
The Complexity of Perfect Matching

Problems on Dense Hypergraphs

Marek Karpinski∗ Andrzej Ruciński† Edyta Szymańska‡

Abstract

In this paper we consider the computational complexity of deciding
the existence of a perfect matching in certain classes of dense k-uniform
hypergraphs. Some of these problems are known to be notoriously hard.
There is also a renewed interest recently in the very special cases of them.
One of the goals of this paper is to shed some light on the tractability
barriers for those problems.

It has been known that the perfect matching problems are NP-complete
for the classes of hypergraphs H with minimum ((k− 1)−wise) vertex de-

gree δ at least c|V (H)| for c < 1

k
and trivial for c ≥ 1

2
, leaving the status

of the problems with c in the interval [1

k
, 1

2
) widely open. In this paper

we show, somehow surprisingly, that 1

2
, in fact, is not a threshold for the

tractability of the perfect matching problem, and prove the existence of
an ǫ > 0 such that the perfect matching problem for the class of hyper-
graphs H with δ at least (1

2
−ǫ)|V (H)| is solvable in polynomial time. This

seems to be the first polynomial time algorithm for the perfect matching
problem on hypergraphs for which the existence problem is nontrivial. In
addition, we consider parallel complexity of the problem, which could be
also of independent interest in view of the known results for graphs.

1 Introduction

In recent years hypergraphs gained a lot of interest as a natural generalization
of graphs as well as a model for certain discrete optimization problems. For
instance, Asadpour, Feige and Saberi [AFS08] reduced a max-min allocation
problem, known as the Santa Claus Problem, to finding a perfect matching in a
class of bipartite hypergraphs. Since they relied on a rather non-constructive,
Hall-type sufficient condition of Haxell [Ha95], they could not solve their prob-
lem efficiently.

From the computational point of view, more satisfactory is another, Dirac-
type sufficient condition given by Rödl et al. [RRS09]. Recall that the celebrated

∗Research supported partly by DFG grants and the Hausdorff Center grant EXC59-1.
Department of Computer Science, University of Bonn. Email: marek@cs.uni-bonn.de

†Research supported by grant N201 036 32/2546. Faculty of Mathematics and Computer
Science, Adam Mickiewicz University, Poznań. Email: rucinski@amu.edu.pl

‡Research supported by grant N206 017 32/2452. Faculty of Mathematics and Computer
Science, Adam Mickiewicz University, Poznań. Email: edka@amu.edu.pl

1

Dirac theorem for graphs guarantees a Hamilton cycle in every n-vertex graph
with minimum degree at least 1

2n, and thus, a perfect matching when n is
even. In [RRS09], the authors used the minimum degree of a (k − 1)-tuple of
vertices in a k-uniform hypergraph and determined the best possible bound on
this parameter guaranteeing a perfect matching. If n is sufficiently large and
divisible by k, then the threshold values turned out to be close to 1

2n.
As a consequence, the decision problem asking whether a given k-uniform

hypergraph with the minimum (k − 1)-wise degree above 1
2n contains a perfect

matching is trivial. Szymańska observed in [Sz09] that the argument presented
in [RRS09] can be transformed into a deterministic polynomial time algorithm.
Moreover, she also showed that answering the question whether a k-uniform
hypergraph with minimum (k − 1)-wise vertex degree at least c|V (H)|, c < 1

k
,

contains a perfect matching is NP-complete.
Those results leave a “hardness gap” between 1

k
and 1

2 . By the counterex-
amples introduced in [RRS09] it is apparent that in this case there exist hyper-
graphs of minimum (k− 1)-wise vertex degree below 1

2 |V (H)| without a perfect
matching. This motivated us to investigate the complexity of the existence
problem for hypergraphs in the gap interval. Interestingly, it turned out that at
least in the upper end of this interval, when still both answers, yes and no are
possible, the problem is polynomial. Indeed, in this paper we provide a polyno-
mial time algorithm which for every hypergraph of the minimum (k − 1)-wise
vertex degree at least (1

2 − ǫ)|V (H)| constructs a perfect matching if one exists
and otherwise exhibits a certificate for non-existence (cf. Theorem 1).

