
On the oordination ratio of load balaningproblemsMatthias KretshmerRheinishe Friedrih-Wilhelm-Universität BonnDepartment of Computer Siene VRömerstr. 16453117 BonnAbstrat. We onsider the load balaning problem introdued by Kout-soupias and Papadimitriou 1999. Given a set of mahines and playerswhere eah player own a job, the players an hoose the mahine thatproesses their job. The question is how good is a Nash equilibriumin relation to an optimal shedule for a given objetive funtion. Themakespan and average ompletion times are often onsidered as obje-tive funtions. We onsider variants where we use the ompletion time inrelation to the job size instead of the ompletion time and thus normalizeby the job sizes. The idea of these objetive funtions is to model thata player with a small job su�ers more from the same amount of delaythan a player with a large job. The proessing model used by Koutsou-pias and Papadimitriou has a bad oordination ratio for suh objetivefuntions. With a natural hange of the proessing model we improveon the performane for the new set of objetive funtions. In the aseof idential mahines we give tight upper bounds on the oordinationratio for the unnormalized and normalized objetive funtions and provethat any Nash equilibrium is an optimal solution for the average andnormalized average ompletion times.1 IntrodutionLoad balaning games formalize situations where multiple players want to uti-lize a set of resoures. For example, the resoures may be omputers used forrunning jobs and the players have jobs they want to have proessed by one ofthe mahines. In ontrast to lassial problems there exists no entral instanethat ontrols to whih mahine the jobs are assigned. Instead the players hoosethe mahine they utilize.Of speial interest are situations where a player annot bene�t from hanging theresoure if all other players stik to their hosen resoures. Suh a state is alleda Nash equilibrium and represents a stable state of the game. Given an objetivefuntion one is able to measure the performane of the deentralized game byomparing the worst ase stable solution (the worst ase Nash equilibrium) tothe optimal solution with respet to the objetive funtion.



One has to arefully selet the objetive funtion as it models the aspet ofthe game whih should be optimized. In preeding works the absolute maxi-mum ompletion time and average ompletion times of the jobs are used as theobjetive funtion.In this paper we use another form of an objetive funtion. The motivation forthe use of other objetive funtions is as follows: the ompletion time should bemeasured in relation to the job size, as the same amount of delay until a job isompleted is worse for a player with a small job in omparison to a player witha large job. Players with large jobs expet that the job will take some time forproessing, while one wants to have a small job proessed immediately. This ismodeled by the normalized maximum and average ompletion time, whih is themaximum and average of all ompletion times in relation to the job sizes. N.Blum [2℄ raised the question how to de�ne a model that has a good performanefor normalized objetive funtions. We present a model, whih guarantees goodperformane for the normalized and unnormalized objetive funtions.In Setion 2 we give a formal introdution on the used framework. Koutsoupiasand Papadimitriou [13℄ introdued the KP-model. In the KP-model eah resoureproesses all the jobs before returning the answer to the player. This emposesa very poor performane in respet to the normalized objetive funtions. InSetion 3 we give a formal introdution to the KP-model, present known resultsof the performane of the KP-model for unnormalized objetive funtions andshow how poor it performs with respet to the normalized objetive funtions.Setion 4 introdues the priority model and shows that the performane is muhbetter than the performane of the KP-model for most of the onsidered objetivefuntions.2 Basis and NotationKoutsoupias and Papadimitriou [13℄ introdued load balaning games as strate-gi games � or games in normal form [3,4,15,16℄. Instead of giving an introdutionto the generi framework, we give a speialization of the model as load balaninggames.Let G = 〈N, M, (xj), (si), C〉 be a load balaning game where� N := {1, . . . , n} is the non-empty set of players (we will use the term jobsynonymously for player),� M := {1, . . . , m} is the non-empty set of mahines,� for all j ∈ N : xj ∈ R+ is the size of the job of player j,� for all i ∈ M : si ∈ R+ is the speed of mahine i and� C : N × MN → R with Cj(a1, . . . , an) := C(j, a1, . . . , an) is the ompletiontime of the job of player j when players k ∈ N hoose mahine ak ∈ M .
aj ∈ M is alled a (pure) strategy for player j and A = (a1, . . . , an) is alled a(pure) strategy pro�le or (pure) pro�le. The players hoose their strategy one



