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1 Introduction

We study the approximability of the Minimum Betweenness problem in tournaments (see [3])
that resisted so far efforts of designing polynomial time approximation algorithms with a constant
approximation ratio. For the status of the general Betweenness problem, see e.g. [22, 13, 3, 12].

In this paper we design the first polynomial time approximation scheme (PTAS) for that prob-
lem, and generalize it to much more general class of ranking CSP problems, called here fragile
problems. To our knowledge it is the first nontrivial approximation algorithm for the Betweenness
problem in tournaments.

In the Betweenness problem we are given a ground set of vertices and a set of betweenness
constraints involving 3 vertices and a designated vertex among them. The objective function of a
ranking of the elements is the number of betweenness constraints for which the designated vertex
is not between the other two vertices. The goal is to minimize the objective function. We refer
to the Betweenness problem in tournaments, that in instances with a constraint for every triple of
vertices, as the BetweennessTour or fully dense Betweenness problem (see [3]). We consider also
the k-ary extension k-FAST of the Feedback-Arc-Set-Tournament (FAST) problem (see [20, 1, 4]).

We extend the above classes by introducing a more general class of fragile ranking k-CSP
problems. A constraint S of a ranking k-CSP problem is called fragile if changing the relative
order of a single vertex in S with respect to the rest of S makes it unsatisfied whenever S was
satisfied by the original order. A ranking k-CSP problem is called fragile if all its constraints are
fragile.

We now formulate our main results.

Theorem 1. There exists a PTAS for the BetweennessTour problem.

The above answers an open problem of [3] on the approximation status of the Betweenness
problem in tournaments.

We now formulate our first generalization.

Theorem 2. There exist PTASs for all fragile ranking k-CSP problems in tournaments.

Theorem 2 entails, among other things, existence of a PTAS for the k-ary extension of FAST.

Corollary 1. There exists a PTAS for the k-FAST problem.

We generalize BetweennessTour to arities k ≥ 4 by specifying for each constraint S a pair
of vertices in S that must be placed at the ends of the ranking induced by the vertices in S. Such
constraints do not satisfy our definition of fragile, but do satisfy a weaker notion that we call weak
fragility. The definition of weakly fragile is identical to the definition for fragile except that only four
particular single vertex moves are considered, namely swapping the first two vertices, swapping the
last two, and moving the first or last vertex to the other end. We now formulate our most general
theorem.

Theorem 3. There exist PTASs for all weak-fragile ranking k-CSP problems in tournaments.

Corollary 2. There exists a PTAS for the k-BetweennessTour problem.

As an additional application of our techniques we improve the parameterized time complexity
of several ranking problems.

Theorem 4. There exists a parameterized subexponential algorithm for FAST with runtime 2O(
√
K)+

nO(1) for OPT ≤ K. A variant of the algorithm uses 2O(
√
K logK) + nO(1) time and nO(1) space.
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Both results in Theorem 4 improve the best up to now known parameterized runtime bound
of Alon, Lokshtanov and Saurabh [6] for the feedback arc set tournament problem by a Θ(logK)
factor in the exponent. We also give improved results for the closely related problem of Kemeny
rank aggregation (KRA); see e.g. [2, 20].

Theorem 5. Let m be the number of input rankings (voters), n the number of candidates, and
OPT ≤ m

(n
2

)

the (unscaled) optimum value. There exists a parameterized subexponential algorithm

for Kemeny Rank Aggregation with runtime and space 2O(
√
K) +nO(1) for OPT/m ≤ K. A variant

uses 2O(
√
K log(K)) + nO(1) time and nO(1) space.

Note that our bound in Theorem 5 is based on an upper-bound K on the scaled optimum value
OPT/m, that is the average distance from input rankings to the output ranking. This is arguably
a more natural parameter than OPT itself. The best previously known runtime was nO(1) + 2O(K)

[10].1

We also give the first fixed-parameter tractability result for our fragile ranking generalization
for arity 3.

Theorem 6. There exist parameterized subexponential algorithms for all fragile rank CSPs on

tournaments with arity three (e.g. 3-FAST and BetweennessTour) with runtime 2O(
√
K/n)·nO(1)

for OPT ≤ K.

For betweenness the previously best known runtime was 2O(K1/3 logK) [24]. Our result is better
by a log factor in the exponent for the largest possible K = Θ(n3) and even better for smaller K.
Interestingly we can solve instances with K as large as Θ(n) in polynomial time!

We give the algorithms and the analysis of our PTAS for fragile problems in Sections 3-8 and
Appendix A of this paper. We state and analyze our exact algorithms in Appendix B. We extend
our results to weak fragility in Appendix C.

2 Intuition and main ideas

Our first key idea is analogous to the approximation of a differentiable function by a tangent
line. Given a ranking π and any ranking CSP, the change in cost from switching to a similar
ranking π′ can be well approximated by the change in cost of a particular weighted feedback arc
set problem (see proof of Lemma 24). Furthermore if the ranking CSP is fragile and fully dense
the corresponding feedback arc set instance is a (weighted) tournament (Lemma 18). So if we
somehow had access to a ranking similar to the optimum ranking π∗ we could create this FAST
instance and run the existing PTAS for FAST [20] to get a good ranking.

We do not have access to π∗ but we can use a variant of the fragile techniques of [19] to get
close. We pick a random sample of vertices and guess their location in the optimal ranking to
within ǫn. We then create an ordering σ1 greedily from the random sample. We show that this
ordering is close to π∗, in that |π∗(v) − σ1(v)| = O(ǫn) for all but O(ǫn) of the vertices (Lemma
13).

We then do a second greedy step (relative to σ1), creating σ2. We then identify a set U of
unambiguous vertices for which we know |π∗(v) − σ2(v)| = O(ǫn) (Lemma 17). We temporarily

1Stated therein as runtime 2O(da) where da is the average pairwise Kendall-Tau distance between the input
rankings. We note that da = Θ(OPT/m) follows easily from the triangle inequality; see e.g. the classic proof that
picking a random input ranking is a 2-approximation in expectation.
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set aside the O(OPT/(ǫnk−1)) (Lemma 16) remaining vertices. These two greedy steps are sim-
ilar in spirit to previous work on ordinary (non-ranking) everywhere-dense fragile CSPs [19] but
substantially more involved.