Our second result regards the parallelization of the problem. While the per-
fect matching problem in graphs can be decided and computed in polynomial
time, the parallel complexity of the decision problem remains unknown. Apart
from randomized results, only some special classes of graphs have efficient paral-
lel algorithms. This includes dense graphs, in particular Dirac’s graphs, that is,
graphs with minimum degree δ ≥ n

2 . Dalhaus, Hajnal and Karpiński in [DKH93]
gave an NC2 parallel algorithm finding a perfect matching in such graphs and
showed that for the minimum degree at least cn, c < 1

2 , the problem is as hard
as for all graphs. Motivated by the results of [DKH93] and [Sa09], we investigate
the parallel complexity of the perfect matching problem in dense hypergraphs.
Our Theorem 4 implies that the problem of deciding whether a given k−uniform
hypergraph H , with minimum (k−1)-wise vertex degree at least c|V (H)|, c > 1

2 ,
contains a perfect matching admits an NC algorithm. Along the way, we also
design parallel algorithms for constructing almost perfect matchings in graphs
with restricted (k − 1)-wise degrees (cf. Theorems 2,3). These algorithms serve
as subroutines in the main algorithm.

In the following subsections we introduce our notation, define formally the
problems in question and state our results (Theorems 1, 2, 3 and 4, and Propo-
sition 1). Section 2 contains three parallel algorithms and their analysis which
proves Theorems 2, 3 and 4. The last section is devoted to an outline of the
proof of Theorem 1. A complete proof of Theorem 1, as well as a proof of
Proposition 1, will be presented in a full version of the paper.

2

1.1 Basic Definitions and Notation

1.1.1 Hypergraphs.

A hypergraph H = (V, E) is a finite set of vertices V together with a family
E of distinct, nonempty subsets of V , called edges. In this paper we consider
k-uniform hypergraphs (or, shortly, k-graphs) in which, for a fixed k ≥ 2, each
edge is of size k.

A matching in a hypergraph H is a set M ⊆ E of disjoint edges (we often
treat M as a subhypergraph of H and identify M with E(M)). The number |M |
of edges in a matching M is called the size of the matching, while the number
of vertices missing from M , that is, the number |V (H) \ V (M)| is called the

deficiency of M in H . Note that the deficiency of any matching in H equals
n modulo k. In other words, if n ≡ q (mod k), then r-deficient matchings are
possible if and only if r = q + ℓk for some ℓ ≥ 0, and such matchings have, of
course, size ⌊n/k⌋− ℓ. A matching is perfect if its deficiency is 0, or equivalently
if its size is 1

k
|V (H)|. So, a necessary condition for the existence of a perfect

matching in H is that |V (H)| ≡ 0 (mod k).
For a k-graph H and a set of k − 1 vertices S, let NH(S) be the set of

edges of H containing S and put degH(S) = |NS(H)|. We define δ(H) =
minS degH(S) and refer to it as the (k − 1)-wise, collective minimum degree of

H , or simply, minimum co-degree, as we will not consider any other kinds of
degrees in hypergraphs.

Furthermore, for all integers k ≥ 2, r ≥ 0, and n ≥ k, denote by t(k, n, r) the
smallest integer t such that every k-graph H on n vertices and with δ(H) ≥ t
contains an r-deficient matching.

1.1.2 Three classes of computational problems.

For k ≥ 2, by PM(k) we denote the problem of deciding whether a k-graph
H = (V, E) contains a perfect matching. The problem PM(2) is the classical
problem of deciding the existence of a perfect matching in a graph, and is known
to be in the polynomial class P since the paper by Edmonds [Ed65]. For all
k ≥ 2, PM(k) is equivalent to a decision problem called exact cover by k-sets,
which is known to be NP-complete for k ≥ 3 [GJ79].

Given integers k ≥ 3 and r ≥ 0, let PM(k, r) denote the problem of de-
ciding whether a k−graph H = (V, E) with |V (H)| ≡ r (mod k) contains an
r-deficient matching. In particular, when 0 < r < k, PM(k, r) asks for a match-
ing in H which, although non-perfect, is as perfect as one can get. Note also
that PM(k, 0)=PM(k).

Given integers k ≥ 3, r ≥ 0 and a real c > 0, by PM(k, r, c) we denote
the same problem as PM(k, r) but restricted to k−graphs H = (V, E) with
minimum co-degree δ(H) ≥ c|V (H)|. When r = 0, PM(k, 0, c) can be viewed
as the perfect matching problem for dense k-graphs.

