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Abstract. First, we study geometric variants of the standard set cover
motivated by assignment of directional antenna and shipping with dead-
lines, providing the first known polynomial-time exact solutions.
Next, we consider the following general (non-necessarily geometric) ca-
pacitated set cover problem. There is given a set of elements with real
weights and a family of sets of the elements. One can use a set if it is a
subset of one of the sets in the family and the sum of the weights of its
elements is at most one. The goal is to cover all the elements with the
allowed sets.
We show that any polynomial-time algorithm that approximates the un-
capacitated version of the set cover problem with ratio r can be con-
verted to an approximation algorithm for the capacitated version with
ratio r + 1.357.
The composition of these two results yields a polynomial-time approxi-
mation algorithm for the problem of covering a set of customers repre-
sented by a weighted n-point set with a minimum number of antennas
of variable angular range and fixed capacity with ratio 2.357.
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1 Introduction

In this paper, we study special geometric set cover problems and capaci-
tated set cover problems.

In particular, the shapes of geometric sets we consider correspond to
those of potential directional antenna ranges. Several geometric covering
problems where a planar point set is to be covered with a minimum
number of objects of a given shape have been studied in the literature,
e.g., in [5, 6, 9, 12].

On the other hand, a capacitated set cover problem can be seen as a
generalization of the classical bin packing problem (e.g., see [7]) to include
several types of bins. Thus, we are given a set of elements {1, . . . , n}, each
with a demand di, a set of subsets of {1, . . . , n} (equivalently, types of
bins), and an upper bound d on set capacity. The objective is to partition
the elements into a minimum number of copies of the subsets (bins) so
the total demand of elements assigned to each set copy does not exceed
d.

Capacitated set cover problems are useful abstraction in studying
the problems of minimizing the number of directional antennas. The use
of directional antennas in cellular and wireless communication networks
steadily grows [2, 17, 19, 18]. Although such antennas can only transmit
along a narrow beam in a particular direction they have a number of
advantages over the standard ones. Thus, they allow for an additional
independent communication between the nodes in parallel [18], they also
attain higher throughput, lower interference, and better energy-efficiency
[2, 17, 19].

Fig. 1. The sectors correspond to the reaches of directional antennas.

We consider the following problem of optimal placement of directional
antennas in wireless networks.

There is a base station coupled with a network infrastructure. The
station transfers information to and from a number of customers within



the range of directional antennas placed at this station. Each customer has
fixed position and demand on the transmission capacity. The demands are
unsplittable, thus a customer can be assigned only to a single antenna.
One can choose the orientation and the angular range of an antenna.
When the angular range is narrower an antenna can reach further so the
area covered by any antenna is always the same. There is a common limit
on the total bandwidth demand that can be assigned to an antenna. The
objective is to minimize the number of antennas.

Berman et al. [3] termed this problem as MinAntVar and provided
an approximation polynomial-time algorithm with ratio 3. They also ob-
served in [3] that even when the angular range of antennas is fixed, Mi-

nAntVar cannot be approximated in polynomial time with ratio smaller
than 1.5 by a straightforward reduction from Partition (see [11]).

We provide a substantially better polynomial-time approximation al-
gorithm for MinAntVar achieving the ratio of 2.357. Our algorithm is
based on two new results which are of independent interest in their own
rights.

The first of these results states that a cover of the set of customers
with the minimum number of antennas without the demand constraint
can be found in polynomial time. Previously, only a polynomial-time ap-
proximation with ratio 2 as well as an integrality gap with set cover ILP
were established for this problem in [3].

The second result shows that generally, given an approximate solution
with ratio r to an instance of (uncapacitated) set cover, one can find a
solution to a corresponding instance of the capacitated set cover, where
each set has the same capacity, within r + 1.357 of the optimum. This
result is especially useful when applied to variants of set cover whose un-
capacitated versions admit close approximations or even exact algorithms
running in polynomial time, e.g., variants of geometric set cover [5, 6, 9,
12] or in particular MinAntVar.

Berman et al. considered also the following related problem which they
termed as BinSchedule [3]. There is a number of items to be delivered.
The i-th item has a weight di, arrival time ti and patience pi, which means
that it has to be shipped at latest by ti + pi. Given a capacity of a single
shipment, the objective is minimize the number of shipments.

