size of R is polynomial in |V (H)| and R contains

a set S, which is a subset of an optimal vertex cover of H and its cardinality is at least

ǫ|Vk|.

As a consequence, we obtain directly:

Corollary 1. Given an ǫ-dense k-partite k-uniform hypergraph H = (V1, .., Vk, E(H))
with k ≥ 1, the cardinality of an optimal vertex cover of H is bounded from below by

ǫ|Vk|.

Before we prove Lemma 1, we describe the main idea of the proof. Let OPT

denote an optimal vertex cover of H. The procedure Extract(·) tests for the set

R = {v1, .., vp} of the p heaviest vertices of Vk, if {v1, .., vu−1} ⊆ OPT and vu 6∈
OPT for every u ∈ [p]. Clearly, either R ⊆ OPT or there exists a vu such that

vu 6∈ OPT . If the procedure already possesses a part of OPT denoted by Ru, then,
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Procedure Extract(·)

Input: ǫ-dense k-partite k-uniform hypergraph H = (V1, .., Vk, E) with k ≥ 1

1. IF k = 1 THEN

(a) RETURN {
⋃

e∈E e}

2. ELSE:

(a) Let (v1, .., vp) be the vector consisting of the first p =
⌈

|E|
Q

l∈[k−1] |Vl|

⌉

heaviest vertices of Vk with dH(vi) ≥ dH(vi+1)

(b) R = {{v1, .., vp}}

(c) FOR i = 1, .., p DO:

i. Ri = {vk | k ∈ [i − 1]}

ii. Invoke Extract(H(vi)) with output O

iii. R = R ∪ {Ri ∪ S | S ∈ O}

3. RETURN R

Figure 1: Procedure Extract

Extract(·) tries to obtain a large part of an optimal vertex cover of the vu-induced

hypergraph H(vu). Hence, we have to show that H(vu) must still be dense enough.

We now give the proof of Lemma 1.

Proof. The proof of Lemma 1 will be split in several parts. In particular, we show

that given an ǫ-dense k-partite k-uniform hypergraph H = (V1, .., Vk, E(H)), the

procedure Extract(·) and its output R possess the following properties:

1. Extract(·) constructs R in polynomial time and the cardinality of R is O(nk).

2. There is a S ∈ R such that S is a subset of an optimal vertex cover of H.

3. For every S ∈ R, the cardinality of S is at least |S| ≥ ǫ|Vk|.

(1.) Clearly, R is upper bounded by |V1|
k = O(nk) and therefore, the running time

of Extract(·) is O(nk).
(2.) and (3.) We prove the remaining properties by induction. If we have k = 1,

the set
⋃

e∈E(H) e is by definition an optimal vertex cover of H = (V1, E(H)). Since

H is ǫ-dense, the cardinality of |E(H)| is lower bounded by ǫ|V1|.
We assume that k > 1. Let H = (V1, .., Vk, E(H)) be an ǫ-dense k-partite k-uniform

hypergraph and OPT ⊆ V (H) an optimal vertex cover of H. Let (v1, .., vp) be the

vector consisting of the first p =
⌈

|E(H)|
Q

l∈[k−1] |Vl|

⌉

heaviest vertices of Vk with dH(vi) ≥

dH(vi+1). If {v1, .., vp} is contained in OPT , we have constructed a subset of an
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optimal vertex cover with cardinality

p =











|E(H)|
∏

l∈[k−1]

|Vl|











≥

ǫ
∏

l∈[k]

|Vl|

∏

l∈[k−1]

|Vl|
≥ ǫ|Vk|.

Otherwise, there is an u ∈ [p] such that Ru ⊆ OPT and vu 6∈ OPT . But this

means that an optimal vertex cover of H contains an optimal vertex cover of the

vu-induced (k − 1)-partite (k − 1)-uniform hypergraph H(vu) in order to cover the

edges e ∈ {e ∈ E | vu ∈ e}. The situation is depicted in Figure 2.

vu

vu−1

v2

v1

Vk Vk−1 V2 V1

vu-induced Hypergraph H(vu)

Figure 2: The vu-induced (k − 1)-partite (k − 1)-uniform hypergraph H(vu)