3

1.2 Known Results

1.2.1 Existential Results.

Let us begin with the perfect case r = 0. For k = 2 (graphs), it is very easy
to show that, for even n, t(2, n, 0) = 1

2n. For all integers k ≥ 3 and sufficiently
large n ≥ k, the value of t(k, n, 0) is exactly determined in [RRS09]. It is proved
there that t(k, n, 0) = 1

2n−k+ck,n, where ck,n is an explicit constant depending
on the parities of k, n and 1

k
n, and satisfying 3

2 ≤ ck,n ≤ 3. Hence, in particular,
1
2n − k + 3

2 ≤ t(k, n, 0) ≤ 1
2n − k + 3 ≤ 1

2n. In [RRSS08] only a slightly weaker
upper bound, t(k, n, 0) ≤ 1

2n + 1
4k, but with a simpler proof, was shown.

As for the deficient matchings (case r > 0), a striking difference between
perfect and almost perfect matchings was observed in [RRS09]. Indeed, it was
proved there that for n ≡ r (mod k) and k ≥ 3, t(k, n, r) = n−r

k
for r ≥ (k−2)k,

and n−r
k

≤ t(k, n, r) ≤ n
k

+ O(log n) for 0 < r < (k − 2)k. Thus, in all cases
other than the perfect one, the threshold value of δ(H) for the existence of an
r-deficient matching in H is around 1

k
n, while in the perfect case it is around 1

2n.

1.2.2 Computational Results.

An immediate consequence of the results in [RRS09] is that the decision problem
PM(k, 0, c) is trivial for every c ≥ 1

2 , while PM(k, r, c), r > 0, is trivial already
for c > 1

k
. (By trivial we mean that the answer is yes for every instance.)

In [Sz09], it was shown by a polynomial reduction of PM(k) to PM(k, r, c)
that for all k ≥ 3, r ≥ 0, and every constant c < 1

k
, PM(k, r, c) is NP-complete.

It follows that PM(k, r) is NP-complete too, although this can be derived by
a direct reduction from PM(k). Those results have established a “phase tran-
sition” at c = 1

k
for PM(k, r, c), r > 0, but left a hardness gap of [1

k
, 1

2) for
PM(k, 0, c).

On the positive side, [Sz09] provided a polynomial time algorithm for the
corresponding search problem when c > 1

k
, and r > 0. It was also observed in

[Sz09] that the existential proof from [RRS09] can be turned into a polynomial
time algorithm finding a perfect matching when c ≥ 1

2 .

1.3 New Results

One goal of this paper is an attempt to understand the complexity of PM(k, 0, c)
in the gap interval c ∈ [1

k
, 1

2). Theorem 1 below shows that at least in the upper
end of the interval the decision problem PM(k, 0, c) is polynomial in time.
Another part of this paper is devoted to an alternative, constructive proof of
the bound t(k, n, 0) ≤ 1

2n + 1
4k from [RRSS08]. In fact, we turned that proof

into a parallel algorithm (see Theorem 4 below), showing that PM(k, 0, c) is not
only in P but also in the NC class. In the next two subsections we formulate
our results in detail.

4

1.3.1 Hardness Taxonomy.

Concerning the problem PM(k, 0, c), the results from [RRS09] and [Sz09] de-
scribed in Sect. 1.2.2 have left a hardness gap for c ∈ [1

k
, 1

2).

Problem 1. What is the computational complexity of PM(k, 0, c) when

c ∈ [1
k
, 1

2)?

We present two results which suggest different answers to this problem. To
put the first of them into a right context, recall that by [RRS09] we know
already that PM(k, k, c) is trivial for c > 1

k
. In other words, every k-graph H

with δ(H) ≥ c|V (H)|, where c > 1
k

and |V (H)| is divisible by k, has a k-deficient
matching.

Proposition 1. For all k ≥ 3, PM(k) is NP -complete even when restricted to

k-graphs containing a k-deficient matching.

It means that knowing that a k-graph has a matching just one edge short
from a perfect one, does not help in deciding the existence of the latter. This
could suggest that PM(k, 0, c) is NP-complete for all c ∈ [1

k
, 1

2). However, it
turns out that it is not so. Indeed, in Sect. 3 we describe an algorithm, called
PerfectMatch, which, for some c < 1

2 places PM(k, 0, c) in P .

Theorem 1. For all k ≥ 3 there exists ǫ > 0 such that if c ≥ 1
2 − ǫ, then

PM(k, 0, c) and its search version are in P.