Similarly as Berman et al. could adopt their approximation for Mi-

nAntVar to obtain an approximation with ratio 3 for BinSchedule [3],
we can adopt our approximation for MinAntVar to obtain a polynomial-
time approximation algorithm with ratio 2.357 for BinSchedule.
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Fig. 2. The X coordinate of an item i encodes ti and the Y coordinate encodes pi.
Shipment has capacity 10. The numbers indicate the weights. Items which are to be
shipped together must be enclosed by an angle.

Our third main result is a PTAS for a dual problem to capacitated
set cover where the number of sets (e.g., antennas) to use is fixed and the
task is to minimize the maximum set load, in case the sets correspond
to line intervals or arcs. In the application to directional antennas, the
aforementioned correspondence comes from fixing the radius and hence
also the angular range of the antennas and the problem has been termed
as MinAntLoad in [3]. The task is to minimize the maximum load of
an antenna. In [3], there has been solely presented a polynomial-time
approximation with ratio 1.5 for MinAntLoad.

Marginally, we also discuss the approximability of the generalization
of MinAntVar to include several bas stations for antennas, and in par-
ticular show its APX-hardness already in the uncapacitated case.

Organization: In Section 2 we present problem definitions and nota-
tions. In Section 3, we derive our polynomial-time dynamic programming
method for the uncapacitated variant of MinAntVar. In Section 4, we
show our general method of the approximate reduction of the capacitated
vertex cover to the corresponding uncapacitated one. By combing it with
the method of Section 3, we obtain the 2.357 approximation for MinAnt-

Var. Next, in Section 5, we present the PTAS for MinAntLoad, or more
generally, for minimizing the maximum load in capacitated set cover of
bounded cardinality, in case the sets correspond to intervals or arcs. In
the final section, we briefly discuss the approximability of the multi base-
station generalization of MinAntVar.

2 Preliminaries

This section presents terminology and notation used throughout this pa-
per.

We use U to denote {1, 2, . . . , n}. If xi ∈ R are defined for i ∈ U (e.g.,
di) and A ⊂ U then x(A) =

∑
i∈A xi (e.g.,d(A)

∑
i∈A di).



An instance of the set cover problem is given by a family S of subsets
of U = {1, . . . , n}. A cover is C ⊂ S such that

⋃
A∈C A = U . The objective

is to minimize |C|. An instance of capacitated set cover also specifies di

for i ∈ U . A capacitated cover is a family of sets C satisfying (i) for
each A ∈ C there exists B ∈ S s.t. A ⊂ B, while d(A) ≤ 1, and (ii)⋃

A∈C A = U . Again, the objective is to minimize |C|.

For each j ∈ U , we denote its radial coordinates by (rj , θj), where rj

stands for the radius and θj for the angle. We define an angle sector with
radius bound δ as

R(r, α, δ) = {j ∈ U : rj ≤ r and θj = α + β with 0 ≤ β ≤ δ}.

In MinAntVar as well as in its uncapacitated variant, U is the set
of customers with radial coordinates defined in respect to the position of
the base station. This is a variant of capacitated (or uncapacitated) set
cover where S consists of sets of customers that can be within range of
a single antenna, i.e. of the form R(r, α, ρ(r)), where ρ(r) is the angular
width of an antenna with radial reach r.

The trade-off function ρ is decreasing; to simplify the proofs, we as-
sume that ρ(r) = 1/r. We can change the r-coordinates to obtain exactly
the same family of antenna sets as for arbitrary ρ.

3 Uncapacitated Cover by Antenna Sets

To simplify proofs, we will ignore the fact that the radial coordinate
has a “wrap-around”. We also renumber the customers so θi < θi+1 for
1 ≤ i < n. Observe that if θi = θj and ri ≥ rj then every antenna set
that contains i also contains j, so we can remove j from the input.

It suffices to consider only n(n + 1)/2 different antenna sets. For such
an antenna set A, let i = min A, j = maxA. If i = j, we denote A
as A[i, i] = {i}, and if i < j, we set r(i, j) = (θj − θi)

−1 and define
A[i, j] = R(r(i, j), θi, 1/r(i, j)). (This definition is more complicated when
the “wrap-around” is allowed.) Because A ⊆ A[i, j] we can use A[i, j] in
our set cover instead of A.

We say that points i and j are compatible, denoted i♥j, if i ≤ j
and there exists an antenna set that contains {i, j}. If i = j then i♥j is
obvious; if i < j then i♥j is equivalent to {i, j} ⊆ A[i, j] which in turn
is equivalent to ri, rj ≤ r(i, j). If i♥j, we set S[i, j] = {k : i ≤ k ≤
j} \ A[i, j].

