
E�cient Parallel Computation of Nearest

Neighbor Interchange Distances
(Preliminary Version)

Mikael Gast∗ Mathias Hauptmann†

The nni-distance is a well-known distance measure for phylogenetic trees. We con-

struct an e�cient parrallel approximation algorithm (in the CRCW-PRAM model)

for the nni-distance. Given two phylogenetic trees T1 and T2 on the same set of taxa

and with the same multi-set of edge-weights, the algorithm constructs a sequence

of nni-operations of weight at most O(log n) · opt, where opt denotes the minimum

weight of a sequence of nni-operations transforming T1 into T2. This algorithm is

based on the sequential approximation algorithm for the nni-distance given by Das-

Gupta et al. [DHJ+00].

1. Introduction

Phylogenetic trees (or phylogenies) are a well-known model for the history of evolution of species.

Such a tree represents the lineage of a set of todays species, or more generally a set of taxa, which

are located at the leaf-level of the tree. The set and the ordering of the internal nodes describe the

ancestral history and interconnections among the taxa. Usually phylogenetic trees have internal

nodes of degree 3. A weighted phylogeny additionally imposes weights on its edges, representing

the evolutionary distance between two taxa. We call a phylogeny unrooted or rooted, for the

latter case if a common eldest ancestor is known.

Concerning the reconstruction of phylogenetic trees from a given set of genetic data, a variety

of di�erent schemes and algorithms were introduced over the past decades. Each method is

based on a di�erent objective criterion or distance function in the course of construction � for

example parsimony, compatibility, distance and maximum likelihood. Due to this, the resulting

phylogenies may vary according the internal topology and leaf con�guration, although they have

been created over the same set of taxa. Hence it is a reasonable approach to compare di�erent

∗Dept. of Computer Science, University of Bonn. e-mail:gast@cs.uni-bonn.de
†Dept. of Computer Science, University of Bonn. e-mail:hauptman@cs.uni-bonn.de

1

phylogenies for their similarities and discrepancies. As well for this task many di�erent measures

were proposed, including subtree transfer metrics, minimum agreement subtrees et cetera.

In this paper we focus on a restricted subtree transfer measure to compare phylogenetic trees,

i.e. the nearest neighbor interchange distance (nni), which was introduced by D.F. Robinson in

1971 [Rob71]. A nni-move operationally swaps two subtrees, which are immediately connected

but separated by an edge in the tree. Consequently, the nni-distance between two trees is the

minimal number of restricted nni-operations required to transform one tree into the other. See

Figure 1 for an illustration of the nni-operation.

(a) possible nearest neighbor inter-

changes

A

B

C

D
u v

e

(b) swap subtrees B and C

A

C

B

D
u v

e

(c) swap subtrees B and D

A

D

C

B
u v

e

Figure 1: The possible nni-moves relative to an internal edge e = (u, v). Each triangle A,B,C,D

represents a subtree of the tree. The uniform cost of this operation is wt(e).

Next we want to summarize some important results concerning the nni-distance measure.

1.1. Previous Results

Although the nni-distance has a transparent de�nition in terms of a simple transformation of

trees, the e�cient and fast computation indeed has showed to be surprisingly challenging.

For more than a decade, since its introduction in 1971 by D.F. Robinson [Rob71], no com-

putationally e�cient algorithm for measuring the nni-distance was known for practically large

instances of phylogenetic trees. William H.E. Day and Edward K. Brown were the �rst to present

an e�cient approximation algorithm for unweighted instances in 1985 [Day85]. For unweighted

phylogenies it required O(n log n) time for unrooted and O(n2 log n) time for rooted instances.

But it remained unclear whether the computational problem was NP-hard or not.

In 1996 Li, Tromp and Zhang considered the maximum nni-distance between arbitrary 3-

regular trees [LTZ96] and gave logarithmic lower and upper bounds on ∆(G) (the collection graph

of 3-trees with edges denoting that two trees are one nniapart). Furthermore they disproved

some faulty results regarding the decomposability property and NP-hardness of the nni-distance

and gave a new approach regarding these topics. In the last sections of their paper they formed

2

a result on the approximation ratio (or A.R. for short), which is log n + O(1) for polytime

approximation algorithms on unweighted instances.

Later on, in 1997, Bhaskar DasGupta, Xin He and Tao Jiang joined the group around Li whilst

a visiting stay of some authors at Waterloo University. Together they achieved not only to prove

the NP-completeness of computing the nni-distance on weighted and unweighted instances, but

also the same result on trees with unlabeled (or non-uniformly labeled) leaves. As an algorithmic

result they gave an O(n2) approximation algorithm with A.R. 4 log n + 4 for weighted instances

[DHJ+97], which will be the foundation and guide-line of our work regarding the e�cient parallel

computation of the nni-distance. Moreover, they observed that the nni-distance is identical to

the linear-cost subtree-transfer distance on unweighted phylogenies [DHJ+99] and that an exact

algorithm for distance-restricted instances can be found with running time O(n2 log n+n ·211d).

Finally they have formulated their results again and more elaborately in 2000, appearing as

a paper in [DHJ+00].

1.2. Our Work

Based on the above mentioned approximation algorithm by DasGupta, operating in time com-

plexity O(n2) and with A.R. 4(1 + log n), we present an e�cient parallel approximation scene

for computing the nni-distance on weighted phylogenies. In order to do that, we formulate

pseudo-code algorithms with polylog time complexity asserting a polynomial number of proces-

sors/processes, and thereby show, that each step of DasGupta's algorithm is in Nick's Class

(NC for short) in terms of parallel computation.

