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Abstract

We study approximation complexity of the Vertex Cover problem restricted

to dense and subdense balanced k-partite k-uniform hypergraphs. The best

known approximation algorithm for the general k-partite case achieves an ap-

proximation ratio of k
2 which is the best possible assuming the Unique Game

Conjecture. In this paper, we present approximation algorithms for the dense

and the subdense nearly regular instances both with an approximation factor

strictly better than k
2 . On the other hand, we show that the latter approxima-

tion upper bound is almost tight under the Unique Games Conjecture.

1 Introduction

The Vertex Cover problem is one of the classical optimization problems proven
to be NP-hard in Karp [18]. Given graph G, it consists of finding a minimum
cardinality subset of vertices having a nonempty intersection with every edge of

G. The problem can be generalized to the minimum vertex cover problem on
k-uniform hypergraphs where a k-uniform hypergraph H is a pair (V (H), E(H))
with a set of vertices V (H) and a set of hyperedgesE(H) , in which each hyperedge

consists of a set containing exactly k vertices. In addition to it, H is called k-partite
if the vertex set V (H) can be partitioned into k nonempty pairwise disjoint sets

(V1, .., Vk) such that each of these sets contains exactly one vertex of each edge and

moreover, called balanced if the sizes of the sets Vi are all equal, i.e. |Vi| =
|V (H)|
k

for all i ∈ [k].
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The minimum vertex cover problem is k-approximable in k-uniform hy-
pergraphs. This approximation ratio is achieved by a simple approximation
algorithm which chooses a maximal set of nonintersecting edges, and then

outputs all vertices in them. Interestingly, the best known approximation ratio is
k − (k − 1) ln lnn/ lnn and is due to Halperin [12].

On the lower bound side, Trevisan [27] proved one of the first inapproxima-
bility results for the k-uniform vertex cover problem, namely a factor k1/19. After

an improvement of the inapproximability factor by Holmerin [12] to k1−ǫ, Dinur
et. al . [7, 8] gave consecutively two lower bounds, first (k − 3− ǫ) and later on
(k − 1− ǫ).

The Unique Games Conjecture (UGC) was introduced by Subhash Khot in
2002 [22]. The conjecture postulates the NP-hardness of determining the value

of a optimization problem known as the unique game.
Assuming the unique games conjecture, Khot and Regev [23] proved an in-

approximability factor of k − ǫ for the Vertex Cover problem on k-uniform hy-

pergraphs. Thus, it implies that the currently achieved ratios are the best possible.
Only recently, Bansal and Khot [3] showed under the UGC that the same inapprox-
imability factor of k − ǫ holds even for almost k-partite k-uniform hypergraphs.

While the Vertex Cover problem in graphs and hypergraphs is intractable in
general, it is well known that on bipartite graphs, it is solvable in polynomial time.

For the Vertex Cover problem on k-partite k-uniform hypergraphs, Lovász [25]
achieved a

(

k
2

)

-approximation by rounding its natural LP relaxation. In [1], a tight
integrality gap of k

2
−o(1) was given for the LP relaxation. On the inapproximability

side, Ilie, Solis-Oba, and Yu [15] as well as Gottlob and Senellart [10] constructed
reductions from 3SAT to it, which imply that the problem is APX-hard. Recently,
Guruswami and Saket [11] showed it is NP-hard to approximate the minimum

vertex cover problem on k-partite k-uniform hypergraphs to within a factor of
k
4
− ǫ for k ≥ 5, and within a factor of k

2
− ǫ assuming the unique games conjecture

for k ≥ 3.
In order to shed some additional light on lower bounds for general problems,

dense instances of many optimization problems has been studied [2, 20, 21, 19].

The vertex Cover problem restricted to dense graphs, where the number of edges
is within a constant factor of n2, was considered by Karpinski and Zelikovsky [21],

Eremeev [9], Clementi and Trevisan [6], and later by Imamura and Iwama [16].
The Vertex Cover problem restricted to ǫ-dense hypergraphs, i.e. hypergraphs

with ǫ
(

n
k

)

hyperedges, was introduced and studied by Bar-Yehuda and Kehat [4].