We then use σ2 to create a FAST instance w that locally represents the CSP. Unfortunately
the error in σ2 causes the weights of w to have significant error (Lemma 20) even when OPT ≈ 0.
At first glance even an exact solution to this FAST problem would seem insufficient, for how can
solving a problem similar to the desired one lead to a precisely correct solution? We show that
FAST is tolerant of such errors (Lemma 24). The intuition for why this is possible is that minor
adjustments to edge weights of a zero-cost FAST instance change the optimum cost but leave the
optimum ranking unchanged.

Another difficulty is that the incorrect weights in FAST instance w may increase the optimum
cost of w far above OPT , leaving the PTAS for FAST free to return a poor ranking. To remedy this
we create a new FAST instance w̄ by canceling weight on opposing edges, i.e. reducing wuv and wvu
by the same amount. The resulting simplified instance w̄ clearly has the same optimum ranking
as w but a smaller optimum value. The PTAS for FAST requires that the ratio of the maximum
and the minimum of wuv + wvu must be bounded above by a constant so we limit the amount of
cancellation to ensure this (Lemma 18). It turns out that this cancellation trick is sufficient to
ensure that the PTAS for FAST does not introduce too much error (Lemma 21).

Finally we greedily insert the relatively few ambiguous vertices into the ranking output by the
PTAS for FAST.

3 Approximation Algorithm

First we state some core notation. Throughout this paper let V refer to the set of objects (vertices)
being ranked and n denotes |V |. Our O(·) hides k but not ǫ or n. Our Õ(·) hides (log(1/ǫ))O(1).
A ranking is a bijective mapping from a ground set S ⊆ V to {1, 2, 3, . . . , |S|}. An ordering is
an injection from S into R. We use π and σ (plus superscripts) to denote orderings and rankings
respectively. Let π∗ denote an optimal ordering and OPT its cost. We let

(n
k

)

(for example) denote

the standard binomial coefficient and
(V
k

)

denote the set of subsets of set V of size k.
For any ordering σ let Ranking(σ) denote the ranking naturally associated with σ. To help

prevent ties we relabel the vertices so that V = {1, 2, 3, . . . , |V |}. We will often choose to place
u in one of O(1/ǫ) positions P(u) = {jǫn + u/(n + 1), 0 ≤ j ≤ 1/ǫ} (the u/(n + 1) term breaks
ties), where ǫ > 0 is the desired approximation parameter. We say that an ordering is a bucketed
ordering if σ(u) ∈ P(u) for all u. Let Round(π) denote the bucketed ordering corresponding to π
(rounding down), i.e. Round(π)(u) equals π(u) rounded down to the nearest multiple of ǫn, plus
u/(n + 1).

Let v 7→ p denote the ordering over {v} which maps v to p. For set Q of vertices and ordering σ
with domain including Q let Q 7→ σ denote the ordering over Q which maps u ∈ Q to σ(u), i.e. the
restriction of σ to Q. For orderings σ1 and σ2 with disjoint domains let σ1 σ2 denote the natural
combined ordering over Domain(σ1) ∪Domain(σ2). For example of our notations, Q 7→ σ v 7→ p
denotes the ordering over Q ∪ {v} that maps v to p and u ∈ Q to σ(u).

A ranking k-CSP consists of a ground set V of vertices, an arity k ≥ 2, and a constraint system
c, where c is a function from rankings of k vertices to {0, 1}.2 We say that a subset S ⊂ V of size
k is satisfied in ordering σ of S if c(Ranking(σ)) = 0. For brevity we henceforth abuse notation
and omit the “Ranking” and write simply c(σ). The objective of a ranking CSP is to find an

2Our results transparently generalize to the [0, 1] case as well, but the 0/1 case allows simpler terminology.
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ordering σ (w.l.o.g. a ranking) minimizing the number of unsatisfied constraints, which we denote
by Cc(σ) =

∑

S∈(Domain(σ)
k ) c(S 7→ σ). We will frequently omit the superscript c, in which case it

should be understood to be the constraint system of the overall problem we are trying to solve.
Abusing notation we sometimes refer to S ⊆ V as a constraint, when we really are referring to

c(S 7→ ·). A constraint S is fragile if whenever it is satisfied making any single vertex move that
changes the relative order of the vertices in S makes it unsatisfied. In other words constraint S is
fragile if c(S → π) + c(S → π′) ≥ 1 for all rankings π and π′ over S that differ by a single vertex
move, i.e. π′ = Ranking(v → p S \ {v} → π) for some v ∈ S and p ∈ (Z + 1/2).

Our techniques handle ranking CSPs that are fully dense with fragile constraints, i.e. every
set S of k vertices corresponds to a fragile constraint. Fully dense instances are also known as
tournaments.

Let bc(σ, v, p) =
∑

Q:··· c(Q 7→ σ v 7→ p), where the sum is over sets Q ⊆ Domain(σ) \ {v} of
size k − 1. Note that this definition is valid regardless of whether or not v is in Domain(σ). The
only requirement is that the range of σ excluding σ(v) must not contain p. This ensures that the
argument to c(·) is an ordering (injective). We will usually omit the superscript c (as with C).

We call a non-negative weight function w over the edges of the complete graph induced by
some vertex set U a FAS instance. We can express the FAST problem in our framework by

the correspondence c(u 7→ x v 7→ y) =

{

wvu if x < y
wuv otherwise

. Abusing notation slightly we also

write Cw(σ) for Cc(σ) with the above c. More concretely Cw(σ) =
∑

u,v:σ(u)>σ(v) wuv. Similarly

we write bw(σ, v, p) =
∑

u 6=v

{

wuv if σ(u) > p
wvu if σ(u) < p

. Observe that FAST captures all possible fragile

constraints with k = 2. We generalize to k-FAST as follows: a k-FAST constraint over S is satisfied
by one particular ranking of S and no others.

We use the following two results from the literature.

Theorem 7 ([20]). Let w be a FAS instance satisfying α ≤ wuv + wvu ≤ β for α, β > 0 and
β/α = O(1). There is a PTAS for the problem of finding a ranking π minimizing Cw(π) with

runtime nO(1)2Õ(1/ǫ6).

Theorem 8 (e.g. [7, 21]). For any δ > 0 and constraint system c, k there is an algorithm AddAp-

prox for the problem of finding a ranking π with C(π) ≤ C(π∗)+ δnk. Its runtime is nO(1)2Õ(1/δ2).