and annot hange it later. Load balaning games are non-ooperative and un-oordinated strategi games, that means, players hoose their strategy withoutknowledge of the strategies of the other players and without ommuniating withthe other players.If all mahines are of equal speed, we also write 〈N, M, (xj), C〉 instead of
〈N, M, (xj), (1), C〉. The speeds of the mahines are linear fators in the modelswe onsider. This allows us to normalize the games where all mahines haveequal speed to games where the speeds of all mahines are 1 by saling the jobs.When onsidering games with mahines of equal speed we always assume thatthe mahines' speed is 1.An example for suh a model is the KP-Model whih was �rst presented byKoutsoupias and Papadimitriou [13℄. The authors de�ned the ompletion timeof job j to be the running time of the mahine that proesses this job. Theompletion time in the KP-Model CKP

j is
CKP

j (a1, . . . , an) :=
1

saj

∑

k:ak=aj

xk.We want to look at the drawbaks of deentralized egoisti mahine seletion.The Nash equilibrium that we will introdue de�nes a stable state of the gamewhere a player � if it would be allowed � would not hange his strategy, beause itwould not redue the ompletion time. We want to ompare the Nash equilibriaof a game to the optimal solution for an objetive funtion.A (pure) Nash equilibrium of a game G = 〈N, M, (xj), (si), C〉 is a pro�le A =
(a1, . . . , an) suh that for all players j ∈ N and all mahines i ∈ M

Cj(a1, . . . , an) ≤ Cj(a1, . . . , aj−1, i, aj+1, . . . , an).The soial optimum OPT(f, G) of the objetive funtion f and game G =
〈N, M, (xj), (si), C〉 is the soial value of a pro�le that minimizes f .

OPT(f, G) = min{f(G, A) | A is a pro�le of G}The oordination ratio CR(f, G) is a measure of the quality of a Nash equilib-rium. We measure this by the ratio of a Nash equilibrium that maximizes theobjetive funtion f to the soial optimum. The soial value of suh a Nash equi-librium is alled worst-ase Nash equilibrium WN(f, G) of game G to f where
WN(f, G) = max{f(G, A) | A is a Nash equilibrium of G}.The oordination ratio CR(f, G) of game G for the objetive funtion f is

CR(f, G) :=
WN(f, G)

OPT(f, G)
.Objetive funtions of speial interest are the maximum ompletion time

Cmax(G, A) := max
j∈N

Cj(A)



and the average ompletion time
ΣCj(G, A) :=

∑

j∈N

Cj(A).Both are found in literature that onsiders load balaning games and shedulingin general. For the average ompletion time we use the sum of the ompletiontimes instead of the mean as the number of players is just a onstant fator andin the ase of the oordination ratio it would vanish in the fration.If we onsider load balaning games we may want to measure the performanefrom the point of view of players. We want to model that players register theompletion time relative to the sizes of their jobs. To do this we introdue thenormalized maximum ompletion time Cn
max and normalized average ompletiontime ΣCn

j :
Cn

max(G, A) := max
j∈N

Cj(A)

xj

and
ΣCn

j (G, A) :=
∑

j∈N

Cj(A)

xj

.3 The KP-ModelIn this setion the KP-model will be onsidered, i.e. the ompletion time of ajob j is de�ned as
Cj(A) := CKP

j (A) =
∑

k∈N

ak=aj

xk.This means that a mahine proess all jobs before returning the result to theplayers. Thus a job of a player is delayed by any job proessed on that mahine.3.1 Maximum Completion Time and Average Completion TimeWe may wonder if there is a onstant upper bound of the oordination ratio forthe maximum ompletion time Cmax. Gairing et al. [10℄ give an answer to thisquestion by providing a tight upper bound for idential mahines.Theorem 1. [10, Theorem 9℄ Let G =
〈

N, M, (xj), C
KP
〉 be a load balaninggame. Then

CR(Cmax, G) ≤ 2 −
2

m + 1and this bound is tight.