By our induction hypothesis, Extract(H(vu)) contains a set Su which is a subset

of a minimum vertex cover of H(vu) and of OPT . The only claim, which remains

to be proven, is that the cardinality of Su is large enough. More precisely, we show

that |Su| can be lower bounded by ǫ|Vk| − |Ru|. Therefore, we need to analyze the

density of the vu-induced hypergraph H(vu). The edge set of H(vu) is given by

{e \ {vu} | vu ∈ e ∈ E}. Thus, we have to obtain a lower bound on the degree of

vu. Since |{e ∈ E | e ∩ Ru 6= ∅}| is upper bounded by |Ru|
∏

l∈[k−1] |Vl|, the vertices

in Vk \ Ru possess the average degree of at least
∑

v∈Vk\Ru

degH(v)

|Vk \ Ru|
≥

ǫ
∏

l∈[k]

|Vl| − |{e ∈ E | e ∩ Ru 6= ∅}|

|Vk \ Ru|
(1)

≥

ǫ
∏

l∈[k]

|Vl| − |Ru|
∏

l∈[k−1]

|Vl|

|Vk \ Ru|
(2)

≥

(ǫ|Vk| − |Ru|)
∏

l∈[k−1]

|Vl|

|Vk \ Ru|
(3)
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Since the heaviest vertex in Vk \ Ru must have a degree of at least
(ǫ|Vk|−|Ru|)

Q

l∈[k−1] |Vl|

|Vk\Ru|
, we deduce that the edge set of H(vu) denoted by Eu can be

lower bounded by

|Eu| ≥

(ǫ|Vk| − |Ru|)
∏

l∈[k−1]

|Vl|

|Vk \ Ru|

Let H(vu) be defined by (V u
1 , .., V u

k−1, Eu) with |V u
i | ≤ |Vi| for all i ∈ [k − 1]. By our

induction hypothesis, the size of every set contained in Extract(·) is at least

|Eu|
∏

l∈[k−1]

|V u
l |

|Vk−1| ≥

(ǫ|Vk| − |Ru|)
∏

l∈[k−1]

|Vl|

|Vk \ Ru|
∏

l∈[k−1]

|V u
l |

|Vk−1| (4)

≥

(ǫ|Vk| − |Ru|)
∏

l∈[k−1]

|Vl|

|Vk \ Ru|
∏

l∈[k−1]

|Vl|
|Vk−1| (5)

≥
(ǫ|Vk| − |Ru|)

|Vk \ Ru|
|Vk| (6)

≥
(ǫ|Vk| − |Ru|)

|Vk|
|Vk| = ǫ|Vk| − |Ru| (7)

In (4), we used the fact that |V u
i | ≤ |Vi| for all i ∈ [k − 1]. Whereas in (5), we

used our assumption |Vk| ≤ |Vk−1|. All in all, we obtain

|Ru ∪ Su| ≥ |Ru| + (|ǫ|Vk| − |Ru|) = ǫ|Vk|. (8)

Clearly, this argumentation on the size of Ru ∪ Su holds for every u ∈ [p] and the

proof of Lemma 1 follows.

Before we state our approximation algorithm and prove Theorem 1, we show

that the bound in Lemma 1 is tight. In particular, we define a family of ǫ-dense

k-partite k-uniform hypergraphs H(k, l, ǫ) = (V1, .., Vk, E(Hl)) with |Vi| = |V |
k

for

all i ∈ [k], k ≥ 1, ǫ ∈ {u
l
| u ∈ [l]} and l ≥ 1 such that Extract(·) returns a subset

of an optimal vertex cover with cardinality of exactly ǫ|Vk|.

Lemma 2. The bound of Lemma 1 is tight.

Proof. Let us define H(k, p, ǫ) = (V1, .., Vk, E). For a fixed p ≥ 1 and k ≥ 1,

every partition Vi with i ∈ [k] consists of a set of l vertices. Let us fix a ǫ = u
l

with u ∈ [l]. Then, H(k, l, ǫ) contains the set V u
k ⊆ Vk of u vertices such that

E = {{v1, v2, .., vk} | v1 ∈ V u
k , v2 ∈ V2, .., vk ∈ Vk}. An example of such a

hypergraph is depicted in Figure 3.