We solve our minimum cover problem by dynamic programming. Our
recursive subproblem is specified by a compatible pair i, j and its objective



is to compute the size C[i, j] of minimum cover of S[i, j] with antenna sets.
If we modify the input by adding the points 0 and n+1 with coordinates
(ε, θ1 − 1) and (ε, θn +1) then our original problem reduces to computing
C[0, n + 1].

If S[i, j] = ∅ then C[i, j] = 0. Otherwise, S[i, j] = {a0, . . . , am−1},
where ak < ak+1 for k = 0, . . . ,m − 2.

We define a weighted graph Gi,j = (Vi,j , Ei,j, c), where Vi,j = {0, . . . ,m},
(k, ℓ + 1) ∈ Ei,j iff ak♥aℓ and for an edge (k, ℓ + 1), we define the cost
c(k, ℓ + 1) = 1 + C[ak, aℓ].

Note that Gi,j is acyclic. Therefore, we can find a shortest (i.e., of
minimum total cost) path from 0 to m in time O(|Ei,j |) = O(n2) [8]. Let
d be the length of this path. We will argue that C[i, j] = d.

First, we show a cover of S[i, j] with d antenna sets. A path from 0
to m in Gi,j is an increasing sequence, and a path edge (u, v) with cost c
corresponds to a cover of {au, au+1, . . . , av−1} with A[au, av−1] and c − 1
antenna sets that cover S[au, av−1].

Conversely, given a cover C of S[i, j], we can obtain a path with cost
|C| in Gi,j that connects 0 with m.

For A[k, ℓ] ∈ C, we say that ℓ − k is its width. To make a conversion
from a cover C of S[i, j] to a path in Gi,j, we request that C has the
minimum sum of widths among the minimum covers of S[i, j].

This property of C implies that if A[k, ℓ] ∈ C then:

k, ℓ ∈ S[i, j],
k and ℓ are not covered by C−{A[k, ℓ]} (otherwise we eliminate A[k, ℓ]
from C or replace it with a set that has a smaller width).

Note that for each pair of sets A[k, ℓ], A[k′, ℓ′] ∈ C, where k < k′, one
of two following cases applies:

1. ℓ < k′, i.e., A[k, ℓ] precedes A[k′, ℓ′];
2. ℓ′ < ℓ, i.e., A[k′, ℓ′] is nested in A[k, ℓ].

Let D be the family of those sets in C that are not nested in others.
Clearly D can be ordered by the leftmost elements in the sets. Note that
if A[k, ℓ] ∈ D then for some f, g, c, we have

af = k ∈ S[i, j],
ag = ℓ ∈ S[i, j],
c − 1 sets of C are nested in A[k, ℓ] and they cover S[i, j],
(f, g + 1) is an edge in Gi,j with cost c,
g + 1 = m or A[ag+1, ℓ

′] ∈ D for some ℓ′.

These (f, g + 1) edges form a path that connects 0 with m with cost
|C|.



Our dynamic programming algorithm solves the n(n + 1)/2 subprob-
lems specified by compatible pairs i, j in a non-decreasing order of the
differences j − i. In the reduction of a subproblem to already solved sub-
problems the most expensive is the construction of the graph Gi,j and
finding the shortest path in it, both take quadratic time. Hence, we ob-
tain our main result in this section.

Theorem 1 The uncapacitated version of the problem of minimum cov-
ering with antenna sets n points, i.e., the restriction of MinAntVar to
the case where all point demands are zero, is solvable in time O(n4) and
space O(n2) 1.

Previously, only a polynomial-time approximation algorithm with ra-
tio two was known for the uncapacitated version of MinAntVar [3].

4 From Set Cover to Capacitated Set Cover

By the discussion in the previous section, it is sufficient to consider only
O(n2) antenna sets in an instance of MinAntVar on n points. Hence,
MinAntVar is a special case of minimum capacitated set cover.

Since we can determine a minimum uncapacitated set cover of an in-
stance of MinAntVar by ignoring the demands and running the dynamic
programming method given in the previous section, we shall consider the
following more general situation.

We are given an instance of the general problem of minimum capaci-
tated set cover and an approximation with ratio r for minimum set cover
of the corresponding instance of minimum set cover obtained by removing
the demands. The objective is to find a good approximation of a minimum
capacitated set cover of the input instance.