They provided an approximation algorithm with a better approximation ratio than
k. Based on Imamura and Iwama’s recursive sampling technique [16] for vertex
cover in dense graphs, an approximation algorithm with better approximation ra-

tio than k was proposed in [5] for the subdense case.
In this paper, we investigate the approximability of the VC problem restricted to

dense and subdense balanced k-partite k-uniform hypergraphs. To the best of our
knowledge, this is the only result tackling the dense and the subdense version of
this problem.
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1.1 Definitions

Let S be a finite set, we use the notation
(

S
k

)

= {S ′ ⊆ S | |S ′| = k} and [i] :=
{1, 2, . . . , i}. A k-uniform hypergraph H is a pair (V (H), E(H)) with a vertex set

V (H) and an edge set E(H) ⊆
(

V
k

)

. A k-uniform hypergraph (V,E) is called k-

partite if there exists vertex classes (V1, V2, . . . , Vk) such that V is a disjoint union
of V1, V2, . . . , Vk with |Vi∩e| = 1 for every e ∈ E and i ∈ [k]. Furhtermore, we call a

k-partite k-uniform hypergraph balanced if the vertex partition (V1, .., Vk) possesses

the property |Vi| =
|V |
k

for all i ∈ [k]. If the k-partition (V1, .., Vk) of a k-partite k-

uniform hypergraph H = (V (H), E(H)) is given as a part of the input, we use the
notation H = (V1, .., Vk, E(H)). We set n = |V (H)| and m = |E(H)| as usual. In

the remainder, we assume that k = O(1).
A vertex cover of a k-uniform hypergraph (V,E) is a subset C of V with the

property e ∩ C 6= ∅ for all e ∈ E. The Vertex Cover problem consists of finding a

vertex cover of minimum size in a given hypergraph.
For a vertex v ∈ V , we define the degree d(v) of v to be |{e ∈ E | v ∈ e}|.

For a subset S ⊆ V on the other hand, we define d(S) as |{e ∈ E | S ⊆ e}|. We

use the abbreviations d̄ and ∆ for the average degree and maximum degree of a
hypergraph, respectively.

We define a balanced k-partite k-uniform hypergraph H = (V (H), E(H)) as
ℓ-wise ǫ-dense for (ℓ+ 1) ∈ [k] and ǫ ∈ [0, 1] if there exists an I ∈

(

[k]
ℓ

)

such that

the condition d(S) ≥ ǫ
(

n
k

)k−ℓ
holds for all subsets S ⊆ V (H) with the restriction

|Vi ∩ S| = 1 and i ∈ I.
An extension of the ǫ-density is the ψ-density. In particular, a balanced k-partite

k-uniform hypergraph H = (V (H), E(H)) is called ψ(n)-dense if the maximum

degree ∆ and average degree d̄ are d̄ = Θ (∆) and ∆ = nk−1

ψ(n)
. Furthermore, a

ψ(n)-dense hypergraph is called subdense if ψ(n) = O (log(n)) holds.

1.2 Our Results

In this paper, we study the dense and the subdense vertex cover problem in

balanced k-partite k-uniform hypergraphs. We prove that a modified version
of the approximation algorithms given in [5] for the dense and the subdense
vertex cover problem in k-uniform hypergraphs yields improved approximation

upper bounds for the balanced k-partite case. On the other hand, we show that
the achieved approximation upper bound in the subdense case is almost tight
assuming the UGC.

In [5], an approximation algorithm for the vertex cover problem in ℓ-wise ǫ-
dense k-uniform hypergraphs was proposed with an approximation ratio of

k

k − (k − 1) (1− ǫ)1/(k−ℓ)
.

We improve this approximation ratio in two different ways: In the one hand, the

modifications of the algorithm result in an improved analysis and an approxima-
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tion factor of
k

k − (k − 2) (1− ǫ)1/(k−ℓ)
.

On the other hand, we obtain an improved value for the parameter ǫ, since we use
a different definition of ǫ-density in balanced k-partite k-uniform hypergraphs.

For the subdense version of the Vertex Cover problem in k-uniform hyper-
graphs, the randomized algorithm given in [5] yields an approximation factor

k
(

1 + (k − 1) d̄
k∆

) .

Our modified version achieves an improved approximation upper bound

k
(

2 + (k − 2) d̄
∆

)

on balanced k-partite k-uniform hypergraphs with ∆ = Ω
(

nk−1

logn

)

.

However, in Section 4, we prove that the approximation ratio of our algorithm

for the subdense case is almost optimal under the Unique Games Conjecture [23].