The rest of the paper is organized as follows: In Chapter 2 we formulate some preliminaries in

graph theory, phylogeny and computational complexity. Chapter 3 will give a short description

of DasGuptas approximation algorithm. Then followed by Chapter 4 in which our e�cient

parallel approximation scene is presented at some detail.

2. Preliminaries

In this section we give the formal de�nition of phylogenies, nearest-neighbor interchange opera-

tions and the nni-distance measure.

We will make use of the following notation. Let T = (V,E) be an undirected or directed tree,

then LT ⊆ V denotes the set of leaves of T and IT ⊆ V the set of internal vertices of T .

The most important primitives in phylogenetic analysis are taxa and phylogenies.

De�nition 2.1. Given a �nite set of taxa S = {s1, . . . , sn}, a phylogeny for S is a triplet

T = (V,E, λ) where (V,E) is an undirected tree λ : LT → S is a bijection and such that

every internal node of T has degree 3. A rooted phylogeny for S is a tuple T = (V,E, λ, r)

such that (V,E, λ) is a phylogeny and r ∈ V is a distinguished node called the root of T . A

weighted phylogeny for S is a tuple T = (V,E, λ,w) such that (V,E, λ) is a phylogeny and

w : E → R
+ is a weight function on the set of edges of T . A rooted weighted phylogeny is

3

a tuple T = (V,E, λ,w, r) such that (V,E, λ, r) is a rooted phylogeny and w : E → R
+ is an

edge-weight function.

In order to compare di�erent phylogenies on the same set of taxa (e.g. generated by di�erent

construction methods), one usually imposes a distance measure on the space of all phylogenies

for the given set of taxa.

Various distance measures for comparing phylogenies have been investigated in the literature.

The nni-distance measures the minimum number of nearest neighbor interchanges (nni) needed

in order to transform one tree into another [RF79].

De�nition 2.2. Let T be a phylogeny (possibly rooted and/or weighted) and let e1, e2, e3 be three

edges of T that build a path of length three in T (in this order). The associated nni-operation,

denoted as a triplet (e1, e2, e3), transforms the tree T into a new tree T ′ by swapping the two

subtrees below the edges e1 and e3 as shown in the Figure 2. In this con�guration we call the

center edge e2 the operating edge. In case of weighted phylogenies the cost of this nni-operation

is de�ned as w(e2).

A

B

u ve 1

e2
e 3

B

A

u ve 3

e2
e 1

nni(e1, e2, e3)

Figure 2: The nni-operation on T of the subtrees A and B de�ned by the triplet (e1, e2, e3).

The associated genetic distance measure is the nni-distance:

De�nition 2.3. Let S be a set of taxa and let T1, T2 be phylogenies for S. The nni-distance

dnni(T1, T2) of T1, T2 is de�ned as the minimum length of a sequence of nni-operations that

transforms T1 into T2 (and ∞ in case no such sequence exists). In case of weighted phylogenies

dnni(T1, T2) is the minimum cost of a sequence of nni-operations that transforms T1 into T2.

Given two weighted phylogenetic trees Ti = (V,E, λ, wi), i = 1, 2 for the same set of taxa S,

the following two conditions are necessary for the two trees to have a �nite nni-distance.

1. For each taxon s ∈ S, let ei(s) ∈ ETi
be the edge incident to the leaf with label s in Ti

(i = 1, 2). Then e1(s) and e2(s) must have the same edge weight: w1(e1(s)) = w2(e2(s)).

2. MT1
= MT2

, where MTi
denotes the multiset of edge-weights of Ti.

In order to identify parts or subtrees of the tree that require a �large� or �small� amount of

work to be transformed into their counterparts from the other tree, the notion of good edge-pairs

and bad edges or non-shared edges according to the set of leaf-labels and edge-weights is used in

the literature (cf. [RF79, DHJ+00]).

4

De�nition 2.4. (Good Edge Pairs, Bad Edges)

Let T1 and T2 be two weighted phylogenies for the set of taxa S. Two internal edges ei ∈ ET1

and ej ∈ ET2
form a good edge-pair i� the following conditions hold:

1. w1(ei) = w2(ej).

2. Both edges induce the same partition of the multiset of edge-weights on T1 and T2.

3. Both edges induce the same partition of the set of leaf-labels on T1 and T2.

An edge ei ∈ ET1
is called bad if there does not exist any edge ej ∈ ET2

such that (ei, ej) forms

a good edge-pair.

If ei and ej form a good edge pair, no nni-move with operating edge ei is needed to transform

T1 into T2.

3. DasGupta's Sequential Approximation Algorithm

In this section we give an outline of DasGupta's approximation algorithm [DHJ+00] for the

nni-distance on weighted phylogenies on a set S of n taxa. For the ease of notation we also

presume/conjecture that all considered phylogenies are rooted at the same arbitrary leaf r.

Unless otherwise mentioned we will reference to these rooted and weighted phylogenies on S

with the term phylogeny for short.

Theorem 3.1. [DHJ+00] Let T1 and T2 be two phylogenies. Then dnni(T1, T2) can be approxi-

mated within O(n2) time and A.R. 4(1 + log n).