Notice that H(k, l, ǫ) = (V1, .., Vk, E) is ǫ-dense, since

|E|
∏

j∈[k]

|Vj|
=

|V u
k |

|Vk|
=

u

l
= ǫ.
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Vk Vk−1 V2 V1

V u
k

Figure 3: An example of a hypergraph H(k, l, ǫ)

The procedure Extract(·) returns a set R, in which V u
k is contained, since V u

k is the

set of the p heaviest vertices of Vk. Hence, we obtain |V u
k | =

|V u

k
|

|Vk|
|Vk| = ǫ|Vk|. On

the other hand, the remaining hypergraph H ′ = (V1, .., Vk \ V u
k , E(H ′)) with edge

set E(H ′) = {e ∈ E | e ∩ V u
k = ∅} is already covered, since E(H ′) is by definition

of H(k, p, ǫ) the empty set. Therefore, V u
k is a vertex cover of H(k, p, ǫ) and since,

according to Corollary 1, every vertex cover is bounded from below by ǫ|Vk|, V u
k

must be an optimal vertex cover.

Next, we state our approximation algorithm for the Vertex Cover problem in

ǫ-dense k-partite k-uniform hypergraphs defined in Figure 4. The approximation

algorithm combines the procedure Extract(·) to generate a large enough subset

of an optimal vertex cover together with the k
2
-approximation algorithm due to

Lovász [20] applied to the remaining instance.

Algorithm Approx(·)

Input: ǫ-dense k-partite k-uniform hypergraph H = (V1, .., Vk, E) with k ≥ 3

1. T = {Vk}

2. invoke procedure Extract(H) with output R

3. for all S ∈ R do :

(a) HS = (V (H) \ S, {e ∈ E(H) | e ∩ S = ∅})

(b) obtain a (k
2 )-approximate solution Sk for HS

(c) T = T ∪ {Sk ∪ S}

4. Return the smallest set in T

Figure 4: Algorithm Approx(·)
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We now prove Theorem 1.

Proof. Let H = (V1, .., Vk, E) be an ǫ-dense k-partite k-uniform hypergraph. From

Lemma 1, we know that the procedure Extract(·) returns in polynomial time a

collection C of subsets of V (H) such that there is a set S in C, which is contained

in an optimal vertex cover of H. Moreover, we know that the size of S is lower

bounded by ǫ|Vk|.
Next, we analyze the approximation ratio of our approximation algorithm

Approx(·). Clearly, the size of an optimal vertex cover of H is upper bounded by

|Vk|. Let us denote by OPT ′ the size of an optimal vertex cover of the remaining

hypergraph H ′ defined by removing all edges e of H with e ∩ S 6= ∅. Further-

more, let S ′ be the solution of the k
2
-approximation algorithm applied to H ′. The

approximation ratio of Approx(·) is bounded by

|S| + |S ′|

|S| + |OPT ′|
≤

|S| + k
2
|OPT ′|

|S| + |OPT ′|
≤

k
k|S|+k|OPT ′|

|S|+ k

2
|OPT ′|

(9)

≤
k

2|S|+(k−2)|S|+k|OPT ′|

|S|+ k

2
|OPT ′|

(10)

≤
k

2 + (k − 2) |S|

|S|+ k

2
|OPT ′|

(11)

≤
k

2 + (k − 2) |S|
|Vk|

(12)

≤
k

2 + (k − 2) ǫ|Vk|
|Vk|

(13)

≤
k

2 + (k − 2)ǫ
(14)

In (11), we used the fact that the size of the output of Approx(·) is upper bounded

by |Vk|. Therefore, we have |S|+ k
2
|OPT ′| ≤ |Vk|. In (12), we know from Lemma 1

that |S| ≥ ǫ|Vk|.

5 Inapproximability Results

In this section, we prove hardness results for the Vertex Cover problem restricted to

ℓ-wise ǫ-dense balanced k-uniform k-partite hypergraphs under the Unique Games

Conjecture [17] as well as under the assumption P 6= NP .

5.1 UGC-Hardness

The Unique Games-hardness result of [10] was obtained by applying the result of

Kumar et al. [19], with a modification to the LP integrality gap due to Ahorani et

al. [1]. More precisely, they proved the following inapproximability result:
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Theorem 2. [10] For every δ > 0 and k ≥ 3, there exist a nδ such that given H =
(V1, .., Vk, E(H)) as an instance of the Vertex Cover problem in balanced k-partite

k-uniform hypergraphs with |V (H)| ≥ nδ, the following is UGC-hard to decide:

• The size of a vertex cover of H is at least |V |
(

1
2(k−1)

− δ
)

.

• The size of an optimal vertex cover of H is at most |V |
(

1
k(k−1)

+ δ
)

.