In the ase of nonidential mahines there is no onstant upper bound, butFeldmann et al. [7℄ provide an asymptotially tight upper bound depending onthe number of mahines. Let Γ be the Gamma funtion.Theorem 2. [7, Theorem 3℄ Let G =
〈

N, M, (xj), (si), C
KP
〉 be a load balaninggame with m = |M | mahines. Then

CR(Cmax, G) ≤ Γ−1(m)and this bound is asymptotially tight.In ontrast to the maximum ompletion time there is no onstant upper boundfor the average ompletion time for idential mahines.Berenbrink et al. [1℄ provide a worst-ase lower bound in the number of playersfor the avarage ompletion time.Theorem 3. [1, Lemma 3.2℄ For all number of players n ∈ N there exists aload balaning game G =
〈

N, M, (xj), C
KP
〉 suh that

CR(ΣCj , G) ≥
n

5
.Not all load balaning games with n players have this high oordination ratio,but there exists some that have. The upper bound given by Berenbrink et al.shows that the oordination ratio is bounded from above by the maximum jobsize xmax := max{xk | k ∈ N}.Theorem 4. [1, Theorem 2.5℄ For all load balaning games

G =
〈

N, M, (xj), C
KP
〉

CR(ΣCj , G) ≤ 4xmax.Feldmann et al. [8℄ give an overview of the results up to 2003 about load balaninggames in the KP-model. They over results related to pure strategies and mixedstrategies (mixed strategies are random distributions on the ations). Furtherspei� results an be found in [1,6,7,9,10,13℄.3.2 Normalized Objetive FuntionsIn the ase of the normalized objetive funtions, we will see that the oordina-tion ratio is unbounded, i.e. for every γ > 1 there is a gameG =
〈

N, M, (xj), C
KP
〉suh that

CR(Cn
max, G) ≥ γ and CR(ΣCn

j , G) ≥ γ. (1)For example onsider the following game with four players and two mahines:� N := {1, 2, 3, 4}� M := {1, 2}



� x1 := x2 := 1, x3 := x4 := x where x > 3In both ases (ΣCn
j and Cn

max) the optimal solution is to plae the jobs of thesame size on the same mahine. This implies that B = (1, 1, 2, 2) is a soialoptimum. A Nash equilibrium may be generated by the LPT list-sheduling rule[9, Theorem 2℄ giving the Nash equilibrium A with
A = (1, 2, 1, 2).The values of the objetive funtions ΣCn

j and Cn
max for both pro�les are:

ΣCn
j (B) = 2

2 · 1

1
+ 2

2x

x
= 8,

ΣCn
j (A) = 2

1 + x

1
+ 2

1 + x

x
≥ 2(1 + x),

Cn
max(B) = max

{

2 · 1

1
,
2x

x

}

= 2 and
Cn

max(A) = max

{

1 + x

1
,
1 + x

x

}

= 1 + x.Hene the oordination ratios of both normalized objetive funtions are
CR(ΣCn

j , G) ≤
2(1 + x)

8
=

1 + x

4
and

CR(Cn
max, G) =

1 + x

2
.Choosing x > 3 suh that 1+x

4 > γ implies (1). Thus there is no onstant upperbound, even if the number of players and mahines is onstant.4 The Priority ModelWe introdue the priority model to improve the situation for normalized obje-tive funtions. We will even show that the oordination ratio for the averageompletion time in the ase of idential mahines improves.We require that the sizes of the jobs are known by the mahines before runningthe jobs. The jobs will be proessed on the mahines in asending order of thejob sizes. The ompletion time of a job is the time when the mahine �nishesproessing it (instead of the proessing time of all jobs on that mahine). Thisordering ensures that small jobs will not be delayed by large jobs whih shouldimprove the normalized oordination ratios.To de�ne the ompletion time we have to give a total ordering of the jobs. Wewant to proess jobs of small sizes �rst, so small jobs have a higher priority thanlarge jobs. The ordering of jobs of the same size is not lear. We just use any



order whih has to be given before the game starts, i.e. the order is inludedin the game rules. We give the order by the priority relation � whih de�nes atotal ordering of all jobs suh that
∀j, k ∈ N : xj < xk ⇒ j � k.We an now de�ne the ompletion time of the priority model CP

j for a pro�le
A = (a1, . . . , an) by

CP
j (A) :=

∑

k:ak=aj
k�j

xk

saj

.We will number the jobs suh that 1 � 2 � · · · � n.4.1 Maximum Completion Time and Average Completion TimeIntrestingly the List Sheduling algorithm [11℄ obeying the order given by � pro-vides an algorithm that generates a Nash equilibrium for the priority model. TheList Sheduling algorithm is a greedy algorithm for alloating jobs to mahines.In eah step the algorithm selets an unassigned job and plaes it on a mahinethat would �nish �rst the proessing of the job after proessing the jobs alreadyassigned to this mahine. In our ase the jobs are assigned in the order given by
� whih is equivalent to the SPT-rule. Algorithm LS� formalizes the algorithm.Immorlia et al. [12℄ have shown that this algorithm generates a Nash equilibriumand that any Nash equilibrium in the priority model may be generated by theList Sheduling algorithm obeying the order given by �. This allows us to usethe results of the performane of List Sheduling as an approximation algorithmfor minimizing the maximum ompletion time and the average ompletion timeto derive the oordination ratio for Cmax and ΣCj .Algorithm 1. LS�Input: load balaning game 〈N, M, (xj), (si), C