2 Vertex Cover in ǫ-Dense k-Partite Hypergraphs

In this section, we consider the Vertex Cover problem restricted to ℓ-wise ǫ-dense

balanced k-partite k-uniform hypergraphs. For this case, we present the following
result:

Theorem 1. The Vertex Cover problem can be approximated in polynomial time with

an approximation ratio

k

k − (k − 2) (1− ǫ)
1
k−ℓ

− o(1)

in ℓ-wise ǫ-dense k-partite k-uniform hypergraphs.

Firstly, we provide some lemmas needed to prove Theorem 1. Let us start with
a Lemma which is an extension of Lemma 1 in [5].

Lemma 1. Let H = (V1, . . . , Vk, E(H)) be a k-partite k-uniform hypergraph with a

minimum vertex cover C, and let W ⊆ V (H) such that |W ∩ C| ≥ δ|W | for some

constant δ ∈ [0, 1], and we can find a vertex cover R of H in polynomial time. Given

W , there is a polynomial time approximation algorithm with an approximation ratio

k

2 + (δk − 2) |W |
|R|

.
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Proof. Let H̃ be the hypergraph induced by the edges that are not covered by
W and C̃ an optimal vertex cover of H̃. Clearly, H̃ is a k-partite k-uniform
hypergraph. Therefore, we can apply the

(

k
2

)

-approximation algorithm due to

Lovász [25] in order to generate a vertex cover W̃ of H̃ with |W̃ |

|C̃|
≤ k

2
. Then,

our combined approach returns the solution S := argminS′∈{W∪W̃ ,R}{|S
′|}. Let us

analyze the approximation ratio ρ. For this purpose, we consider the worst case
solution S ′. By definition, we have |S ′| = ρ|C|. Therefore, we obtain ρ|C|

|R|
= |S′|

|R|
≤ 1

and conclude that

|S| = ρ|C| ≤ |W |+
k

2
|C ′| (1)

= |W |+
k

2
(|C| − δ|W |) (2)

=
k

2
|C| −

(

δ
k

2
− 1

)

|W | (3)

≤
k

2
|C| −

(

δ
k

2
− 1

)

|W |

|R|
ρ|C| (4)

⇒ ρ ≤
k

2
−

(

δ
k

2
− 1

)

|W |

|R|
ρ (5)

ρ ≤
k

2 + (δk − 2) |W |
|R|

. (6)

Since we can check in polynomial time for every fixed j ≥ 1, if there is a
p ∈ {k − 1, .., j}, i ∈ {1, .., k} and R ∈

(

Vi
|Vi|−p

)

such that R is a vertex cover of H,

we can assume that the returned solution is ≤
(

mini∈{1,..,k}{|Vi|}
)

− j ≤ n
k
− j. This

simple fact combined with the previous Lemma results in the following

Corollary 1. Let H = (V (H), E(H)) be a balanced k-partite k-uniform hypergraph

with a minimum vertex cover C. Given set W ⊆ V (H) such that |W ∩C| ≥ δ|W | for

some constant δ ∈ [0, 1] and every j ≥ 1, there is a polynomial time approximation

algorithm with an approximation ratio

k

2 + (δk − 2) |W |
(

n
k
− j
)−1 .

The following Lemma also plays a key role in our analysis.

Lemma 2. In a 0-wise ǫ-dense balanced k-partite k-uniform hypergraph

H, the first
(

1− (1− ǫ)
1
k

)

n highest-degree vertices all have degree at least
(

1− (1− ǫ)
k−1
k

)

(

n
k

)(k−1)
.
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Proof. Let us consider a hypergraph H with m ≥ ǫ
(

n
k

)k
hyperedges. We define

W as the set of the first
(

1− (1− ǫ)
1
k

)

n highest-degree vertices (breaking ties

arbitrarily). Our goal is to prove our statement by contradiction. For this purpose,
let us assume that the number m of edges in H is strictly smaller than the number

of edges in a hypergraph where all vertices of W have degree
(

n
k

)k−1
, and all the

remaining edges have degree
(

1− (1− ǫ)
k−1
k

)

(

n
k

)k−1
. Therefore, we obtain

m <
1

k

(

|W |
(n

k

)k−1

+ (n− |W |)
(

1− (1− ǫ)
k−1
k

)(n

k

)k−1
)

=
1

k

(

(

1− (1− ǫ)
1
k

)

n
(n

k

)k−1

+
(

n−
(

1− (1− ǫ)
1
k

)

n
)(

1− (1− ǫ)
k−1
k

)(n

k

)k−1
)

=
(

1− (1− ǫ)
1
k

)(n

k

)k

+ (1− ǫ)
1
k

(

1− (1− ǫ)
k−1
k

)(n

k

)k

= ǫ
(n

k

)k

Clearly, this contradicts the fact that H is ǫ-dense.