As the starting point of our reduction, we use Theorem 2 and prove the follow-

ing:

Theorem 3. For every δ > 0, ǫ ∈ (0, 1), ℓ ∈ [k − 1], and k ≥ 3, there exists no

polynomial time approximation algorithm with an approximation ratio

k

2 + 2(k−1)(k−2)ǫ
k+(k−2)ǫ

− δ

for the Vertex Cover problem in ℓ-wise ǫ-dense k-partite k-uniform hypergraphs as-

suming the Unique Games Conjecture.

Proof. First, we concentrate on the ǫ-dense case and afterwards, we extend the

range of ℓ. As a starting point of the reduction, we use the k-partite k-uniform

hypergraph H = (V1, .., Vk, E(H)) from Theorem 2 and construct an ǫ-dense k-

partite k-uniform hypergraph H ′ = (V ′
1 , .., V

′
k , E

′).
Let us start with the description of H ′. First, we join the set Ci of ǫ

1−ǫ
n
k

vertices

to Vi for every i ∈ [k] and add all possible edges e of H ′ to E ′ with the restriction

C1 ∩ e 6= ∅. Thus, we obtain |V ′
i | = n

k
+ ǫ

1−ǫ
n
k

for all i ∈ [k].
Now, let us analyze how the size of the optimal solution of H ′ transforms. We

denote by OPT ′ an optimal vertex cover of H ′. The UGC-hard decision question

from Theorem 2 transforms into the following:

n

(

1

2(k − 1)
− δ

)

+
ǫ

1 − ǫ

n

k
≤ |OPT ′| or |OPT ′| ≤ n

(

1

k(k − 1)
+ δ

)

+
ǫ

1 − ǫ

n

k

Assuming the UGC, this implies the hardness of approximating the Vertex Cover

problem in ǫ-dense hypergraphs for every δ′ > 0 to within:

n
(

1
2(k−1)

− δ
)

+ ǫ
1−ǫ

n
k

n
(

1
k(k−1)

+ δ
)

+ ǫ
1−ǫ

n
k

=

1−ǫ
2(k−1)

− δ(1 − ǫ) + ǫ
k

1−ǫ
k(k−1)

+ δ(1 − ǫ) + ǫ
k

(15)

=

(1−ǫ)k
2(k−1)k

+ 2ǫ(k−1)
2k(k−1)

1−ǫ
(k−1)k

+ ǫ(k−1)
k(k−1)

− δ′ (16)
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(1−ǫ)k
2(k−1)k

+ 2ǫ(k−1)
2k(k−1)

1−ǫ
(k−1)k

+ ǫ(k−1)
k(k−1)

− δ′ =

k−ǫk+2ǫk−2ǫ
2(k−1)k

1−ǫ+ǫk−ǫ
(k−1)k

− δ′ (17)

=
k + (k − 2)ǫ

2(1 + (k − 2)ǫ)
− δ′ (18)

=
k

2k(1+(k−2)ǫ)
k+(k−2)ǫ

− δ′ (19)

=
k

2k+2(k−2)ǫ+(2k−2)(k−2)ǫ
k+(k−2)ǫ

− δ′ (20)

=
k

2 + (2k−2)(k−2)ǫ
k+(k−2)ǫ

− δ′ (21)

=
k

2 + 2(k−1)(k−2)ǫ
k+(k−2)ǫ

− δ′ (22)

Finally, we have to verify that the constructed hypergraph H ′ is indeed ǫ-dense.

Notice that H ′ can have at most (|V ′
1 |)

k = (n
k

+ ǫ
1−ǫ

n
k
)k edges. Therefore, we obtain

the following:

(

ǫ
1−ǫ

n
k

) (

n
k

+ ǫ
1−ǫ

n
k

)k−1

(

n
k

+ ǫ
1−ǫ

n
k

)k
=

n
k

ǫ
1−ǫ

n
k

(

1 + ǫ
1−ǫ

) =
ǫ

1−ǫ

1+ǫ−ǫ
1−ǫ

= ǫ

Notice that the constructed hypergraph is also ℓ-wise ǫ-dense balanced. Hence, we

obtain the same inapproximability factor in this case as well.