P
〉, priority relation �; the jobsare ordered suh that 1 � 2 � · · · � nOutput: pro�le A = (a1, . . . , an)1. A := (a1, . . . , an), ∀j ∈ N : aj := 0 (at the beginning eah job is proessedby no mahine)2. for j := 1 to n do(a) selet i ∈ M , suh that ∀l 6= i : CP

j (A−j , i) ≤ CP
j (A−j , l)(b) aj := i3. return AList Sheduling with the order de�ned by � is a speial variant of the SPT-rule.The SPT-rule for List Sheduling de�nes that the jobs are sheduled in non-dereasing order. It is known that the List Sheduling algorithm with the SPT-rule is an optimal algorithm for the avarage ompletion time [5℄. List Shedulingwith the SPT-rule is a 2 − 1

m−1 approximation algorithm for the maximumompletion time [11℄. This bound is tight. Hene, we get the following orollary.



Corollary 1. For all load balaning games G =
〈

N, M, (xj), C
P
〉 with m = |M |mahines

CR(Cmax, G) ≤ 2 −
1

m
and CR(ΣCj , G) = 1.This result is an improvement for the objetive funtion ΣCj ompared to theKP-model. In the ase of Cmax the result is slightly worse than the upper boundof 2 − 2

m+1 of the KP-model.Liu and Liu [14℄ showed an upper bound for the approximation ratio of the ListSheduling algorithm for arbitrary mahines. This gives the following orollary:Corollary 2. Let G =
〈

N, M, (xj), (si), C
P
〉 be a load balaning game, then

CR(Cmax, G) ≤ 1 +
maxi∈M si

minl∈M sl

+
maxi∈M si
∑

l∈M sl

.In the ase of arbitrary mahines and the average ompletion time, we an provea similar upper bound.Lemma 1. Let G =
〈

N, M, (xj), (si), C
P
〉 be a load balaning game, then

CR(ΣCj , G) ≤
maxi∈M si

minl∈M sl

+
maxi∈M si
∑

l∈M sl

n.Proof. Let Li
j(A) the unnormalized load of mahine i onsidering only the players

k ≤ j, i.e.,
Li

j(A) =
∑

k:k≤j

ak=i

xk

si

.Then for all players j ∈ N and all pro�les A

Cj(A) = L
aj

j (A).Let A = (a1, . . . , an) be a Nash equilibrium, suh that the WN(ΣCj , G) =
ΣCj(A). Then

WN(ΣCj , G) = ΣCj(A) =
∑

j∈N

Cj(A) =
∑

j∈N

L
aj

j (A).Let for all players j ∈ N the mahine lj be the mahine with the lowest loadonsidering only the players ≤ j, i.e., ∀i ∈ M : L
lj
j (A) ≤ Li

j(A). Then
Cj(A) = L

aj

j (A) ≤ L
lj
j (A) +

xj

slj

.Otherwise A would not be a Nash equilibrium, beause player j ould move tomahine lj to derease the ompletion time. All players k > j do not in�uene the



ompletion time of player j. Hene, the ompletion time of player j on mahine
lj is

L
lj
j (A) +

xj

slj

.This implies
WN(ΣCj , G) =

∑

j∈N

L
aj

j (A) ≤
∑

j∈N

(

L
lj
j (A) +

xj

slj

)

. (2)Now we give an upper bound for L
lj
j (A). Consider the following sum
∑

i∈M

siL
i
j(A).By de�nition Li

j(A) ≥ L
lj
j (A) for all i ∈ M . Hene

∑

i∈M

siL
i
j(A) ≥

∑

i∈M

siL
lj
j (A) = L

lj
j (A)

∑

i∈M

si.On the other hand
∑

i∈M

siL
i
j(A) =

∑

i∈M

si







∑

k:k≤j

ak=i

xk

si






=
∑

k≤j

xk.Both terms give the following upper bound for L
lj
j (A):

L
lj
j (A) ≤

∑

k≤j xk
∑

i∈M si

.After insertion of this upper bound into (2) we obtain
WN(ΣCj , G) ≤

∑

j∈N

(

L
lj
j (A) +

xj

slj

)