In order to prove Theorem 1, we first consider the case ℓ = 0. The recursive
algorithm depicted in figure 1 finds a large subset W of a minimum vertex cover.

More precisely, it returns a polynomial-sized collection W of subsets Wi ⊆ V , in
which at least one Wi is contained in a minimum vertex cover. Finally, we are able
to apply Lemma 1.

Next, we prove the following important Lemma:

Lemma 3. Given a 0-wise ǫ-dense k-partite k-uniform hypergraph G, we can find in

polynomial time a setW := {Wi}
s
i=1 of size s = O

(

nk
)

, with Wi ⊆ V , and such that

1. There exists i ∈ [s] such that Wi is a subset of a minimum vertex cover of G,

2. |Wi| ≥
(

1− (1− ǫ)
1
k

)

n
k
, ∀i ∈ [s].

Proof. Clearly, the algorithm depicted in figure 1 returns a setW of size O
(

nk
)

in
polynomial time since we assumed k to be O (1).

The first condition will be verified by induction:
If there exists a minimum vertex cover in which all vertices of H are contained,
we are done. Otherwise, we obtain a vertex v ∈ H that does not belong to any

minimum vertex cover. Therefore, a minimum vertex cover of H must contain a
minimum vertex cover of the (k − 1)-partite (k − 1)-uniform hypergraph H ′ since

otherwise some of the edges will not be covered. By induction, the recursive call
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Input: a 0-wise ǫ-dense balanced k-partite k-uniform hypergraph
H = (V1, .., Vk, E(H))

1. if k = 1 then

(a) return a minimum vertex cover of H, of size |E(H)| ≥ ǫn

2. else:

(a) let H be the set of the first
(

1− (1− ǫ)
1
k

)

n highest-degree vertices

(breaking ties arbitrarily)

(b) add H toW

(c) for each v ∈ H:

i. let H ′ be the (k − 1)-partite (k − 1)-uniform hypergraph

(V − Vb, {e− {v} : e ∈ E, v ∈ e}), where v ∈ Vb.

ii. let ǫ′ := 1− (1− ǫ)
k
k+1

iii. call the procedure recursively, with the parameters H ′, ǫ′, k − 1; let
W ′ be its output

iv. add the sets ofW ′ toW

(d) returnW

Figure 1: Recursive algorithm for the Vertex Cover problem in 0-wise ǫ-dense k-

partite k-uniform hypergraphs

returns one subset contained in a minimum vertex cover of H ′, hence also in a
minimum vertex cover of H. The base case k = 1 is trivial.

We now prove the second property. This will be done by induction as well. For
a fixed value of k, suppose that

|Wi| ≥
(

1− (1− ǫ)
1
k

) n

k
, ∀i ∈ [s]

holds for all balanced k-partite k-uniform hypergraphs. We now prove this prop-
erty for k + 1. From Lemma 2, the recursive calls are performed on ǫ′-dense hy-
pergraphs with at least n − n

k+1
vertices. Thus, by the induction hypothesis, the

recursive call returns a collection of sets Wi of size

|Wi| ≥
(

1− (1− ǫ′)
1
k

)

(

n− n
k+1

k

)

=

(

1−
(

1−
(

1− (1− ǫ)
k
k+1

))
1
k

)

(

n k
k+1

k

)

≥
(

1− (1− ǫ)
1
k+1

) n

k + 1
,

as claimed. The base case k = 1 is verified, as in that case the procedure yields at

least ǫn vertices.
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Let us now consider the case ℓ > 0. By definition, we study hypergraphs in

which every subset of ℓ vertices is contained in ǫ
(

n
k

)k−ℓ
hyperedges. We prove a

similar statement for ℓ-wise ǫ-dense balanced k-partite k-uniform hypergraphs.