Given two phylogenies T1, T2, at �rst the multisets of edge-weights of internal edges of both,

T1 and T2, are sorted in O(n log n) time. In case these two multisets di�er, T1 and T2 do not have

a �nite nni-distance. Hence, from now on we assume that {w1, w2, . . . , wn−3} is the multiset

of edge-weights of internal edges of both T1 and T2 and that w1 ≤ w2 ≤ · · · ≤ wn−3 holds.

Furthermore let W :=
∑n−3

i=1 wi be the sum of all edge weights of internal edges of Ti(i = 1, 2).

The following lemma provides a lower bound on dnni(T1, T2) in terms of W and the existence

of good edge-pairs.

Lemma 3.1. [DHJ+00] Assume that dnni(T1, T2) < ∞. If T1 and T2 have no good edge pairs,

then dnni(T1, T2) ≥ WT1
= WT2

.

DasGupta's algorithm makes use of two di�erent trees associated to each of the given phylo-

genies T1, T2, which we call the auxiliary tree and the linear tree.

Let T = (V,E, λ,w, r) be a phylogeny. An auxiliary tree AT = (V,E′, λ, w′, r) is a phylogeny

on the same set of vertices V and labeling of taxa λ that has the following properties:

• all leaves l, l′ ∈ LAT
are of balanced height, |depthAT

(l) − depthAT
(l′)| = 1,

• the multisets of edge-weights in the trees T and AT are the same, MT = MAT
,

5

• the edge-weights of internal edges on every path from r to a leaf in AT are non-descending.

Having the set MT of edge-weights sorted, such that w1 ≤ w2 ≤ · · · ≤ wn−3 holds, we achieve

the auxiliary tree property while arranging the edge-weights in MT on an binary balanced tree

such that, at level i, w2i
−1+j is the j-th edge-weight assigned to an edge from the left. In a

�rst step DasGupta's algorithm constructs an auxiliary tree ATi
= (Vi, E

′

i, λi, w
′

i, ri), i = 1, 2,

for both T1 and T2.

In a second step both the original phylogenies Ti and the associated auxiliary trees ATi
are

transformed into so called linear trees: For a given phylogeny T = (V,E, λ,w, r), a linear tree

LT = (V,E′′, λ, w′′, r) of T is a phylogeny over the same labeling λ and such that every internal

node is adjacent to at least one leaf (see Figure 3 for an example).

e1 e2 en−3

. . .

Figure 3: The linear tree L with internal edges e1, e2, . . . , en−3.

Now, a short analysis of DasGupta's algorithm together with a pseudo-code description is

presented. First for the special case that every edge ei ∈ T1 is bad and, by Lemma 3.1 on the

previous page, with a total cost of at most (4 + 4 log n)W .

Description of DasGupta's algorithm:

1. Choose an arbitrary leaf r as root and transform T1 into a balanced binary tree T ′

1 of height

⌈log n⌉. The internal nodes are put in place such that any path from the root to a leaf

has non-decreasing edge-weights. Therefore at the ith level (i ≥ 1), e2i
−1+j (0 ≤ j < 2i)

is the jth edge from the left. The transformation of Step 1 consists of three phases:

1a. Transform T1 to a linear tree L such that the edges e1, . . . , en−3 appear in an arbitrary

order from left to right. In order to do that, form a left path P starting at a leaf r.

If P contains all internal edges, T1 has been transformed into a linear tree L1. At

most one nni-move is performed on each internal edge of T1, thus Phase 1.1 costs at

most W and can be completed in O(n) time. An example of a linear tree is depicted

in Figure 3.

1b. Similar to Phase 1a, transform T ′

1 into a linear tree L′ in O(n) time and with cost

W . The internal edges in L′ appear as e′′1, . . . , e
′′

n−3.

1c. Use an analogue variant of merge sort to transform L to L′, performed in O(n log n)

time and with costs W log n.

In order to achieve the transformation of T1 to T ′

1, perform the nni-moves of Phase 1a,

followed by the nni-moves of Phase 1c, followed by the inverse of the nni-moves of Phase 1b.

In total Step 1 can be completed in O(n log n) time and cost at most (2 + log n)W .

6

2. Analogue to Step 1 on the preceding page transform T2 to T ′

2 in O(n log n) time and with

cost (2 + log n)W , and note that internal structure of T ′

2 equals the structure of T ′

1.

3. Transform T ′

1 to T ′

2 in O(n log n) time and with cost 2(log n)W .

To �nally transform T1 to T2, perform the nni-moves of Step 1 on the previous page,

followed by the nni-moves of Step 3, followed by the inverse nni-moves of Step 2. So the

algorithm can be completed in O(n log n) time and total costs of 4(1 + log n)W .