For any ordering σ with domain U let wσuv equal the number of the constraints {u, v} ⊆ S ⊆ U
with c(σ′) = 1 where (1) σ′ = S \ {v} 7→ σ v 7→ p, (2) p = σ(u) − δ if σ(v) > σ(u) and p = σ(v)
otherwise, and (3) δ > 0 is sufficiently small to put p adjacent to σ(u). In other words if v is

after u in σ it is placed immediately before v in σ′. Observe that 0 ≤ wuv ≤
(|U |−2
k−2

)

. We use the

abbreviation Cσ
′
(σ) = Cw

σ′

(σ). The following Lemma follows easily from the definitions.

Lemma 9. For any ordering σ we have (1) Cσ(σ) =
(

k
2

)

C(σ) and (2) bw
σ
(σ, v, σ(v)) = (k − 1) ·

b(σ, v, σ(v)) for all v.

Proof. Observe that all wuv that contribute to Cσ(σ) or bw
σ
(σ, v, σ(v)) satisfy σ(u) > σ(v) and

hence such wuv are equal to the number of constraints containing u and v that are unsatisfied in
σ. The

(k
2

)

and k − 1 factors appear because constraints are counted multiple times.

We define w̄σuv = wσuv − min( 1
10

(|U |−2
k−2

)

, wσuv, w
σ
vu), where U is the domain of σ. Let C̄σ(σ′) =

Cw̄
σ
(σ′). Observe that w and w̄ are equivalent from an exact solution point of view, but w̄ has a
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Algorithm 1 A 1 +O(ǫ)-approximation for fragile rank k-CSPs in tournaments.

Input: Vertex set V , |V | = n, arity k, system c of fully dense arity k constraints, and approximation
parameter ǫ > 0.

1: Run AddApprox(ǫ5nk) and return the result if its cost is at least ǫ4nk

2: Pick sets T1, . . . , Tt uniformly at random with replacement from
( V
k−1

)

, where t = 14 ln(40/ǫ)

(k
2)ǫ

.

Guess (by exhaustion) bucketed ordering σ0, which is the restriction of Round(π∗) to the
sampled vertices

⋃

i Ti.
3: Compute bucketed ordering σ1 greedily with respect to the random samples and σ0:

σ1(u) = argminp∈P(u) b̂(u, p) where b̂(u, p) =
( n

k−1)
t

∑

i:u 6∈Ti
c(Ti 7→ σ0 v 7→ p).

4: For each vertex v: If b(σ1, v, p) ≤ 13k4ǫ
(n−1
k−1

)

for some p ∈ P(v) then call v unambiguous

and set σ2(v) to the corresponding p (pick any if multiple p satisfy). Let U denote the set of
unambiguous vertices, which is the domain of bucketed ordering σ2.

5: Compute feedback arc set instance over unambiguous vertices U with weights w̄σ
2

uv (see text).
Solve it using FAST PTAS. Do single vertex moves until local optimality (with respect to FAST
objective function), yielding ranking π3 of U .

6: Create ordering σ4 over V defined by σ4(u) =

{

π3(u) if u ∈ U
argminp=v/(n+1)+j,0≤j≤n b(π

3, u, p) otherwise
.

In other words insert each vertex v ∈ V \ U into π3(v) greedily.
7: Return π4 = Ranking(σ4).

smaller objective value for approximation purposes. In other words Cσ(π′) − Cσ(π◦) = C̄σ(π′) −
C̄σ(π◦) for all rankings π′ and π◦.

For any orderings σ and σ′ with domain U , we say that {u, v} ⊆ U is a σ/σ′-inversion if
σ(u)−σ(v) and σ′(u)−σ′(v) have different signs. Let d(σ, σ′) denote the number of σ/σ′-inversions
(a.k.a. Kendall Tau distance). We say that v does a left to right (σ, p, σ′, p′)-crossing if σ(v) < p and
σ′(v) > p′. We say that v does a right to left (σ, p/σ′, p′)-crossing if σ(v) > p and σ′(v) < p′. We
say that v does a (σ, p, σ′, p′)-crossing if v does a crossing of either sort. We say that u σ/σ′-crosses
p ∈ R if it does a (σ, p, σ′, p)-crossing.

If OPT ≥ ǫ4nk then the first line of the algorithm is sufficient for a PTAS so for the remainder
of the analysis we assume that OPT ≤ ǫ4nk. For most of the analysis we actually need something
weaker, namely that OPT is at most some sufficiently small constant times ǫ2nk. We only need
the full OPT ≤ ǫ4nk in one place in Section 8.

4 Runtime analysis

By Theorem 8 the additive approximation step takes time nO(1)2Õ(1/ǫ10). There are at most
(1/ǫ)t·(k−1) = 2Õ(1/ǫ) bucketed orderings σ0 to try. The PTAS for FAST takes time nO(1)2Õ(1/ǫ6)

by Theorem 7. The overall runtime is

nO(1)2Õ(1/ǫ10) + 2Õ(1/ǫ) ·
(

nO(1) + nO(1)2Õ(1/ǫ6)
)

= nO(1)2Õ(1/ǫ10).

5 Analysis of σ
1

Let σ� = Round(π∗). Say that vertex v is costly if b(σ�, v, σ�(v)) ≥ 2
(

k
2

)

ǫ
(

n−1
k−1

)

and non-costly
otherwise.
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The proofs of the following two Lemmas are deferred to Appendix A.

Lemma 10. The number of costly vertices is at most k·OPT
ǫ(k

2)(
n−1
k−1)

.

Lemma 11. Let σ be an ordering of V , v ∈ V be a vertex and p, p′ ∈ R. Let B be the set of
vertices (excluding v) between p and p′ in σ. Then b(σ, v, p) + b(σ, v, p′) ≥ |B|

k−1

(n−2
k−2

)

.

For vertex v we say that a position p ∈ P(v) is v-out of place if there are at least 6
(k
2

)

ǫn vertices
between p and σ�(v) in σ�. We say vertex v is out of place if σ1(v) is v-out of place.

The proof of the following Lemma is also deferred to Appendix A.

Lemma 12. The number of non-costly out of place vertices is at most ǫn/2 with probability at least
9/10.

Lemma 13. With probability at least 9/10 we have

1. The number of out of place vertices is at most ǫn.

2. The number of vertices v with |σ1(v) − σ�(v)| > 3k2ǫn is at most ǫn

3. d(σ1, σ�) ≤ 6k2ǫn2

Proof. By Lemma 10 and the fact OPT ≤ ǫ4nk we have at most k·OPT
(k
2)ǫ(

n−1
k−1)

≤ ǫn/2 costly vertices

for n sufficiently large. Therefore Lemma 12 implies the first part of the Lemma.
Observe that any vertex with |σ1(v)−σ�(v)| > 3k2ǫn ≥ (6

(k
2

)

+ 1)ǫn must necessarily be v-out
of place, completing the proof of the second part of the Lemma.