≤
∑

j∈N

(

∑

k≤j xk
∑

i∈M si

+
xj

slj

)

≤ n

∑

j∈N xj
∑

i∈M si

+

∑

j∈N xj

mini∈M si

.We now give a lower bound for a soial optimum to obtain the oordinationratio. Let B = (b1, . . . , bn) be a pro�le that optimizes the objetive funtion
ΣCj . Eah job j ∈ N has to be proessed on some mahine i ∈ M . On thatmahine at least te jbo itself is sheduled. A simple lower bound is thus

ΣCj(B) =
∑

j∈N

Cj(B) ≥
∑

j∈N

xj

sbj

≥
∑

j∈N

xj

maxi∈M si

.



Combining the upper bound on A with the lower bound on B gives
WN(ΣCj , G) ≤ n

∑

j∈N xj
∑

i∈M si

+

∑

j∈N xj

mini∈M si

= n

∑

j∈N xj

maxi∈M si

maxi∈M si
∑

i∈M si

+

∑

j∈N xj

maxi∈M si

maxi∈M si

mini∈M si

≤

(

n
maxi∈M si
∑

i∈M si

+
maxi∈M si

mini∈M si

)

OPT(ΣCj , G).

⊓⊔4.2 Normalized Objetive FuntionsIn this setion we will onsider normalized objetive funtions. We have hosenthe priority model to overome the poor performane of the KP-model for thoseobjetive funtions. We would expet, that the priority model behaves muhbetter and in fat we an prove that the oordination ratio for the normalizedobjetive funtions is the same as for the absolute objetive funtions in the aseof idential mahines.Theorem 5. Let G =
〈

N, M, (xj), C
P
〉 be a load balaning game with m = |M |mahines. Then

CR(Cn
max, G) ≤ 2 −

1

m
.The proof of Theorem 5 is similiar to the proof that List Sheduling is a 2 − 1

mapproximation algorithm.This shows that we an reprodue the results of the unnormalized ase Cmax forthe normalized ase Cn
max. This is a vast improvement to the KP-model wherethe oordination ratio is not bounded by a onstant or the number of playersand mahines. We now want to show, that similar results may be reprodued forthe ase of the objetive funtion ΣCn

j . We an prove that all Nash equilibriahave the same soial value as the soial optimum.Theorem 6. Let G =
〈

N, M, (xj), C
P
〉 be a load balaning game in the prioritymodel, then

CR(ΣCn
j , G) = 1.Proof. The proof will be performed in two steps. At �rst we show that all Nashequilibria have the same soial ost (Lemma 2). Then we show that there existsa Nash equilibrium with the same soial ost as a soial optimum (Lemma 3).The ombination of both lemmas proves the theorem.Lemma 2. Let G =

〈

N, M, (xj), C
P
〉 be a load balaning game. Then for allNash equilibria A and B of G

ΣCn
j (G, A) = ΣCn

j (G, B).



Proof. We prove the lemma by indution on the number of players. Let A =
(a1, . . . , an) and B = (b1, . . . , bn) be two Nash equilibria with n players of thesame load balaning game G =

〈

N, M, (xj), C
P
〉.Instead of proving that the soial ost is equal for both Nash equilibria, we showthat for eah player 1 ≤ j ≤ n the ompletion time is the same:

CP
j (A) = CP

j (B).We do this by proving that there is a permutation π : M → M on the mahines,suh that for eah mahine 1 ≤ i ≤ m the load
Li(C) =

∑

k:k≤n

ak=i

xkis equal in both Nash equilibria: Li(A) = Lπ(i)(B).� n = 1: All mahines have the same speed so the ompletion time is the sameon all mahines. Hene there exists suh a permutation and CP
1 (A) = CP

1 (B).� n− 1 → n: A′ = (a1, . . . , an−1) and B′ = (b1, . . . , bn−1) are both Nash equi-libria, beause job n is the lowest priority job and thus is always sheduledat last.By the indution hypothesis for all jobs j : 1 ≤ j ≤ n − 1 the ompletiontimes for both pro�les are the same
CP

j (A′) = CP
j (B′)and there exists a permutation π suh that for all mahines i : 1 ≤ i ≤ m