Algorithm 1: DasGupta's_Sequential_Algorithm

Input: Rooted phylogenetic trees T1, T2.
Output: nni-distance dnni(T1, T2) and a sequence N of nni-operations transforming T1

into T2.
begin

for i = 1, 2 do
1 Construct auxiliary trees ATi

;
/* generate nni-sequence Ni to transform Ti into ATi

*/

2 Generate sequence (ti,1, . . . , ti,j(i)) that transforms Ti into a linear tree LTi
;

Generate sequence (ai,1, . . . , ai,k(i)) that transforms ATi
into a linear tree LATi

;
3 Generate merge-sort-sequence (si,1, . . . , si,l(i)) that transforms LTi

into LATi
;

Ni := (ti,1, . . . , ti,j(i), si,1, . . . , si,l(i), ; ai,k(i), . . . , ai,1);

/* note that sequence (ai,1, . . . , ai,k(i)) is reversed in order to allow

back-transformation to ATi
*/

4 Generate sequence (b1, . . . , bm) to transform AT1
into AT2

;
N := N1 ◦ (b1, . . . , bm) ◦ N ′

2;
/* note that sequence N ′

2 is reversed in order to allow

back-transformation to T2 */

end

Next we consider the case that T1 and T2 have some good edge pairs. Here we have to identify

the set E′ ∈ ET1
of edges in T1 that form good edge pairs with edges in T2 (see [DHJ+00] for

details). Then, every edge in E′ induces a subtree in T1 consisting of one or more connected

components each of which is a subtree of T1. These connected components with total weight

W ′ can be found in O(n) time. To �nally transform T1 to T2 we perform the algorithm stated

above on each such component. The algorithm takes O(n2) time, the total cost is bounded by

4(1 + log n)W ′. This completes the proof of the main Theorem 3.1 on page 5 of this section.

4. Parallel Computation of the nni-Distance

In this section we construct e�cient parallel algorithms for the three steps of DasGupta's algo-

rithm (in the CRCW-PRAM-model).

When T is a 3-regular phylogeny (i.e each internal node has degree 3 in T), the internal nodes

of T can be classi�ed with respect to the number of adjacent leaves.

7

De�nition 4.1. Let T = (V,E, λ,w) be a 3-regular phylogeny (each internal node has degree 3

in T). Let L be the set of leaves in T . An internal node v ∈ I = (V \ L) is called

• an endnode (v ∈ Vend), if it is adjacent to two leaves and one internal node,

• a pathnode (v ∈ Vpath), if it is adjacent to one leaf and two internal nodes,

• a junction-node (v ∈ Vjunc), if it is adjacent to three internal nodes in T .

This notation will be used in the course of the linearization of phylogenetic trees.

4.1. Detecting Good Edge-Pairs

We give two di�erent parallel algorithms for the detection of good edge-pairs. The �rst one

is based on the e�cient parallel computation of connected components, the second one uses a

bottom-up subtree pruning strategy.

Good Edge-Pairs via Connected Components Given the two trees T1, T2, the �rst algorithm

(Algorithm 4 on page 10) considers all pairs (ex, ey) of edges ex from T1 and ey from T2 with

w(ex) = w(ey) in parallel. For each such pair, Algorithm 4 on page 10 computes in parallel the

connected components of T1 \ ex and T2 \ ey, generates the associated edge- and leaf-partitions

and � based on this data � decides if ex, ey is a good edge-pair.

Detecting Connected Components There are well-known e�cient parallel algorithms for the

computation of the connected components of a given graph. One of the �rst such algorithms is

due to D.S. Hirschberg [Hir76]. Here we make use of the algorithm of Goddard et al. [GKP94]

which also works e�ciently on mesh-like parallel systems (Algorithm 2 on the next page).

Given T e = (V,E \ {e}), this algorithm computes a labeling cT e : V → {0, 1}. The running

time of this algorithm for trees is O(log n) on 2n − 2 processors. Figure 4 illustrates how T

topologically falls into two partitions if edge e is removed from the tree.

u v

e

CT (ue)
CT (ve)

Figure 4: Components Cu
T e , Cv

T e induced by edge e = (u, v) in T .

8

Algorithm 2: Parallel_Connected_Components

Input: A phylogeny T with vertices uniquely labeled in {0, 1, . . . , 2n − 2}.
Output: The minimal component number c(v), ∀v ∈ V .
begin

foreach v ∈ V parallel do /* initialize pointers */
c(v) := min{v,min{u| vertex u is adjacent to v in T}};

repeat

foreach v ∈ V parallel do /* opportunistic pointer jumping */
cold(v) := c(v);
c′(v) := c(min{c(v),min{c(u)| vertex u is adjacent to v in T}});

foreach v ∈ V parallel do /* tree hanging */
c(v) := min{c′(v),min{c′(u)|c(u) = v}};

foreach v ∈ V parallel do /* normal pointer jumping */
c(v) := c(c(v));

until c = cold ;

end

Generation of Edge- and Leaf-Partitions For a given tree T , edge e in T and the associated

function cT e : V → {0, 1} we can compute the induced partitions of the set of taxa and of the

multiset of edge-weights e�ciently in parallel. More precisely the following procedure computes

a partition γT e : S → {0, 1} of the taxa and two multisets W 0
T e , W 1

T e : {w(e)|e ∈ E} → N0 such

that W j
T e(w) = number of occurrences of weight w in the component j of T e. These values are

provided by algorithm 3.

Algorithm 3: Edge_Leaf_Partitions

Input: A phylogeny T and component numbers cT e(v) for all v ∈ V in T e.
Output: The partition γT e : S → {0, 1} of the taxa and two multisets

W 0
T e , W 1

T e : {w(e)|e ∈ E} → N0 such that W j
T e(w) = number of occurrences of

weight w in the component j of T e.
begin

foreach s ∈ S in parallel do

γT e(s) := cT e(λ−1(s)); /* assign leaf partition number for all s ∈ S */

for j = 0, 1 do

W j
T e := W ; /* initialize partitions with complete multiset */

foreach f ∈ ET e in parallel do

for j = 0, 1 do

if f is in component j of T e or f = e then

W 1−j
T e (w(f)) := W 1−j

T e (w(f)) − 1; /* reduce the manifold of weight

w(f) in counterpart partition */

end

9

Algorithm: Parallel Compute Good Edge-Pairs I Finally we obtain the parallel algorithm 4

for computing good edge-pairs.