For the final part observe that if u and v are a σ1/σ�-inversion and not among the ǫn out of
place vertices then there can be at most 2 ·6

(k
2

)

ǫn vertices between σ�(v) and σ�(u) in σ�. Each u

therefore only 24
(k
2

)

ǫn possibilities for v. Therefore d(σ1, σ�) ≤ ǫn2 + 24
(k
2

)

ǫn · n/2 ≤ 6ǫk2n2.

Our remaining analysis is deterministic, conditioned on the event of Lemma 13 holding.

6 Analysis of σ
2

The following key Lemma shows the sensitivity of b(σ, v, p) to its first and third arguments.

Lemma 14. For any constraint system c, k with k ≥ 2, orderings σ and σ′ over vertex set T ⊆ V ,
vertex v ∈ V and p, p′ ∈ R we have

1. |bc(σ, v, p) − bc(σ′, v, p′)| ≤
(

n− 2

k − 2

)

(number of crossings) +

(

n− 3

k − 3

)

d(σ, σ′)

2. |bc(σ, v, p) − bc(σ′, v, p′)| ≤
(

n− 2

k − 2

)

(

|net f low| + k
√

d(σ, σ′)
)

where
(

n−3
k−3

)

= 0 if k = 2, (net f low) is |{ v ∈ T : σ′(v) > p′ }| − |{ v ∈ T : σ(v) > p }|, and
(number of crossings) is the number of v ∈ T that do a (σ, p, σ′, p′)-crossing.

Proof. Fix σ, σ′, T , v, p and p′. Let L (resp. R) denote the vertices in T that do left to right

(resp. right to left) (σ, p, σ′, p′)-crossing. It is easy to see that a constraint {v} ∪ Q, Q ∈
(T\{v}
k−1

)

contributes identically to b(σ, v, p) and b(σ′, v, p′) unless either:
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1. Q and (L ∪R) have non-empty intersection (or)

2. Q contains a σ/σ′-inversion {s, t}.

The first part of the Lemma follows easily.
Towards proving the second part we first bound |L|+ |R|. Observe that |L| = |R|+ (net f low).

Assume w.l.o.g. that (net f low) ≥ 0. Observe that every pair v ∈ L and w ∈ R are a σ/σ′-
inversion, hence d(σ, σ′) ≥ |L| · |R| = (|R| + (net f low))|R| ≥ |R|2. We conclude that |L| + |R| =
2|R|+ (net f low) ≤ 2

√

d(σ, σ′) + (net f low). Therefore the number of constraints of the first type
is at most

(

n−2
k−2

)

(2
√

d(σ, σ′) + (net f low)).
To simplify we bound

(

n− 3

k − 3

)

d(σ, σ′) =

(

n− 2

k − 2

)

√

d(σ, σ′) · k − 2

n− 2
·
√

d(σ, σ′)

≤
(

n− 2

k − 2

)

√

d(σ, σ′) · (k − 2)

√

n(n− 1)/2

n− 2
≤ (k − 2)

(

n− 2

k − 2

)

√

d(σ, σ′)

for sufficiently large n.

We define the net σ/σ′-flow across p to be |{ v ∈ T : σ′(v) > p }|− |{ v ∈ T : σ(v) > p }| where
T is the domain of σ and σ′. Note that this is a specialization of the net f low in Lemma 14 to the
case p = p′. Usefully such a flow is zero if σ and σ′ are both rankings.

Corollary 15. Let π and π′ be rankings over vertex set U and w a FAST instance over U . Then
|bw(π, v, p) − bw(π′, v, p)| ≤ 2(maxr,swrs)

√

d(π, π′) for all v and p ∈ R \ Z.

Lemma 16. |V \ U | ≤ k·OPT
ǫ(k

2)(
n−1
k−1)

= O(nǫ · OPTnk ).

Proof. Observe that the number of vertices that σ�/σ1-cross a particular p is at most 2 · 6k2ǫn by
Lemma 13 (first part). Therefore we apply Lemmas 13 and 14, yielding

|b(σ�, v, p) − b(σ1, v, p)| ≤
(

n− 2

k − 2

)

12k2ǫn+

(

n− 3

k − 3

)

6k2ǫn2 ≤ 12ǫk4

(

n− 1

k − 1

)

(1)

for all v and p.
Fix a non-costly v. By definition of costly b(σ�, v, σ�(v)) ≤ 2

(

k
2

)

ǫ
(

n−1
k−1

)

≤ k4ǫ
(

n−1
k−1

)

, hence

b(σ1, v, σ�(v)) ≤ 13k4ǫ
(n−1
k−1

)

, so v ∈ U .
Finally recall Lemma 10.

We define π⊛ to be the ranking induced by the restriction of π∗ to U .

Lemma 17. All vertices in the unambiguous set U satisfy |σ2(v) − π⊛(v)| = O(ǫn).

Proof. Since π∗ is a ranking the number of vertices |B| between π∗(v) and σ2(v) in π∗ is at least
|π∗(v) − σ2(v)| − 1. Therefore by Lemma 11 we have

|π∗(v) − σ2(v)| − 1

n− 1

(

n− 1

k − 1

)

≤ b(π∗, v, σ2(v)) + b(π∗, v, π∗(v)) (Lemma 11)

≤ 2b(π∗, v, σ2(v)) (Optimality of π∗).
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We proceed

b(π∗, v, σ2(v)) ≤ b(σ�, v, σ2(v)) +O(ǫnk−1) (Lemma 14, part one)

≤ b(σ1, v, σ2(v)) +O(ǫnk−1) +O(ǫnk−1) (1)

= O(ǫnk−1) (Definition of U)

hence we conclude |π∗(v) − σ2(v)| = O(ǫn).
Finally by conclude

|π⊛(v) − σ2(v)| ≤ |π⊛(v) − π∗(v)| + |π∗(v) − σ2(v)| = |π⊛(v) − π∗(v)| +O(ǫn)

≤ k ·OPT
ǫ
(k
2

)(n−1
k−1

) +O(ǫn) (Lemma 16)

= O(ǫn).

7 Analysis of π
3

Note that all orderings and costs in this section are over U , not V . We note that |U | ≈ |V | so
|U | = Θ(n) by Lemma 16.

Lemma 18. (1 − 2/10)
(|U |−2
k−2

)

≤ w̄σ
2

uv + w̄σ
2

vu ≤ (2 − 2/10)
(|U |−2
k−2

)

, i.e. w̄σ
2

is a weighted FAST
instance.