Li(A′) = Lπ(i)(B′).All Nash equilibria are generated by the List Sheduling algorithm obeyingthe order implied by � and all mahines are of equal speed. Hene we putjob n on a mahine with the lowest load and Lan(A′) = Lbn(B′). Thus
Lan(A) = Lan(A′) + xn = Lbn(B′) + xn = Lbn(B). Now we reate thepermutation π′ suh that

π′(i) =































bn, if i = an

an, if i = bn

π(an), if an = π(i)

π(bn), if bn = π(i)

π(i), otherwise.Permutation π′ ensures that for all mahines i : 1 ≤ i ≤ m the load is equal:
Li(A) = Lπ(i)(B).Adding job n to the pro�les A′ and B′ does not hange the ompletion timeof the jobs j ≤ n− 1 and the ompletion time of job n is CP

n (A) = Lan (A)
xn

=
Lbn (B)

xn
= CP

n (B). Hene the ompletion times of all jobs and the soial ostsare equal. ⊓⊔



Lemma 3. Let G =
〈

N, M, (xj), C
P
〉 be a load balaning game. Then thereexists a Nash equilibrium A, suh that

ΣCn
j (G, A) = OPT(ΣCn

j , G).Proof. To prove the lemma, we onstrut an algorithm that transforms an arbi-trary optimal pro�le to a Nash equilibrium whih does not have a higher soialvalue. We do this by speifying an algorithm that does the transformation andensures that in eah step the soial ost will not inrease.Similiar to the List Sheduling algorithm we use a greedy sheme. Starting by thehighest priority job, we move eah job to a new mahine if a job may derease itsompletion time by hanging its strategy. In suh a ase we hoose the mahinewhih minimizes the ompletion time. This is algorithm A1 and will be used asa basis to reate an algorithm that will �t our needs.Algorithm A1.Input load balaning gameG =
〈

N, M, (xj), C
P
〉, soial optimum A0 = (a0

1, . . . , a
0
n)Output Nash equilibrium An = (an

1 , . . . , an
n).1. for j := 1 to n do� Aj := Aj−1� if ∃i ∈ M : CP

j (Aj
−j , i) < CP

j (Aj) then
• a

j
j := arg mini∈M CP

j (Aj
−j , i)2. return AnFor the very same reasons why List Sheduling obeying the order given by �generates a Nash equilibrium, this algorithm transforms a pro�le to a Nash equi-librium (the ompletion time of a touhed job will not hange, beause afterwardsonly lower priority jobs are moved).The problem with this algorithm is, that the soial ost may inrease after astep. Let j be the �rst job where the ompletion time inreases. In this stepthe soial ost hanges, so we move the job j from mahine a

j−1
j to mahine a

j
j .Consider the soial ost of pro�le Aj whih is

ΣCn
j (Aj) = ΣCn

j (Aj−1) +
CP

j (Aj) − CP
j (Aj−1)

xj

+
∑

k:k>j

a
j−1

k
=a

j
j

xj

xk

−
∑

k:k>j

a
j
k
−1=a

j−1

j

xj

xk

.We ompensate this hange by moving the job on mahine a
j
j whih is proesseddiretly after job j to mahine a

j−1
j . Figure 1 visualizes this hange. The newalgorithm is given below.Algorithm A2.Input load balaning gameG =
〈

N, M, (xj), C
P
〉, soial optimum A0 = (a0

1, . . . , a
0
n)Output Nash equilibrium An = (an

1 , . . . , an
n).1. for j := 1 to n do



� Aj := Aj−1� if ∃i ∈ M : CP
j (Aj

−j , i) < CP
j (Aj) then

• a
j
j := arg mini∈M CP

j (Aj
−j , i)� A′j := Aj� if ΣCn

j (Aj) > ΣCn
j (Aj−1) then

• j := min{k > j | a
j−1
k = a

j
j}

• a
j

j
:= a

j−1
j2. return An

moving j

new

old j

j

j1

old

new j j

j1 jν

moving j

Fig. 1. Modi�tion of A1Let j := min{k > j | a
j−1
k = a

j
j} be the job that is proessed diretly after job

j on mahine a
j
j . This job has a lower priority than job j. So after moving j wewill touh this job again and hene the result of algorithm A2 will be a Nashequilibrium.The problem with this modi�ation is, that there might be jobs j1, . . . , jν onmahine a

j−1
j with a lower priority than j and higher priority than j. Let us



onsider the new soial ost for pro�le Aj :
ΣCn

j (Aj) = ΣCn
j (A′j) +

CP
j

(Aj) − CP
j

(A′j)
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∑
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j
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j
j