Algorithm 4: Good_Edge_Pairs

Input: Phylogenies T1, T2.
Output: The set GT2

T1
of good edge-pairs (ex, ey) between T1 and T2 with

ex ∈ ET1
, ey ∈ ET2

.
begin

foreach e ∈ ETi
in parallel do

Connected_Components(T e
i); /* returns cT e

i
(v) */

Edge_Leaf_Partitions(T e
i , cT e

i
(·)); /* returns γT e

i
(s), WT e

i
*/

foreach ex ∈ ET1
, ey ∈ ET2

in parallel do

if w(ex) = w(ey) then
foreach s ∈ S in parallel do

if γT
ex
1

(s) 6= γ
T

ey
2

(s) then

break;

foreach w ∈ {w(h)|h ∈ E} in parallel do

if WT
ex
1

(w) 6= W
T

ey
2

(w) then

break;

GT2

T1
= GT2

T1
∪ {(ex, ey)};

end

Good Edge-Pairs via Bottom-up Propagation Alternatively one can compute the edge- and

leaf-partitions in a bottom-up manner as follows: We choose some taxon s ∈ S and replace Ti

by the arborescense that results from Ti by choosing ri = λ−1
i (s) as a root and orienting the

edges of Ti appropriately.

Computing the orientations of T1, T2 Given an undirected tree T and a leaf r ∈ LT , one

can e�ciently generate the associated arborescense with root r by orienting the edges of T : We

compute an Euler tour of T using the Parallel Euler Tour technique , splitting this tour at the

root r and then applying the parallel pre�x-sum algorithm.

Computing Edge- and Leaf-Partitions Given a rooted directed phylogeny T with root r we

compute the lists Lv
T ⊆ S of leaf-labels and the multiset W v

T of edge-weights in the subtrees Tv

below v as shown in algorithm 5 on the next page.

Finally in Algorithm 6 on page 12 these subroutines are used in order to generate a list G of

good edge-pairs e�ciently in parallel.

Algorithm: Parallel Compute Good Edge-Pairs II After computing the edge-, leaf-partitions

induced by every v ∈ VT and the corresponding subtree rooted at v, we are able to determine

10

Algorithm 5: Subtree_Partitions

Input: Phylogeny T with root r and parent(v) the parent of each node v ∈ VT .
Output: For every internal node v the sets of leaf-labels Lv

T and multisets of edge-weights
W v

T of the subtree rooted at v.

begin

foreach v ∈ VT in parallel do

if v ∈ LT then

Lv
T := {λ(v)}; /* initialize with leaf-label if v is a leaf */

if v = r then
W v

T := {w(e)}; /* initialize with edge-weight of e = (v, u) with

start point in v */

else
W v

T := ∅;

else
Lv

T := ∅;
W v

T := {w(e)}; /* initialize as above */

next(v) := parent(v)); /* choose parent parent(v) as next */

while next(v) 6= r do

L
next(v)
T := L

next(v)
T ∪ Lv

T ; /* propagate sets to next(v) */

W
next(v)
T := W

next(v)
T ∪ W v

T ;
next(v) := next(next(v)); /* pointer-jumping */

end

the edge- and leaf-partition for every edge e = (u, v), where u is pointing towards the root of

the tree.

Observation 1. Lv
T = Le

T and Mv
T = M e

T for edge e = (v, u) and u is pointing towards the root

of the tree.

Finally we obtain the parallel algorithm 6 on the next page for alternatively computing good

edge-pairs.

4.2. Linearizing Trees

Now both T1, T2 and their associated auxiliary trees T ′

1, T
′

2 are transformed into linear trees

L1, L2 and L′

1, L
′

2. A linear tree is a phylogeny that only consists of pathnodes and endnodes

(c.f. section 4 on page 7), i.e. every internal node is adjacent to at least one leaf (see also �gure 5

on the next page).

Let us �rst give an outline of the linearization procedure which is divided into three phases:

1. Activation-Phase: We proceed in a bottom-up manner at the boundary of the tree, i.e. at

endnodes v ∈ Vend de�ned above. At every endnode v a process is started that builds the

11

Algorithm 6: Good_Edge_Pairs

Input: Phylogenies T1, T2.
Output: The set GT2

T1
of good edge-pairs (ex, ey) between T1 and T2 with

ex ∈ ET1
, ey ∈ ET2

.
begin

foreach Ti in parallel do

Parallel_Rooting_Trees(Ti, r); /* roots T1, T2 in r */

Subtree_Partitions(Ti); /* returns Lv
Ti

and W v
Ti

for all v ∈ VTi
*/

foreach ex ∈ ET1
, ey ∈ ET2

in parallel do

if w(ex) = w(ey) then
foreach s ∈ S in parallel do

if γT
ex
1

(s) 6= γ
T

ey
2

(s) then

break;

foreach w ∈ {w(h)|h ∈ E} in parallel do

if WT
ex
1

(w) 6= W
T

ey
2

(w) then

break;

GT2

T1
= GT2

T1
∪ {(ex, ey)};

end

e1 e2 en−3

. . .