Proof. By fragility each of the
(n−2
k−2

)

constraints S ⊇ {u, v} contributes between 1 and 2 to wuv+wvu.
The Lemma follows from the definition of w̄.

We define the shorthand OPTU = C(π⊛).

Lemma 19. Assume ranking π and ordering σ satisfy |π(u) − σ(u)| = O(ǫn) for all u. For any
u, v, let Nuv denote the number of S ⊃ {u, v} such that not all pairs {s, t} 6= {u, v} are in the same
order in σ and π. We have Nuv = O(ǫnk−2).

Proof. Such a pair {s, t} must satisfy |π(s) − π(t)| = 2 ·O(ǫn), but few constraints contain such a
pair.

Lemma 20. The following inequalities hold:

1. wσ
2

uv ≤ wπ
⊛

uv +O(ǫnk−2)

2. w̄σ
2

uv ≤ (1 +O(ǫ))wπ
⊛

uv

Proof. The only constraints S ⊃ {u, v} that contribute differently to the left- and right-hand sides
of the first part are those containing a {s, t} 6= {u, v} that are a σ2/π⊛-inversion. By Lemmas 17
and 19 we can bound the number of such constraints by O(ǫnk), completing the proof of the first
part.

If wπ
⊛

uv ≥ (1/2)
(|U |−2
k−2

)

the claim follows from the first part and the trivial fact w̄ ≤ w. Otherwise

by the first part we have wσ
2

uv < 0.6
(|U |−2
k−2

)

. Therefore by Lemma 18 wσ
2

vu > 0.2
(|U |−2
k−2

)

hence

w̄σ
2

uv = wσ
2

uv − min(0.1
(|U |−2
k−2

)

, wσ
2

uv) = min(wσ
2

uv − 0.1
(|U |−2
k−2

)

, 0) ≤ min(wπ
⊛

uv , 0) ≤ wπ
⊛

uv using the first
part of the Lemma in the penultimate inequality.
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Lemma 21.

1. C̄σ
2
(π⊛) ≤ (1 +O(ǫ))

(k
2

)

OPTU

2. C̄σ
2
(π3) ≤ (1 +O(ǫ))

(k
2

)

OPTU

3. C̄σ
2
(π3) − C̄σ

2
(π⊛) = O(ǫOPTU )

Proof. From the second part of Lemma 20 and Lemma 9 we conclude that

C̄σ
2
(π⊛) ≤ (1 +O(ǫ))Cπ

⊛

(π⊛) = (1 +O(ǫ))

(

k

2

)

OPTU .

proving the first part of this Lemma.
The PTAS for FAST guarantees

C̄σ
2
(π3) ≤ (1 +O(ǫ))C̄σ

2
(π⊛), (2)

which combined with the first part of this Lemma yields the second part.
Finally the first part of Lemma 20 followed by the first part of this Lemma imply

C̄σ
2
(π3) − C̄σ

2
(π⊛) ≤ O(ǫ)Cσ

2
(π⊛) ≤ O(ǫOPTU ),

completing the proof of the third part of this Lemma.

Lemma 22. d(π3, π⊛) = O(OPTU/n
k−2)

Proof. π3 and π⊛ both have cost at most 2OPTU (Lemma 21, first and second parts) for the FAST
instance w̄σ

2
(Lemma 18).

Lemma 23. We have |π3(v) − π⊛(v)| = O(ǫn) for all v ∈ U .

Proof. In this proof we write w (resp. w̄) as a short-hand for wσ
2

(resp. w̄σ
2
). By Lemma 18 and

local optimality of π3 we have

(|π3(v) − π⊛(v)| − 1)(1 − 2/10)

(|U | − 2

k − 2

)

≤ bw̄(π3, v, π⊛(v) + 1/2) + bw̄(π3, v, π3(v))

≤ 2bw̄(π3, v, π⊛(v) + 1/2).

Now apply Corollary 15

bw̄(π3, v, π⊛(v) + 1/2) ≤ bw̄(π⊛, v, π⊛(v)) + 2
√

d(π⊛, π3)(2 − 2/10)

(|U | − 2

k − 2

)

and then recall
√

d(π⊛, π3) = O(ǫn) by Lemma 22 and the assumption that OPT is small.
Next

bw̄(π⊛, v, π⊛(v)) ≤ (1 +O(ǫ))bw
π⊛

(π⊛, v, π⊛(v)) (Second part of Lemma 20)

= (1 +O(ǫ))b(π⊛, v, π⊛(v)) (Lemma 9) (3)

Finally

b(π⊛, v, π⊛(v)) ≤ b(σ1, v, σ2(v)) +O(nk−2(ǫn+
√
ǫ2n2)) (Lemmas 14, 13 and 17)

= O(ǫnk−1) (v ∈ U).

which completes the proof of the Lemma.
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Lemma 24. C(π3) ≤ (1 +O(ǫ))OPTU .

Proof. First we claim that

|(C(π3) − C(π⊛)) − (Cσ
2
(π3) − Cσ

2
(π⊛))| ≤ E1, (4)

where E1 is the number of constraints that contain one pair of vertices u, v in different order in π3

and π⊛ and another pair {s, t} 6= {u, v} with relative order in π3, π⊛ and σ2 not all equal. Indeed
constraints ordered identically in π3 and π⊛ contribute zero to both sides of (4), regardless of σ2.
Consider some constraint S containing a π3(v)/π⊛-inversion {u, v} ⊂ S. If the restrictions of the
three orderings to S are identical except possibly for swapping u, v then S contributes equally to
both sides of (4), proving the claim.

To bound E1 observe that the number of inversions u, v is d(π3, π⊛) ≡ D. For any u, v Lemmas
23, 17 and 19 allow us to show at most O(ǫnk−2) constraints contribute, so E1 = O(Dǫnk−2) =
O(ǫOPTU ) (Lemma 22).

Finally bound Cσ
2
(π3) − Cσ

2
(π⊛) = C̄σ

2
(π3) − C̄σ

2
(π⊛) = O(ǫOPTU ), where the equality

follows from the definition of w and the inequality is the third part of Lemma 21.

8 Analysis of π
4

We now prove Theorem 2, that is

C(π4) ≤ (1 +O(ǫ))OPT. (5)

We consider three contributions to these costs separately: constraints with 0, 1, or 2+ vertices in
V \ U .