Next, we combine the former construction with a conjecture about Unique

Games hardness of the Vertex Cover problem in balanced k-partite k-uniform hy-

pergraphs. In particular, we postulate the following:

Conjecture 1. Given a balanced k-partite k-uniform hypergraph H =
(V1, .., Vk, E(H)) with k ≥ 3, let OPT denote an optimal vertex cover of H. For

every δ > 0, the following is UGC-hard to decide:

|V |

(

1

k
− δ

)

≤ |OPT | or |OPT | ≤ |V |

(

2

k2
+ δ

)

Combining Conjecture 1 with the construction in Theorem 3, it yields the fol-

lowing inapproximability result which matches precisely the approximation upper

bound achieved by our approximation algorithm described in Section 4:

Theorem 4. For every δ > 0, ǫ ∈ (0, 1), ℓ ∈ [k − 1], and k ≥ 3, there exists no

polynomial time approximation algorithm with an approximation ratio

k

2 + (k − 2)ǫ
− δ

11



for the Vertex Cover problem in ℓ-wise ǫ-dense k-partite k-uniform hypergraphs as-

suming Conjecture 1.

Proof. The UGC-hard decision question from Conjecture 1 transforms into the fol-

lowing:

n

(

1

k
− δ

)

+
ǫ

1 − ǫ

n

k
≤ |OPT ′| or |OPT ′| ≤ n

(

2

k2
+ δ

)

+
ǫ

1 − ǫ

n

k

Assuming the UGC, this implies the hardness of approximating the Vertex Cover

problem in ǫ-dense k-partite k-uniform hypergraphs for every δ′ > 0 to within:

n
(

1
k
− δ

)

+ ǫ
1−ǫ

n
k

n
(

2
k2 + δ

)

+ ǫ
1−ǫ

n
k

=
n

(

1
k
− δ

)

(1 − ǫ) + ǫn
k

n
(

2
k2 + δ

)

(1 − ǫ) + ǫn
k

(23)

=
n
k

n
(

2
k2

)

(1 − ǫ) + kǫn
k2

− δ′ (24)

=
k

2(1 − ǫ) + kǫ
− δ′ (25)

=
k

2 + (k − 2)ǫ
− δ′ (26)

5.2 NP-Hardness

Recently, Sachdeva and Saket proved in [21] a nearly optimal NP-hardness of the

Vertex Cover problem on balanced k-uniform k-partite hypergraphs. More pre-

cisely, they obtained the following inapproximability result:

Theorem 5. [21] Given a balanced k-partite k-uniform hypergraph H = (V, E) with

k ≥ 4, let OPT denote an optimal vertex cover of H. For every δ > 0, the following is

NP-hard to decide:

|V |

(

k

2(k + 1)(2(k + 1) + 1)
− δ

)

≤ |OPT |

or

|V |

(

1

k(2(k + 1) + 1)
+ δ

)

≥ |OPT |

Combining our reduction from Theorem 2 with Theorem 5, we prove the fol-

lowing inapproximability result under the assumption P 6= NP :

Theorem 6. For every δ > 0, ǫ ∈ (0, 1), ℓ ∈ [k−1], and k ≥ 4, there is no polynomial

time approximation algorithm with an approximation ratio

k2(1 − ǫ) + ǫ2(k + 1)(2(k + 1) + 1)

2(k + 1)[1 − ǫ + ǫ(2(k + 1) + 1)]
− δ

12



for the Vertex Cover problem in ℓ-wise ǫ-dense k-partite k-uniform hypergraphs as-

suming P 6= NP .

Proof. The NP-hard decision question from Theorem 5 transforms into the follow-

ing:

n

(

k

2(k + 1)(2(k + 1) + 1)
− δ

)

+
ǫ

1 − ǫ

n

k
≤ |OPT ′|

or

n

(

1

k(2(k + 1) + 1)
+ δ

)

+
ǫ

1 − ǫ

n

k
≥ |OPT ′|

Assuming NP 6= P , this implies the hardness of approximating the Vertex Cover

problem in ǫ-dense hypergraphs for every δ′ > 0 to within:

k(1−ǫ)
2(k+1)(2(k+1)+1)

+ ǫ
k

1−ǫ
k(2(k+1)+1)

+ ǫ
k

− δ′ =

k2(1−ǫ)+ǫ2(k+1)(2(k+1)+1)
k2(k+1)(2(k+1)+1)

1−ǫ+ǫ(2(k+1)+1)
k(2(k+1)+1)

− δ′ (27)

=
k2(1 − ǫ) + ǫ2(k + 1)(2(k + 1) + 1)

2(k + 1)[1 − ǫ + ǫ(2(k + 1) + 1)]
− δ′ (28)

6 Further Research

An interesting question remains about even tighter lower approximation bounds

for our problem, perhaps connecting it more closely to the integrality gap issue of

the LP of Lovász [20].
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