Lemma 4. Given a ℓ-wise ǫ-dense balanced k-partite k-uniform hypergraph G, we

can find in polynomial time a set W := {Wi}
s
i=1 of size s = O

(

nk
)

, with Wi ⊆ V ,

and such that

1. There exists i ∈ [s] such that Wi is a subset of a minimum vertex cover of G,

2. |Wi| ≥
(

1− (1− ǫ)
1
k−ℓ

)

n
k
∀i ∈ [s].

Proof. Let H = (V1, .., Vk, E(H)) be the considered hypergraph and S a subset of ℓ
vertices that do not belong to a given minimum vertex cover C of H. Let us denote
by H ′ the subhypergraph of H whose vertex set is V (H ′) := V (H) \

⋃

i∈S Vi, and

whose hyperedges are the hyperedges of H containing S, restricted to V (H) \
⋃

i∈S Vi. By definition, S is not contained in C and therefore, C must contain a

vertex cover of H ′. Clearly, an ℓ-wise ǫ-dense hypergraph has at least ǫ
(

n
k

)k−ℓ

edges. We conclude that H ′ is a 0-wise ǫ-dense balanced (k − ℓ)-partite (k − ℓ)-
uniform hypergraph with at least n − ℓ · n

k
vertices. We know from Lemma 3 that

we can extract O
(

nk−ℓ
)

candidates Wi, which are subsets of V (H ′) of size at least
(

1− (1− ǫ)
1
k−ℓ

)

k−ℓ
k(k−ℓ)

n. One of them at least is contained in a minimum vertex

cover of H ′, and therefore, in a minimum vertex cover of H. By enumerating all
O
(

nℓ
)

possibilities for S, we obtain the result in time O
(

nk
)

.

Now, we are ready to prove Theorem 1. By testing all possible sets Wi ∈ W
and choosing the one that yields the smallest cover, we obtain from Lemma 1
by setting δ = 1 a polynomial-time approximation algorithm with approximation

ratio at most

k

2 + (k − 2) |W |
(

n
k
− j
)−1 =

k

2 + (k − 2)
(

1− (1− ǫ)
1
k−ℓ

) − o(1)

=
k

k − (k − 2) (1− ǫ)
1
k−ℓ

− o(1)

in ℓ-wise ǫ-dense k-partite k-uniform hypergraphs.

3 Vertex Cover in Subdense k-Partite Hypergraphs

In this section, we study the Vertex Cover problem restricted to balanced k-partite
k-uniform hypergraphs with d̄

∆
= Θ (1). For this case, we will explore how low

the density condition can be relaxed while still achieving an approximation factor
better than k/2. We propose a randomized approximation algorithm to tackle this
case. In particular, we will prove the following result:
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Theorem 2. For every ǫ > 0 and k = O (1), there is a randomized approximation al-

gorithm which computes with high probability a solution for the Vertex Cover problem

in balanced k-partite k-uniform hypergraphs with approximation ratio

k

2 + (k − 2) d̄
∆

+ ǫ,

where d̄ and ∆ = nk−1

ψ(n)
denotes the average and maximum degree of the hypergraph,

respectively. The running time is nO(1)2O(ψ(n)).

3.1 Overview of the algorithm

The algorithm iteratively collects disjoint sets V ′ of vertices from a hypergraph
H. It removes the actual considered set V ′ and proceeds to collect vertices in the
remaining graph H [V (H) − V ′], until a sufficiently small set of vertices remain.

Finally, it applies the
(

k
2

)

-approximation algorithm on the residual instance. The
next subsection deals with an efficient sample algorithm, which performs the

extraction of the vertex set W. It will be a randomized version of the algorithm
introduced in section 2. The union of the collected sets will define the set
W allowing us to use Lemma 1. We aim at extracting such a set W of size

approximately β n
k
, with β := d̄

∆
.

Firstly, we introduce some notation which will be used. Let Hi = (V i, Ei) be
the hypergraph considered at the ith step, by ni we denote its number of vertices,

by ǫi := |Ei|

(nik )
k its density (in the ℓ = 0 sense), by V i

j the j-th partition of the vertex

set V i and by d̄i := |Ei|k
ni

its average degree. We also define ψ(n) :=
(nk )

(k−1)

∆
. Let

si := ni
k
− (1− β) n

k
. Note that si = 0 ⇒ ni

k
= (1− β) n

k
⇒ n−ni

k
= β n

k
. Since

n−ni
k

is the size of the extracted set W , si can serve as a measure of progress of

the procedure. At every step, we remove c2n
kψ(n)

vertices, until si ≤ cn
k

, for a small

constant c ∈ (0, 1]. Thus, at the end of the procedure, we will have

si ≤ c
n

k
⇒ |W | ≥ (β − c)

n

k

In the remainder of this subsection, we show that we can always find a set of
this size contained in a minimum vertex cover. From Lemma 3, we know that we
can extract in every iteration i a set of size at least ri, where

ri :=
(

1− (1− ǫi)
1
k

) ni
k
.