Figure 5: A linear tree L.

path to the next junction-node u ∈ Vjunc and activates u to prepare the junction node for

insertion of the path from v.

If a junction-node u is activated by more than one endnode during the activation phase,

among the two paths meeting at u we select the one of smaller weight for insertion. Let

this path consist of k internal edges e1, . . . , ek where e1 is incident to u.

2. Insertion-Phase: In the next phase, we generate the sequence of nni-operations that is

used for the insertion of the selected path at the junction-node u. This yields a sequence

of nni-operations of length k, the length of the path to be inserted. The internal edges

e1, . . . , ek are the operating edges of these nni-moves.

3. Update-Phase: In the last phase the tree topology and the pointers inside the tree are

updated after each Insertion-Phase.

These three phases are repeated until the tree T is transformed into a linear tree L.Since

every iteration decreases the number of leaves by a factor of 2, the parallel running time of the

linearization algorithm is bounded by ⌈log n⌉.

12

Lemma 4.1. The number of iterations of phases 1-3 in the linearization algorithm is bounded

by ⌈log n⌉.

Proof. Let |Vend| = k0 be the initial number of endnodes in T at the beginning of the �rst

linearization-step. Now every endnode v ∈ Vend tries to activate the next junction-node next(v)

towards the root of T . This will be successful for at least every second endnode, since one

junction-node is shared by at most two endnodes. Therefore at least k0

2 insertions of an endnode-

path path(v) is carried out at next(v) in phase 1 of the linearization step. After phases 2 and 3

the number of end- and junction-nodes is reduced by at least ki

2 in each step i.

Orientate Edges towards Root

In order to determine the direction of insertion, we choose a new vertex or leaf as root r equally

in both trees, if no root exists. Then, given Ce
u, Ce

v for every edge e = (u, v), we generate

an orientation dir(e) on e pointing on either u or v if the respective endnode is in the same

component with r. These values are provided by Algorithm 7.

Algorithm 7: Root_Oriented_Edges

Input: Phylogeny T with root r and ce(v) the component numbers induced by e in T ,
∀e ∈ E(T), v ∈ V (T).

Output: For every edge e the root pointing node dir(e) ∈ {u, v}.

begin

foreach e = (u, v) ∈ E(T) parallel do
if ce(r) = ce(u) then /* test if root-component */

dir(e) := u; /* orientate edge e */

else
dir(e) := v;

end

Generate Endnode-Paths for Insertion

To describe the insertion process, Algorithm 8 on the next page provides for every node v the

distance dist(v), edge-list path(v), length length(v) and the head head(v) of the path to the

next junction- or endnode next(v) heading towards root r. These values are computed e�ciently

via parallel pointer jumping.

Algorithm: Parallel Linearize Tree

We are now ready to formulate Algorithm 9 on page 15 for the linearization of a tree T . Figure 6

on the next page illustrates the notation given in the above algorithms and shows the result of

an insertion-process.

13

Algorithm 8: To_Junction_Paths

Input: Phylogeny T with root r and pointer parent(v) for all v in T and sets of junction-
and endnodes Vjunc and Vend.

Output: For every node v in T the values dist(v), path(v), length(v), next(v) and head(v).

begin

foreach v ∈ V parallel do

dist(v) := w(ev); /* initialize with parent edge ev = (v, parent(v)) */

path(v) := ev;
head(v) := v;
length(v) := 1;
next(v) := parent(v);
while next(v) /∈ Vjunc ∪ Vend do

dist(v) := dist(v) + dist(next(v));
path(v) := path(v) ◦ path(next(v));
head(v) := next(v);
length(v) := length(v) + length(next(v));
next(v) := next(next(v)); /* Pointer-Jumping */

end

(a) situation at junction-node u

u

next(v) = next(w)
r

u1

head(v)

u2

v w

(b) after insertion of path(v)

ur

u1

v

u2

w

next(v) = next(w)

Figure 6: Insertion of path(v) from endnode v adjoining junction-node u = next(v).

We will utilize this linearization technique in Phase 1.1 and 1.2 of DasGupta's original algo-

rithm. The superior aim of Phase 1 is to transform two phylogenies T1 and T2 into linear trees

L1 and L2 with the same order on internal edges and then into balanced binary shapes T ′

1 and

T ′

2 with the same internal topology. While the inverse nni-operations of Phase 1.2 transforms

a linear tree into the balanced shape, in Phase 1.3 we have to use a parallel analogue of the

sequential merge-sort stated by DasGupta to match the sequence of internal edges in both linear

trees. This will be the focus of the upcoming section.