xj

xk

= ΣCn
j (Aj−1) +

CP
j

(Aj) − CP
j

(A′j)
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+
∑
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a
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k
=a

j−1

j

xj
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−
∑
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a
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j
j

xj

xk

+
CP

j (A′j) − CP
j (Aj−1)
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+
∑
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a
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j−1

j

xj

xk

−
∑

k:k>j

a
j−1

k
=a

j
j

xj

xkWe simplify the equation and start by expressing CP
j

in terms of CP
j :� CP

j
(A′j) = CP

j (A′j) + xj (follows from the de�nition of j)� Let J = {j1, . . . , jν} = {k | j < k < j ∧ a
j−1
k = a

j−1
j }. Then

CP
j

(Aj) = CP
j (Aj−1) − xj +

∑

k∈J

xk.This gives us
ΣCn

j (Aj) = ΣCn
j (Aj−1) +
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Now we split up the last four sums and give an upper bound where these termsare eliminated. This redues the equation to
ΣCn
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j (Aj−1)+ ≤
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.Let us now onsider the �rst sum. By the de�nition of J it follows that for all
k ∈ J : xk ≤ xj . Hene ∀k ∈ J : xk

xj
≤ 1 ≤

xj

xk
and

∑

k∈J

(

xk

xj

−
xj

xk

)

≤ 0.This redues our equation to
ΣCn

j (Aj) ≤ ΣCn
j (Aj−1) + (xj − xj)
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.From the de�nition of j it follows that xj − xj ≤ 0. So we need to prove that
∑

k:k>j

a
j−1

k
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j
j

1

xk

−
∑

k:k>j

a
j−1

k
=a

j−1
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1

xk

≥ 0. (3)We do this by onsidering the ontradition and generating a pro�le B =
(b1, . . . , bn) whih will then have a soial ost less than the optimum A0.Pro�le B is equal to pro�le A′j exept that all jobs with a priority less than jfrom mahine a

j−1
j are moved to mahine a

j
j and all jobs with a priority lessthan j from mahine a

j
j are moved to mahine a

j−1
j . Formally the pro�le B isgiven by

bk :=











a
j
j , if k ≥ j ∧ a

j−1
k = a

j−1
j

a
j−1
j , if k ≥ j ∧ a

j−1
k = a

j
j

a
j−1
k , otherwise.



We now alulate the soial ost of pro�le B. Let δ := CP
j (B) − CP

j (Aj−1) thehange of job j. From the de�nition of pro�le j it follows that δ < 0. Hene
ΣCn

j (B) = ΣCn
j (Aj−1) + δ
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.We now use our assumption that
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< 0.This gives us
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< ΣCn
j (Aj−1) + δ

xj

xk

< ΣCn
j (Aj−1).But ΣCn

j (Aj−1) = ΣCn
j (A0), thus the pro�le B has a lower soial ost as thesoial optimum. Hene equation (3) is orret and ΣCn

j (An) = ΣCn
j (A2(A

0)) =

ΣCn
j (A0). ⊓⊔For arbitrary mahines, the upper bounds are worse as in the ase of the unnor-malized objetive funtions. The following lemma provides an overview of theupper bounds:Lemma 4. Let G =

〈

N, M, (xj), (si), C
P
〉 be a load balaning game. Then

CR(Cn
max, G) ≤ n

maxi∈M si
∑

i∈M si

+
maxi∈M si

mini∈M si

and
CR(Cn

max, G) ≤ n
maxi∈M si
∑

i∈M si

+
maxi∈M si

mini∈M si

.Using the same reasoning as in the proof of Lemma 1 this lemma may be proved.We omit the details here.5 Conlusions and Further WorkWe have shown that with a slight inrease in the oordination ratio for theobjetive funtion Cmax our model performs muh better for the other threeobjetive funtions. For the average ompletion time and the normalized average