The contribution of constraints with 0 vertices in V \U to the left- and right-hand sides of (5)
are clearly C(π3) and C(π⊛) respectively. We showed C(π3) ≤ C(π⊛) +O(ǫ)OPTU in Lemma 24.

Second we consider the contribution of constraints with exactly 1 vertex in V \U . Consider some
v ∈ V \U . We want to compare b(π3, v, σ4(v)) and b((U 7→ π∗), v, π∗(v)). Let p be the half-integer
so that Ranking(v 7→ p U 7→ π⊛) = Ranking(v 7→ π∗(v) U 7→ π∗). The algorithm’s greedy choice
minimizes b(π3, v, σ4(v)) so b(π3, v, σ4(v)) ≤ b(π3, v, p). Now using Lemmas 14 and 22 we have
b(π3, v, p) ≤ b(π⊛, v, p)+O(

√

d(π3, π⊛)nk−2) = b(π⊛, v, p)+O(
√

OPT/nknk−1. Note b(π⊛, v, p) =
b((U 7→ π∗), v, π∗(v)). Let γ = OPT/nk. We conclude by Lemma 16 that the contribution of

constraints with exactly 1 vertex in V \ U is O(|V \ U |
√

OPT/nknk−1) = O(γ
3/2nk

ǫ ) = O(ǫOPT ).
Finally by Lemma 16 there are at most |V \U |2nk−2 = O((γǫ )

2n2nk−2) = O(ǫ2OPT ) constraints
containing two or more vertices from V \ U .

This ends the analysis of our algorithm.
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Appendix A Proof of Lemmas 10 and 11

Proof of Lemma 10. First observe that for any costly v we have

2

(

k

2

)

ǫ

(

n− 1

k − 1

)

≤ b(σ�, v, σ�(v)) ≤ b(π∗, v, π∗(v)) + ǫ

(

k

2

)

·
(

n− 1

k − 1

)

since only at most a ǫ
(

k
2

)

fraction of the
(

n−1
k−1

)

possible constraints contain a π∗/σ�-inversion.
Therefore

b(π∗, v, π∗(v)) ≥ 2

(

k

2

)

ǫ

(

n− 1

k − 1

)

− ǫ

(

k

2

)

·
(

n− 1

k − 1

)

= ǫ

(

k

2

)

·
(

n− 1

k − 1

)

Secondly observe that kC(π∗) =
∑

v b(π
∗, v, π∗(v)) ≥ (number costly)ǫ

(

k
2

)(

n−1
k−1

)

, completing the
proof.

Proof of Lemma 11. By definition

b(σ, v, p) + b(σ, v, p′) =
∑

Q:···

[

c(Q 7→ σ v 7→ p) + c(Q 7→ σ v 7→ p′)
]

(6)

where the sum is over sets Q ⊆ U \ {v} of k − 1 vertices. Observe that the quantity in brackets in
(6) is at least 1 for every Q that contains a vertex between p and p′ by fragility. Finally note the

number of such Q is at least |B|
k−1

(n−2
k−2

)

, proving the Lemma.

Proof of Lemma 12. Focus on some v ∈ V and p ∈ P(v). From the definition of out-of-place and
Lemma 11 we have

b(σ�, v, σ�) + b(σ�, v, p) ≥ 6
(k
2

)

ǫn

k − 1

(

n− 2

k − 2

)

≥ 6ǫ

(

k

2

)(

n− 1

k − 1

)

for any v-out of place p. Next recall that for costly v we have

b(σ�, v, σ�(v)) ≤ 2

(

k

2

)

ǫ

(

n− 1

k − 1

)

(7)

hence

b(σ�, v, p) ≥ 4

(

k

2

)

ǫ

(

n− 1

k − 1

)

(8)

for any v-out of place p.
Recall that

b̂(v, p) =

( n
k−1

)

t

∑

i:v 6∈Ti

c(Ti 7→ σ0 v 7→ p)

for any p. Each term of the sum is a 0/1 random variable with mean µ(p) = 1

( n
k−1)

∑

Q∈( V
k−1):v 6∈Q

c(Q 7→

σ� v 7→ p) = 1

( n
k−1)

b(σ�, v, p). Therefore E
[

b̂(v, p)
]

= b(σ�, v, p). We can bound µ(σ�(v)) ≤

2
(k
2

)

ǫ
(n−1
k−1

)

/
( n
k−1

)

≡M using (7). For any v-out of place p we can bound µ(p) ≥ 2M by (8).

We can bound the probability that sum in b̂(v, σ�(v)) is at least (1 + 1/3)Mt using a Chernoff
bound as

exp(−(1/3)2Mt/3) ≤ exp

(

−1

9
· 1
( n
k−1

) · 2
(

k

2

)

ǫ

(

n− 1

k − 1

)

· 14 ln(40/ǫ)
(k
2

)

ǫ
· 1

3

)

≤ ǫ/40
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for sufficiently large n. Similarly for any v-out of place p we can bound the probability that
b̂(v, p) is at most (1 − 1/3)Mt by exp(−(1/3)2Mt/2) ≤ (ǫ/40)3. Therefore by union bound the
probability of some v-out of place p having b̂(v, p) too small is at most ǫ2/403 ≤ ǫ/40. Clearly
4(1 − 1/3) ≥ 2(1 + 1/3) so each vertex v is out of place with probability at least ǫ/20. A Markov
bound completes the proof.

Appendix B Exact algorithms

Our exact algorithms are based on a few simple ideas. We describe our techniques for exact FAST
here and defer discussion of the other problems until later. Firstly any two low-cost rankings for
a FAST problem are nearby in Kendall-Tau distance. Secondly two rankings that are Kendall-Tau
distance D apart are equivalent to within additive O(

√
D) in how good each location for each a

vertex is (Corollary 15). Thirdly a consequence of fragility is that most vertices (in a low-cost
instance) have a vee-shaped cost versus position curve (Lemma 26), and optimal rankings are
locally optimal so we know that each vertex belongs at the bottom of its curve. The uncertainty
in this curve by

√
D causes an uncertainty in the optimal position also around

√
D (Lemma 25).

Our algorithm simply computes uncertainties r(v) in the positions of all of the vertices v and solves
a dynamic program for the optimal ranking that is near a particular constant-factor approximate
ranking. We remark that Braverman and Mossel [11] and Betzler et al. [9, 10] previously applied
dynamic programming to FAST and KRA.