We assume that we can efficiently guess this subset, and prove that it is large
enough.

Lemma 5. Provided si ≥ cn
k
, the following inequality holds:

ri ≥ c2
n

kψ(n)
. (7)
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In order to prove the previous Lemma, we need the fact that |Ei| ≥ ∆sik for all
i ≥ 1 (+) and

1− (1− ǫ)
1
k ≥

ǫ

k
for all ǫ ∈ [0, 1] and k ≥ 1. (∗)

The proofs of the two facts can be found in [5].

Proof of Lemma 5. Combining the two previous facts, we obtain:

ri
si
≥

ǫi · ni
k · si · k

from (∗) (8)

=
|Ei| · ni

k2si
(

ni
k

)k
(9)

≥
∆sik · ni

k2si
(

ni
k

)k
from (+) (10)

=
c∆

(

ni
k

)k−1
≥

c∆
(

n
k

)k−1
=

c

ψ(n)
(11)

⇒ ri ≥
c · si
ψ(n)

≥ c2
n

kψ(n)
. (12)

At this point, we know that we can extract c2 n
kψ(n)

vertices at each step. Hence,

the number t of required steps is

t :=
(β − c) n

k

c2 n
kψ(n)

=
ψ(n)

c

(

β

c
− 1

)

. (13)

3.2 The recursive sampling procedure

In this subsection, we formulate a recursive sampling procedure called IR that
guesses in every iteration i a small collection of candidate sets. The procedure
IR is a sampling version of the procedure given in the previous section and forms

the inner recursion of the whole algorithm. The outer recursion defined by the
procedure ER iterates this extraction until si ≤ cn

k
. More precisely, it will perform

exactly t external iterations. Initially, ER is called with i = 0, t = ψ(n)
c

(

β
c
− 1
)

and

also uses a variable l, which sets the size of the sample.

We will fix a constant p ∈ (0, 1), and define the sample size l as

l :=









log
(

1− p
1
k

)

log p









.

With this value of l, the procedure IR has the following property:
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Input: a balanced k-partite k-uniform hypergraph H = (V1, .., Vk, E(H)) and
l ∈ N

1. W ← ∅

2. if k = 1 then

(a) return {C}, where C is set of c2n
kψ(n)

arbitrary vertices of V (H)

3. else:

(a) let C be the set of the first c2n
kψ(n)

highest-degree vertices (breaking

ties arbitrarily)

(b) add C toW

(c) let C ′ ⊆ C be a random subset of l vertices

(d) for each v ∈ C ′:

i. let H ′ be the (k − 1)-partite (k − 1)-uniform hypergraph

(V (H) \ Vb, {e \ {v} : e ∈ E(H), v ∈ e}), where v ∈ Vb
ii. call the procedure recursively with the parameters k−1, H ′, l;

letW ′ be its output

iii. add the sets ofW ′ toW

(e) returnW

Figure 2: Procedure IR(H, l) (Inner Recursion)

Lemma 6. Let C be an arbitrary vertex cover of the input hypergraph, the set W
returned by the procedure IR contains a subset W ′ such that |W ′ ∩ C| ≥ p|W ′| with

probability at least p.

Proof. Let B be the set with the first c2n
kψ(n)

highest-degree vertices. If |B∩C| ≥ p|B|

holds, the statement is true. For the remainder we will assume that |B∩C| < p|B|.
In this case, the probability that a random vertex of H belongs to C is at most p.
Consequently, the probability of sampling a vertex v 6∈ C is at least 1−pl. But then,
C must contain a vertex cover of the hypergraph H ′ induced by v. By iterating the

described process, we conclude that the probability is at least
(

1− pl
)k

, which
from the definition of l is ≥ p .

The procedure ER performs a recursive exploration of a search tree, branching

on every subset W ′ in the set of candidates W. A root-to-leaf path in this tree
yields a set W , defined as the union of all the candidates W ′ selected along the
path. We now prove that with high probability, this search tree contains a path

yielding a suitable set W .