4.3. Sorting Linear Trees

After Phase 1.1 and 1.2 we now have two linear trees L1 and L′

1 associated to the original tree

T1 and the balanced tree T ′

1 with presorted edges. Now the sequence of nni-operations will be

generated that transforms the sequence e′1, e
′

2, . . . , e
′

n−3 of internal edges in L1 into the linearized

14

Algorithm 9: Parallel_Linear_Tree

Input: A phylogeny T with root r.
Output: A list Nof nni-operations for the transformation of T to LT .

begin

while ∃u ∈ Vjunc do

To_Junction_Paths(T); /* re-generate paths and pointers */

foreach v ∈ Vend parallel do
u := next(v);
a(u) := v; /* activate u from v */

foreach active u ∈ Vjunc parallel do
u1 := head(a(u));
u2 :=

(

sib(u) 6= head(a(u))
)

;
while i ≤ length(a(u)) parallel do

nni(u) := nni(u) ◦
((

leaf(u1), u1

)

,
(

u1, u
)

,
(

u, u2

))

;
u1 := sib(u1);
i := i + 1; /* generate nni-triplets for the whole path */

N := N ◦ nni(u); /* concatenate list of nni's */

parent(u2) := u1; /* insertion of the path at u2 */

w((u1, u2)) := w((u2, u));
Vjunc := Vjunc \ {u}; /* deletion of u */

end

sorted sequence, say e′′1, e
′′

2, . . . , e
′′

n−3, of L′

1.

The basic scheme of the sequential algorithm is, �rst, to transform adjacent edge-pairs by

nni-moves, such that the whole sequence afterwards is pairwise alternating from ascending to

descending according to the sorting order of e′′1, e
′′

2, . . . , e
′′

n−3 (the ascending and descending

subsequences of edges will be called blocks). Then, starting from the middle, we merge and pull

out adjacent blocks, �nally resulting in a linear tree of blocks of doubled size, again alternating.

At k -th stage, we are starting with n
2k blocks of 2k internal edges each, resulting in n

2·2k blocks

consisting of 2 · 2k edges. See Figure 7 on the following page for an example. If the resulting

sequence consists only of one block, containing all edges, we are done with merge-sorting the

linear tree.

4.3.1. Algorithm: Parallel Tree Merging

The next step is to �t the sequential algorithm into a parallel computation scheme. Therefore

we may not only consider the two adjacent blocks in the middle for comparing and merging,

but, all n
2k block-pairs that will be adjacent in the course of stage k in parallel. So we have to

describe the pairing of blocks and edges inside blocks for each stage in order to allow parallel

computation.

At stage k let B1, B2, . . . , B n

2k
be the blocks appearing in that order on the linear tree. We

start pairing recursively from the middle, such that Bl pairs with B n

2k
−(l−1) for l ∈ {1, . . . , n

2·2k }.

15

Furthermore, let e(l−1)2k , e(l−1)2k+1, . . . , el2k be the edges of block Bl at stage k. To preserve

simplicity, we illustrate the merging of edges of two blocks within a pair (Bx, By), which is said

to be the block-pair to get adjacent and to be merged at stage k in the sequential algorithm. At

that stage we have to merge two linear subtrees consisting of edges ex1
, . . . , ex

2k
and ey1

, . . . , ey
2k
.

To determine the �nal position of every element in the resulting block Bxy consisting of edges

exy1
, . . . , exy

2k+1
, we compare and add up the corresponding positions of an edge exi

∈ Bx that

merges in between two edges eyj
, eyj+1

∈ By. So if for exi
∈ Bx and eyj

, eyj+1
∈ By holds that

w(eyj
) ≤ w(exi

) ≤ w(eyj+1
) the new position-label of exi

in Bxy, then, is exi+yj
.

(a) initially unsorted linear tree L with |Bi| =
1, i = 8

B1 B8

(b) L with pairwise alternating edge-weights

B 1

.
. B

8

(c) L after �rst merging-stage with |Bi| = 2, i =
4

.
B1 B

4

(d) L after second merging-stage with |Bi| =
4, i = 2

B1 B2

Figure 7: Sorting edges on a linear tree L via merging and pulling out alternating sequences of

edge-weights Bi. Note, that the length |Bi| of the sorted sequences doubles with every �nalization

of a merging-stage.

Algorithm 10: Tree_Merge_Sort

Input: Linear tree LT1
, permutation π1 of internal edges of LT1

, permutation π2 of inner
edges of LAT1

.
Output: sequence N of nni-operations that transforms π1 into π2

begin

for k = 1 to log n do

foreach l ∈ {1, . . . , n
2·2k } parallel do

Bl := merge(Bl, B n

2k
−(l−1)); /* Merging two consecutive blocks */

πk := πBl
◦ πk; /* at the end of the foreach-Phase in the k-th

iteration, πk = ek
1, . . . , e

k
n−3 */

nni(k) :=
(

(leaf(ek
1), e

k
1, e

k
2), . . . , (leaf(ek

n−4), e
k
n−4, e

k
n−3)

)

;
N := N ◦ nni(k);

end

The number of comparisons used by this variant of the merge sort is in O(n log n), although

the merging is performed parallely with an additional number of comparisons. Hence we obtain

the following Lemma:

Lemma 4.2. The number of parallel steps for merge-sorting two linear trees is bounded by

Ω(log n).

16

(vi1, vj1) (vi2, vj2) (vi3, vj3) (vi4, vj4) (vi5, vj5) (vi6, vj6) (vi7, vj7) (vi8, vj8)

compare(vi1, vj3) = true

co
m
p
ar
e
&

re
-r
ou
te

Figure 8: Initial situation on the overlay-graph of T ′

1
and T ′

2
. An example re-routing and change

of permutation is showed for the matching pair (vi1, vj3) on the left.

Proof. In Algorithm 10 on the previous page the length of the sorted sub-sequences |Bl| doubles

with every merging-stage. Therefore at most log n complete merging-rounds are needed to yield

a sorted sequence of length n.