The kernelization algorithm of Dom et al. [15] allows an arbitrary FAST instance of cost
OPT ≤ K to be reduced to one with O(K2) in time nO(1). To achieve the results of Theorem 4
we use a constant factor approximation algorithm to upper-bound OPT , run this kernelization
algorithm, and then run our general algorithm.

Lemma 25. In Algorithm 2 we have |π∗(v) − π4(v)| ≤ r(v) for all v ∈ V where π∗ is an optimal
ranking of V .

Proof. We have a tournament so d(π∗, π4) ≤ C(π∗) + C(π4) ≤ 2C(π4). By Lemma 15 therefore

|b(π∗, v, j + 1/2) − b(π4, v, j + 1/2)| ≤ 8
√

2C(π4) (9)

for any j ∈ Z.

Algorithm 2 Exact algorithm for FAST and KRA. If dynamic programming is used in the last

line the runtime and space are both nO(1) + 2O(
√
OPT ). If divide-and-conquer is used the runtime

is nO(1) + 2O(
√
OPT logOPT ) and the space is nO(1).

Input: Vertex set V0, constraint system c0.

1: Compute a kernel with vertex set V , |V | = O(OPT 2), and constraint system c (used for rest of
algorithm) [15, 10]. Hereafter interpret notations such as C(·) and n relative to instance V, c,
not V0, c0.

2: Sort the kernel by wins [14], yielding ranking π4 of V .
3: Set r(v) = 16

√

2C(π4) + 2b(π4, v, π4(v)) for all v ∈ V .
4: Use dynamic programming or divide-and-conquer (Details: Lemma 27) to find the optimal

ranking π5 with |π5(v) − π4(v)| ≤ r(v) for all v.
5: ”Undo” the kernel step, extending ranking π5 of the kernel into a ranking of V0 as described in

[15, 10].
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Algorithm 3 Exact algorithm for fragile ranking 3-CSPs in tournaments. The runtime is

nO(1)2O(
√
OPT/n).

Input: Vertex set V

1: Use our PTAS to construct a two-approximate ranking πgood.
2: for Each π4 considered by our PTAS when constructing a 2-approximation do

3: if C(π4) ≤ 2C(πgood) then

4: Set r(v) = α1

√

C(π4)/n+ α2b(π
4, v, π4(v))/n, where α1 and α2 are absolute constants.

5: Use dynamic programming (See Lemma 27) to find the optimal ranking π5 with |π5(v) −
π4(v)| ≤ r(v) for all v.

6: end if

7: end for

8: Return the best of the π5 rankings.

Fix v inV . We conclude

|π∗(v) − π4(v)| ≤ b(π4, v, π4(v)) + b(π4, v, π∗(v)) (Fragility)

= b(π4, v, π∗(v) + 1/2) + b(π4, v, π4(v) + 1/2) (π4 is a ranking)

≤ b(π∗, v, π∗(v) + 1/2) + 8
√

2C(π4) + b(π4, v, π4(v) + 1/2) (9)

≤ b(π∗, v, π4(v) + 1/2) + 8
√

2C(π4) + b(π4, v, π4(v) + 1/2) (Optimality of π∗)

≤ 16
√

2C(π4) + 2b(π4, v, π4(v) + 1/2) (9)

= r(v) (Definition of r(v)).

Lemma 26. In Algorithm 2 we have maxj |{ v ∈ V : |π4(v) − j| ≤ r(v) }| = O(
√
OPT ).

Proof. Fix j. Let R = { v ∈ V : |π4(v) − j| ≤ r(v) }, whose cardinality we are trying to bound.
We say v ∈ V is pricey if b(π4, v, π4(v)) >

√

2C(π4). Clearly (see also proof of Lemma 10)
2C(π4) =

∑

v b(π
4, v, π4(v)) ≥ (number pricey)

√

2C(π4) hence the number of pricey vertices is at
most 2C(π4)/(

√

2C(π4) =
√

2C(π4). All non-pricey vertices in R have |π4(v)−j| ≤ 2·
√

2C(π4), so
at most 2

√

2C(π4)+1 non-pricey vertices are in R. We conclude |R| ≤ 3
√

2C(π4)+1 = O(
√
OPT )

since π4 is a 5-approximation [14].

Lemma 27. For k ∈ {2, 3} there is a dynamic program that finds the optimal ranking π5 with
|π5(v) − π4(v)| ≤ r(v) for all v, with space and runtime O(|V |k)2ψ where ψ = maxj |{ v ∈ V :
|π4(v) − j| ≤ r(v) }|. A divide and conquer variant has runtime O(|V |k)2O(ψ log |V |) and |V |O(1)

space.

Proof. Say that a set S ⊆ V is valid if it contains all vertices v with π4(v) ≤ |S| − r(v) and no
vertex v with π4(v) ≥ |S|+ r(v). Observe that for any s the valid sets of size s are uncertain about
at most ψ vertices, hence there are at most n2ψ valid sets.

We say that a ranking π of valid set S is valid if { v : π(v) ≤ j } is a valid set for all 0 ≤ j ≤ |S|.
It is easy to see that a ranking π is valid if and only if satisfies |π(v) − π4(v)| ≤ r(v) for all v.

For any ranking π over S let C ′(π) denote the part of the cost shared by all orderings with
prefix π. That is, the cost of all constraints with at most 1 vertex outside S.3

3For k = 2 (FAST) it would be more natural to use C(π) instead, but this works better for k = 3.
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One can easily see the following optimal substructure property: prefixes of an optimal (w.r.t.
C ′) valid ranking are optimal (w.r.t. C ′) valid rankings themselves.

For any valid set S let κ(S) denote the C ′ cost of the optimal (w.r.t. C ′) valid ranking of S.
The dynamic program for FAST is

κ(S) = min
v∈S:S\{v} is valid



C(S \ {v}) +
∑

q∈V \S
c(v 7→ 2 q 7→ 3)



 .

and for betweenness

κ(S) = min
v∈S:S\{v} is valid



C(S \ {v}) +
∑

u∈S\{v}

∑

q∈V \S
c(u 7→ 1 v 7→ 2 q 7→ 3)



 .

The space-efficient variant evaluates κ using divide and conquer instead of dynamic program-
ming, similar to [15]. Details deferred.

Proof of Theorems 4 and 5. Algorithm 2 is correct by Lemma 25. Lemmas 26 and 27 allow us to
bound the runtime and space requirements of the dynamic program.

Lemma 28. During the iteration of Algorithm 3 that guesses σ0 correctly we have |π∗(v)−π4(v)| ≤
r(v) for all v ∈ V where π∗ is an optimal ranking of V .