Lemma 7. For any δ > 0, the procedure ER returns a set W of (β − c) n
k

vertices,

11



Input: a balanced k-partite k-uniform hypergraph H with i ∈ [t] and l ∈ N

1. W ← ∅

2. if i < t then:

(a) W ← IR(H, l)

(b) return min{W ′ ∪ ER(H [V (H) \W ′], i+ 1) |W ′ ∈ W}

3. else (i = t)

(a) apply a
(

k
2

)

-approximation algorithm to H and let C be the re-
sulting vertex cover

(b) return C

Figure 3: Algorithm ER(H, i, t) (Outer Recursion)

such that |W ∩ C| ≥ (1− δ) p2|W |, with probability at least

1− e−
ψ(n)
c (βc−1)p δ

2

2 .

Proof. Let Xi be a 0/1 random variable, which denotes the success in the ith step.
We set p(Xi = 1) = p and p(Xi = 0) = 1− p. Furthermore, we introduce another
random variable X =

∑

i∈[t]Xi. Now, we want to lower bound the expectation of

X and we obtain:

E[X] ≥ tp =
ψ(n)

c

(

β

c
− 1

)

p.

We know that exactly c2n
kψ(n)

vertices are chosen at every step. Therefore, the ex-

pected number of vertices of W that are contained in C is

E[X]pc2
n

kψ(n)
≥

(

β

c
− 1

)

p2c
n

k
(14)

= (β − c) p2n

k
. (15)

The claimed result is obtained by using Chernoff bounds.

3.3 The approximation ratio

Let us analyze the achieved approximation ratio and establish the proof of Theo-

rem 2 which follows directly from the previous lemmas.

Proof of Theorem 2. Firstly, we describe how to initialize the procedure ER to ob-
tain the specified approximation upper bound:
Select a constant c ∈ (0, 1), which can be arbitrarily small. Then, choose a

p ∈ (0, 1), that can be arbitrarily close to 1. Compute the predefined value of

12



the sample size l and the number of steps t. Finally, run the procedure ER with
these parameters.

We know from Lemmas 7 and 1 that with probability at least 1−e−
ψ(n)
c (βc−1)p δ

2

2 the
procedure ER achieves an approximation ratio

k

2 + ((1− δ) p2k − 2) (β − c)
.

Clearly, the approximation ratio is arbitrarily close to k
(2+(k−2)β)

if we let c→ 0 and
p→ 1.

Now, let us analyze the running time of procedure ER:
The procedureER generates a search tree of height t and fan-out less than (l + 1)k.
The procedure IR needs O

(

nO(1)
)

+O
(

lk
)

time at every node of the tree. Hence,

the overall running time of the algorithm is O
(

nO(1) · lkt
)

. For the remainder of
the consideration, we assume β = Θ (1) since it is the only way to obtain a better

approximation ratio better than k
2
. Then, we obtain kt = kψ(n)

c

(

β
c
− 1
)

= Θ (ψ(n))

and l = Θ (log k) = Θ (1). Hence, the running time is nO(1)2O(ψ(n)), as claimed.

4 Inapproximability Result

In this section, we prove that achieved approximation upper bound of the former
section is almost optimal in a specified range of ∆ assuming the Unique Games
Conjecture [22].

For this reason, we start with a reformulation of a theorem given in [11] and
deals with the approximability of balanced k-partite k-uniform hypergraphs as-
suming the UGC.

Theorem 3. [11] Given a balanced k-partite k-uniform hypergraph H = (V,E), let

OPT denote an optimal vertex cover of H. For every δ > 0, the following is UGC-hard

to decide:

|V |

(

1

2 (k − 1)
− δ

)

≤ |OPT | or |OPT | ≤ |V |

(

1

k (k − 1)
+ δ

)

As the starting point of our reduction, we will use Theorem 3 and prove the

following inapproximability result:

Theorem 4. Assuming the UGC, for every c ∈ N, there no polynomial time approxi-

mation algorithm with an approximation ratio better than

k

2 +
2(k−1)(k−2) d̄

∆

k+(k−2) d̄
∆

by a constant for the Vertex Cover problem in balanced k-partite k-uniform hyper-

graphs with average degree d̄, maximum degree ∆ = Ω
(

n
k−1
c

)

and ∆ = o(nk−1).