ompletion time the deentralized stable solutions are as good as soial optimain the ase of idential mahines. The drawbak of the new model is that moreinformation is required. The preedene relation � has to be announed as oneof the rules of the game. Getting rid of the preedene relation or exluding thepreedene relation from the game rules would remove this drawbak omparedto the KP-model.One way to remove the preedene relation from the rules would be to hoosea valid preedene relation randomly after starting the game and using the ex-peted ompletion time instead of the real ompletion time for strategy sele-tion. But this would make the situation worse, beause the Nash equilibria wouldhange. In onrete this would lead to a oordination ratio > 1 in the ase of the(normalized) average ompletion time and idential mahines. Further work isrequired to investigate if there are onstant bounds for the oordination ratiosin this randomized priority model.A drawbak of both the KP-model and our priority model is that only o�ine-situations are onsidered. Further work should inlude online-situations whereplayers may take part in the game at di�erent points of time and players do notknow when a new player will begin to take part of the game. This would inludeother tehniques as the lassial games in normal form (or strategi games). Byde�nition in strategi games the whole set of rules (number of players, allowedations of all players and payo� funtions of all players) are known to eah player.This is not the ase in the online situation where a player does not know whenand if a further player will join the game. The advantage of the online variantswould be that they model the realisti ase more appropriately. A orrespondingextension to network �ow games (load balaning games are just a speial aseof them) would allow to model big deentralized networks like the Internet in arealisti way whih is impossible with the o�ine models.Referenes1. Berenbrink, P., Goldberg, L., Goldberg, P., Martin, R.: Utilitarian resoure assign-ment. Computing Researh Repository (CoRR) s.GT/0410018 (2004)2. Blum, N.: Personal ommuniation. Rheinishe Friedrih-Wilhelm-UniversitätBonn, Informatik V (2005)3. Borel, E.: La theéorie du jeu et les equations intégrales à noyau symétrique.Comptes Rendus Hebdomadaires des Séanes de l'Aadémie des Sienes (Paris)173 pp. 1304�1308 (1921)4. Borel, E.: The theory of play and integral equations with skew symmetri kernels(translation of [3℄). Eonometria 21 pp. 101�115 (1953)5. Conway, R., Maxwell, W., Miller, L.: Theory of Sheduling. Addison Wesley (1967)6. Czumaj, A., Vöking, B.: Tight bounds for worst-ase equilibria. Pro. of theThirteenth Annual ACM-SIAM Symposium on Disrete Algorithms (SODA) pp.413�420 (2002)7. Feldmann, R., Gairing, M., Lüking, T., Monien, B., Rode, M.: Nashi�ation andthe oordination ratio for a sel�sh routing game. In: Pro. of the 30th InternaltionalColloquium on Automata, Languages and Programming (ICALP). Leture Notesin Computer Siene (LNCS), vol. 2719, pp. 514�526 (2003)



8. Feldmann, R., Gairing, M., Lüking, T., Monien, B., Rode, M.: Sel�sh routing innon- ooperative networks: A survey. In: Pro. of the 28th International Sympo-sium Mathematial Foundations of Computer Siene. Leture Notes in ComputerSiene (LNCS), vol. 2747, pp. 21�45. Spinger Verlag, Heidelberg (2003)9. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Maroniolas, M., Spirakis, P.: Thestruture and omplexity of nash equilibria for a sel�sh routing game. In: Pro.of the 29th Internation Colloquium on Automata, Languages and Programming(ICALP'02). Leture Notes in Computer Siene (LNCS), vol. 2380, pp. 123�134(2002)10. Gairing, M., Lüking, T., Mavroniolas, M., Monien, B., Spirakis, P.: Extreme nashequilibria. In: Pro. of the 8th Italian Conferene on Theoretial Computer Siene(ICTCS). Leture Notes in Computer Siene (LNCS), vol. 2841, pp. 1�20 (2003)11. Graham, R.: Bound for ertain multiproessor anomalies. Bell System TehnialJournal 45, 1563�1581 (1966)12. Immorlia, N., Li, L., Mirrokni, V.S., Shulz, A.S.: Coordination mehanisms forsel�sh sheduling. Theor. Comput. Si. 410(17), 1589�1598 (2009)13. Koutsoupias, E., Papadimitriou, C.: Worst-ase equilibira. In: Pro. of the 16thAnnual Symposium on Theoretial Aspets of Computer Siene (STACS). LetureNotes in Computer Siene (LNCS), vol. 1563, pp. 404�413 (1999)14. Liu, J.W.S., Liu, C.L.: Bounds on sheduling algorithms for heterogeneous omn-puting systems. In: IFIP Congress 74, Stokholm. pp. 349�353 (1974)15. von Neumann, J.: Zur theorie der gesellshaftsspiele. Mathematishe Annalen 100,295�320 (1928)16. von Neumann, J.: On the theory of games of strategy (translation of [15℄). Contri-butions to the Theory of Games, Volume IV (Annals of Mathematis Studies, 40)(1959)