Proof. By Lemma 22 we have d(π⊛, π3) = O(OPT/n3−2). This together with Lemma 16 imply
that

d(π∗, π4) = O(OPT/n3−2 + n ·OPT/(ǫn3−1)) = O(OPT/(ǫn))

By Lemma 14 therefore

|b(π∗, v, j + 1/2) − b(π4, v, j + 1/2)| = O(n
√

OPT/(ǫn)) (10)

for any j ∈ Z.
Fix v ∈ V . We conclude

|π∗(v) − π4(v)|
(

n

1

)

≤ b(π4, v, π4(v) + 1/2) + b(π4, v, π∗(v) + 1/2) (Lemma 11)

≤ b(π∗, v, π∗(v) + 1/2) +O(
√

nC(π4)/ǫ) + b(π4, v, π4(v) + 1/2) (10)

≤ b(π∗, v, π4(v) + 1/2) +O(
√

nC(π4)/ǫ) + b(π4, v, π4(v) + 1/2) (Optimality of π∗)

≤ O(
√

nC(π4)/ǫ) + 2b(π4, v, π4(v) + 1/2) (9)

= r(v)n (Definition of r(v)).

Lemma 29. We have maxj |{ v ∈ V : |π4(v) − j| ≤ r(v) }| = O(
√

C(π4)/n).

Proof. We proceed analogously to the proof of Lemma 26. Fix j. LetR = { v ∈ V : |π4(v) − j| ≤ r(v) },
whose cardinality we are trying to bound. We say v ∈ V is pricey if b(π4, v, π4(v))/n >

√

2C(π4)/n.
Clearly (see also proof of Lemma 10) 3C(π4) =

∑

v b(π
4, v, π4(v)) ≥ (number pricey)n

√

2C(π4)/n
hence the number of pricey vertices is at most 3C(π4)/(

√

2nC(π4)) =
√

2C(π4)/n. All non-pricey
vertices in R have |π4(v)− j| ≤ 2 ·

√

2C(π4)/n, so at most 2
√

2C(π4)/n+1 non-pricey vertices are
in R. We conclude |R| ≤ 3

√

2C(π4)/n + 1 = O(
√

C(π4)/n).
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Proof of Theorem 6. Lemmas 27 and 29, plus the test of the ”if”, allow us to bound the runtime

and space requirements of the dynamic program used by Algorithm 3by nO(1)2O(
√
C(πgood)/n), which

is of the correct order since πgood ≤ 2π∗. The for loop is over a constant number of options and is
therefore irrelevant.

For correctness we focus on the iteration of Algorithm 3 that guesses σ0 correctly. The approx-
imation guarantee of our PTAS holds for this iteration so we have π4 ≤ 2π∗ ≤ 2πgood and hence
the ”if” is passed. By Lemma 25 π∗ is among the orders the dynamic program considers.

Appendix C Weak Fragility

A constraint S is weakly fragile if c(S → π)+ c(S → π′) ≥ 1 for all rankings π and π′ that differ by
a swap of the first two vertices, the last two, or cyclic shift of a single vertex. In other words π′ =
Ranking(v → p S\{v} → π) for some v ∈ S with π(v) ∈ {1, k} and p ∈ {1/2, 5/2, k−3/2, k+1/2}.
Observe that this is equivalent to ordinary fragility for k ≤ 3.

The extension to weak fragility requires replacing the two Lemmas that use fragility, namely
Lemmas 11 and 18. The new versions are identical except for constants. Other constants in the
algorithm and other parts of the proof need to be adjusted accordingly.

Lemma 30 (Weak fragile version of Lemma 11). Let c be weakly fragile and k ≥ 3. Let σ be an
ordering of V , v ∈ V be a vertex and p, p′ ∈ R. Let B be the set of vertices (excluding v) between

p and p′ in σ. Then b(σ, v, p) + b(σ, v, p′) ≥ |B|
(k−1)4k−2

(n−2
k−2

)

.

Proof. By definition

b(σ, v, p) + b(σ, v, p′) =
∑

Q:···

[

c(Q 7→ σ v 7→ p) + c(Q 7→ σ v 7→ p′)
]

(11)

where the sum is over sets Q ⊆ U \{v} of k−1 vertices. Observe by weak fragility that the quantity
in brackets in (11) is at least 1 for every Q that either has all k− 1 vertices between p and p′ in σ2

or has one vertex between them and the remaining k − 2 either all before or all after.
We consider two cases. If |B| ≥ |V |/2 then the number of suchQ is at least

( |B|
k−1

)

≥ |B|
k−1

(|B|−1
k−2

)

≥
|B|

(k−1)2k−2

(n−2
k−2

)

. If |B| ≤ |V |/2 then at least |V |/4 vertices are either before or after hence the

number of such Q is at least |B|
(|V |/4
k−2

)

≥ |B|
2·4k−2

(

n−2
k−2

)

≥ |B|
(k−1)·4k−2

(

n−2
k−2

)

for sufficiently large n and

k ≥ 3.

For weak fragile problems we need to change the constant in the definition of w̄. The new
definition is w̄σuv = wσuv − min( 1

10·4k−2

(n−2
k−2

)

, wσuv, w
σ
vu).

Lemma 31 (Weak fragile version of Lemma 18). 1
4k−2 (1 − 2/10)

(n−2
k−2

)

≤ w̄σ
2

uv + w̄σ
2

vu ≤ (2 −
2

10·4k−2 )
(n−2
k−2

)

, i.e. w̄σ
2

is a weighted FAST instance.

Proof. We prove the more interesting lower-bound and leave the straightforward proof of the upper
bound to the reader. Fix u, v ∈ U . We consider two cases.

If there are at least |U |/2 vertices between u and v in σ2 then we note that by weak fragility
every constraint S ⊇ {u, v} with all vertices in S between u and v in σ2 contributes at least 1 to

wuv + wvu. Therefore wuv + wvu ≥
(|U |/2
k−2

)

≥ 1
2·2k

(

n−2
k−2

)

.

If there are at most |U |/2 vertices between u and v in σ2 then consider constraints with all their
vertices either all before or all after u and v. We note that by weak fragility each such constraint

17



S ⊇ {u, v} contributes at least 1 to wuv+wvu. There are clearly at least |V |/4 vertices either before

or after, hence at least
(|V |/4
k−2

)

≥ 1
4k−2

(n−2
k−2

)

constraints.

We conclude that wuv + wvu ≥ 1
4k−2

(n−2
k−2

)

. The Lemma follows from the definition of w̄.
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