In the following main step, called Phase 2, the methods described above are used to transform

the second phylogeny T2 into its balanced binary shape T ′

2 with a common internal topology.

The next section deals with the correct sequencing of leaves in both, T ′

1 and T ′

2.

4.4. Sorting Leaf-Permutations on Balanced Binary Trees

Subsequent to Phase 1 and 2, we have two balanced binary trees T ′

1, T
′

2 with the same ordering

on internal edges covering the same set of n leaves. The permutation of leaves will be given by

π1, π2, and the position of leaf v ∈ L in one of the permutations by πi(v) respectively.

Algorithm: Parallel Bottom-up Leaf Sequencing

Our aim is to transform permutation of leaves imposed by π1 into π2. Therefore we create an

overlay-graph of T ′

1 and T ′

2 in which leaves vi ∈ T ′

1 and vj ∈ T ′

2 share their position in the graph

i� π1(vi) = π2(vj). Then we start a parallel bottom-up compare and re-route processing at leaf

level, at �rst comparing the labels of the two leaves on a shared node. If the leaf labels match we

already have correct correspondence at leaf level and we are done. If the labels do not match, we

simultaneously move up the non-matching leaves to parent-level by one nni-operation and repeat

the comparison with all newly/recently shared leaves at that node. Now, if (at any parent level)

two labels match, we virtually perform the inverse nni-moves of the matching-partner leading to

that node to shift the leaves into their correct and �nal positions. See Figure 8 for an example.

Since the height of the balanced binary tree is bounded by ⌈log n⌉ the number of nni-moves

used by our leaf-sequencing scheme is bounded by O(log n), moving every leaf once up and down

the tree. Furthermore the following holds:

Lemma 4.3. The number of comparison-phases is bounded by ⌈log n⌉.

Proof. Since the parallel comparison is performed at every level of the tree, the number of

complete comparison-phases is bounded by ⌈log n⌉, e.g. the height of the tree.

17

Algorithm 11: Parallel_Leaf_Sequencing

Input: Overlay-graph Oi(V
∗, E) of T ′

i with shared nodes at leaf level
V ∗ = (V \ L) ∪ {(vi, vj)|π1(vi) = π2(vj)}.

Output: Sequence of nni-moves to match π1 with π2 within πfinal.

begin

pos(v) := π(v); /* initialize position marker */

for k = 0, . . . , (log n − 1) do
foreach p = 1, . . . , n

k·2 parallel do

parallel_compare({vip}, {vjp}); /* compare sets on same position */

if compare(vil, vjl) = true then
πfinal(vil) := π2(vjl); /* swap to target position */

πfinal(vjl) := π1(vil);
V ∗ := V ∗ \ {vil, vjl}; /* reduce active set */

foreach vil ∈ {vip}, vjl ∈ {vjp} parallel do

pos(vil) := ⌊pos(vil)
2 ⌋; /* level-up non-matching leaves */

pos(vjl) := ⌊
pos(vjl)

2 ⌋;

end

5. Summary

We have developed a new method and design of an e�cient parallel algorithm based on Das-

Gupta's approximation algorithm for computing the nearest-neighbor-interchange-distance (nni)

between weighted phylogenies. The formulations are given in terms of NC-algorithms and the

PRAM-model. It is shown that the sequence of nni-operations can be computed e�ciently in

O(log n) time on a CRCW-PRAM with a polynomial number of processors and within approx-

imation ratio 4(1 + log n).

18

References

[Day85] W.H.E. Day. Optimal algorithms for comparing trees with labeled leaves. Journal of

Classi�cation, 2(1):7�28, 1985.

[DHJ+97] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang. On distances between

phylogenetic trees. In Proceedings of the eighth annual ACM-SIAM symposium on

Discrete algorithms, pages 427�436. Society for Industrial and Applied Mathematics

Philadelphia, PA, USA, 1997.

[DHJ+99] B. DasGupta, X. He, T. Jiang, M. Li, and J. Tromp. On the linear-cost subtree-

transfer distance between phylogenetic trees. Algorithmica, 25(2):176�195, 1999.

[DHJ+00] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang. On computing

the nearest neighbor interchange distance. In Proc. DIMACS Workshop on Discrete

Problems with Medical Applications, volume 55, pages 125�143. Press, 2000.

[GKP94] S. Goddard, S. Kumar, and J.F. Prins. Connected components algorithms for mesh-

connected parallel computers. Parallel Algorithms: 3rd DIMACS Implementation

Challenge, 30:43�58, 1994.

[Hir76] DS Hirschberg. Parallel Algorithms for the Transitive Closure and the Connected

Components Problems Proc. 8thAnn. In ACM Symp. Th. Comp, pages 55�57, 1976.

[LTZ96] M. Li, J. Tromp, and L. Zhang. Some notes on the nearest neighbour interchange

distance. Lecture Notes in Computer Science, pages 343�351, 1996.

[RF79] D. Robinson and L. Foulds. Comparison of weighted labeled trees. In Combinatorial

Mathematics VI: Proceedings of the Sixth Australian Conference on Combinatorial

Mathematics, Armidale, Australia, August 1978, page 119. Springer, 1979.

[Rob71] DF Robinson. Comparison of labeled trees with valency three. Journal of Combina-

torial Theory, 11(2):105�119, 1971.

19