13



Proof. We use a construction similar to that in Theorem 6 in [5]. In the remainder,
we set ǫ = d̄

∆
. We consider the graph H = (V (H), E(H)) from Theorem 3 with

vertex partition (V1, .., Vk). Then, we construct a new hypergraph H ′ = (V ′, E ′),

which consists of
(

1− d̄
∆

)

n disjoint copies of H and of n d̄
∆

disjoint complete bal-

anced k-partite k-uniform hypergraphs Cj of size n (k-partite cliques). Clearly, we
have n′ := |V ′| = n2. Let Vi(Cj) be the i-th vertex partition of the j-th k-partite

clique Cj and Vi(Hj) be the i-th vertex partition of the j-th copy of H. By defining
V ′
i :=

⋃

j Vi(Cj) ∪ Vi(Hj) as the i-th partition of H ′, we obtain a balanced k-partite
hypergraph. Furthermore, we join an edge e to E ′ only if e has an nonempty in-

tersection with the first partition of a clique, i.e. e ∩
[

⋃

j V1(Cj)
]

6= ∅. By adding

as many hyperedges as needed, we can make H ′ to have asymptotically the av-

erage degree d̄ = ω(n′k−1
2 ) and maximum degree ∆ = ω(n′k−1

2 ). Notice that the

maximal degree which can be obtained in this way is o(n2(k−1)). We see that a
vertex cover of H ′ must include at least n

k
vertices of each clique. Let us now con-

sider the two cases in the decision problem above. If a vertex cover of H requires

n
(

1
2(k−1)

− δ
)

vertices, we will need
(

1− d̄
∆

)

n · n
(

1
2(k−1)

− δ
)

+
(

n
k

)

· n d̄
∆

vertices

to obtain a vertex cover for each copy of H and for each clique Cj . In the other

case,
(

1− d̄
∆

)

n2
(

1
k(k−1)

+ δ
)

+
(

n
k

)

n d̄
∆

vertices will suffice to cover H ′. By denot-

ing OPT ′ as an optimal vertex cover of H ′, the UGC-hard decision question from

Theorem 3 becomes the following:

(

1−
d̄

∆

)

n2

(

1

2 (k − 1)
− δ

)

+
n2 d̄

∆

k
≤ |OPT ′|

or
(

1−
d̄

∆

)

n2

(

1

k (k − 1)
+ δ

)

+
n2 d̄

∆

k
≥ |OPT ′|

Hence, assuming the UGC, the above decision problem results in the hardness of

approximating within a factor of:

(

1− d̄
∆

)

n2
(

1
2(k−1)

− δ
)

+
n2 d̄

∆

k
(

1− d̄
∆

)

n2
(

1
k(k−1)

+ δ
)

+
n2 d̄

∆

k

=

1− d̄
∆

2(k−1)
− δ

(

1− d̄
∆

)

+
d̄
∆

k

1− d̄
∆

k(k−1)
+ δ

(

1− d̄
∆

)

+
d̄
∆

k

=

(1− d̄
∆)k

2(k−1)k
+

2 d̄
∆

(k−1)

2k(k−1)

1− d̄
∆

(k−1)k
+

d̄
∆

(k−1)

k(k−1)

− δ′

=

k− d̄
∆
k+2 d̄

∆
k−2 d̄

∆

2(k−1)k

1− d̄
∆

+ d̄
∆
k− d̄

∆

(k−1)k

− δ′

14



k− d̄
∆
k+2 d̄

∆
k−2 d̄

∆

2(k−1)k

1− d̄
∆

+ d̄
∆
k− d̄

∆

(k−1)k

− δ′ =
k + (k − 2) d̄

∆

2
(

1 + (k − 2) d̄
∆

) − δ′

=
k

2k(1+(k−2) d̄
∆)

k+(k−2) d̄
∆

− δ′

=
k

2k+2(k−2) d̄
∆

+(2k−2)(k−2) d̄
∆

k+(k−2) d̄
∆

− δ′

=
k

2 +
(2k−2)(k−2) d̄

∆

k+(k−2) d̄
∆

− δ′

=
k

2 +
2(k−1)(k−2) d̄

∆

k+(k−2) d̄
∆

− δ′

If we use O (nc) copies of H with c = O (1) in the construction of H ′, we can lower
the maximum degree of the resulting hypergraph H ′ and the result follows.
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