We can obtain an approximation with ratio r + 1.692 for minimum
capacitated set cover on the base of an approximation with ratio r for
minimum uncapacitated set cover U∗ by running a simple greedy FFD
algorithm (see Fig. 3). Our analysis of this algorithm in part resembles
that of the first-fit heuristic for bin-packing [7, 10], but the underlying
problems are different. It yields the approximation ratio r + 1.692. By
refining the algorithm and its analysis, we can improve the factor sub-
stantially to r + 1.357. Because of space considerations for the proof the
reader is referred to the full version.

1 Very recently, M. Patrascu found a tricky way of improving the time complexity of
an equivalent problem to a cubic one [16].



Q ← ∅

for (U ∈ U∗)
while (U 6= ∅)

Q← ∅

for (i ∈ U , with di non-decreasing)
if (d(Q) + di ≤ 1)

insert i to Q

remove i from U and P

insert Q to Q

Fig. 3. FFD, First Fit Decreasing algorithm for converting a cover into a capacitated
cover.

Theorem 41 Let an instance of capacitated set cover be specified by a
universe set P = {1, ..., n}, demands di ≥ 0 for each i ∈ P , and a family
S of subsets of P. If an approximation with ratio r for minimum set cover
of the uncapacitated version of the instance (i.e., where the demands are
removed) is given then a capacitated set cover of the input instance of
size at most r + 1.357 times larger than the optimum can be determined
in polynomial time.

Corollary 42 There exists a polynomial-time approximation algorithm
for the problem of MinAntVar with ratio 2.357.

By the reduction of BinSchedule to MinAntVar given in [3], we
also obtain the following corollary.

Corollary 43 There exists a polynomial-time approximation algorithm
for the problem of BinSchedule with ratio 2.357.

5 PTAS for MinAntLoad

In MinAntLoad problem, the radius of antennas is fixed and the number
m of antennas that may be used is specified. The task is to minimize the
maximum load of an antenna. A polynomial-time approximation for this
problem achieving ratio 1.5 is presented in [3].

In the dual problem MinAnt, the maximum load is fixed and the
task is to minimize the number of antennas. Recall that achieving an
approximation ratio better than 1.5 for the latter problem requires solving
the following problem equivalent to Partition.

Suppose that all demands can be covered with a single set, the load
threshold is D and the sum of all demands is to 2D. Decide whether or



not two antennas are sufficient (which holds if and only if one can split
the demands into two equal parts).

However, in case of the corresponding instance of MinAntLoad, we
can apply FPTAS for the SubsetSum problem [14] in order to obtain a
good approximation for the minimization of the larger of the two loads.

If all demands can be covered by a single antenna set (and the sum
of demands is arbitrary) then MinAntLoad problem is equivalent to
that of minimizing the makespan while scheduling jobs on m identical
machines. Hochbaum and Shmoys showed a PTAS for this case in [13].

Interestingly enough, the PTAS of Hochbaum and Shmoys can be
modified for MinAntLoad, while it does not seem to be the case with
their practical algorithms that have approximation ratios of 6/5 and 7/6
[13].

Theorem 2 MinAntLoad for n points admits an approximation with
ratio 1 + ε in time n

1

ε
ln 1

ε
+O(1).

Proof. See the full version. ❑

Note that the only geometric property of antennas with fixed radius
that we used to design the PTAS for MinAntLoad is their correspon-
dence to intervals or arcs. Hence, we obtain the following generalization
of Theorem 2.

Theorem 3 The problem of minimizing the maximum load in a capac-
itated set cover where the sets correspond to intervals or arcs admits a
PTAS.

6 Extentions to Multi-Base MinAntVar

Our general method of approximating with ratio r + 1.357 minimum ca-
pacitated set cover on the base of an approximate solution with ratio r to
the corresponding minimum (uncapacitated) set cover can be also used
to approximate optimal solutions to the natural extension of MinAnt-

Var to include several base stations. It is sufficient to combine it with
known approximation algorithms for geometric set cover, e.g., [5, 6, 12].
In this way, we can obtain an approximation with ratio O(log OPT ) for
the multi-base variant of MinAntVar, where OPT is the size of mini-
mum uncapacitated set cover with antennas, see the full version. We can
also prove the APX-hardness of the multi-base uncapacitated variant of
MinAntVar by a reduction from a Minimum Line Covering Problem [4],
see the full version.
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