Remark 1. Theorem 1 reveals an interesting feature: it provides a polynomial
time algorithm which, unlike the algorithms in [DKH93], [Sa09], [Sz09], or those
described in the next section, takes as inputs instances which may not posses
a desired matching, and decides whether they indeed have one. If the answer
is yes, the algorithm, in fact, computes in polynomial time a perfect matching,
while when the answer is no, it provides an evidence (in a form of a witness).

1.3.2 Parallel Algorithms.

As the model of computation we choose the version EREW PRAM. Recall that,
as shown in [RRS09], the problem PM(k, 0, 1

2) is trivial, that is, for all H with
δ(H) ≥ 1

2n, H has a perfect matching. As observed in [Sz09], the existential
proof from [RRS09] can be turned into a polynomial time search algorithm

of complexity O(nk2+2k log4 n). Here we present a parallel algorithm which
places the search version of PM(k, 0, c), c > 1

2 , in the class NC. Recall that
NC =

⋃

i NCi, and a problem is in NCi if it admits an algorithm of running

time O(logi n), using a polynomial number of processors.
Our algorithm, par-PerfectMatch, is based on the existential proof in

[RRSS08] and uses as subroutines two other parallel algorithms of independent
interest, par-LargeDefMatch(r) and par-SmallDefMatch(r), which find
r-deficient matchings for, resp., large and small, positive values of r, under
increasingly restrictive conditions on δ(H).

5

Table 1: The complexity of PM(k, r, c) with k ≥ 3. For every t=trivial problem
there exists an NC parallel algorithm finding an r-deficient matching.

H
H

H
H

H
r

c
c < 1

k
1
k

(1
k
, 1

2 − ǫ) (1
2 − ǫ, 1

2] c > 1
2

r ≥ (k − 2)k NP-com t t t t
0 < r < (k − 2)k NP-com ? t t t

r = 0 NP-com ? ? in P t

The properties of these algorithms are presented in the following theorems.
The first of them provides a parallel algorithm which finds an r-deficient match-
ing for large r, but relatively small δ.

Theorem 2. For every k ≥ 3 and r ≥ (k − 2)k there exists a constant n0,

and a parallel algorithm, called par-LargeDefMatch(r), which in every k-

graph H on n ≥ n0 vertices with n ≡ r (mod k) and δ(H) ≥ n−r
k

finds an r-

deficient matching in O(log3 n) rounds using a polynomial number of processors.

It follows that the search version of PM(k, r, c) is in the class NC3 for r ≥
(k − 2)k and c ≥ 1

k
.

If the degree condition is strengthened just a little, we can find in paral-
lel a matching of any smaller, but positive, deficiency r. The algorithm par-
SmallDefMatch(r), given below, uses the algorithm from Theorem 2 as a
subroutine.

Theorem 3. For every k ≥ 3 and 0 < r < (k − 2)k there exist constants n0

and C > 0, and a parallel algorithm, called par-SmallDefMatch(r), which

in every k-graph on n ≥ n0 vertices with n ≡ r (mod k) and δ(H) ≥ n
k

+
C log n finds an r-deficient matching in a polylogarithmic number of rounds

using a polynomial number of processors. It follows that the search version of

PM(k, r, c) is in the class NC for 0 < r < (k − 2)k and c > 1
k
.

Finally, if δ(H) exceeds 1
2n, then we are in position to compute in parallel a

perfect matching in H . This is the main result of this section.

Theorem 4. For every k ≥ 3 there exists constant n0, and a parallel algorithm,

called par-PerfectMatch, which in every k-uniform hypergraph on n ≥ n0

vertices with n divisible by k and such that δ(H) ≥ n
2 + k

4 finds a perfect matching

in a polylogarithmic number of rounds using a polynomial number of processors.

It follows that the search version of PM(k, 0, c) is in the class NC for c > 1
2 .

The above three theorems will be proved in the next section. A summary of all
computational results about PM(k, r, c) is displayed in Table 1.

6

2 Description and Analysis of Parallel Algorithms

In this section we prove Theorems 2–4. Each proof consists of a description of
the algorithm followed by a proof of its correctness.

2.1 Proof of Theorem 2

The construction below generalizes the ideas from [DKH93] to hypergraphs. The

intersection graph of a hypergraph H has the edges of H as its vertices, and two
vertices are adjacent if the corresponding edges of H intersect. Observe that the
matchings in H map one-to-one with the independent sets of the intersection
graph. When we refer to a MIS algorithm, we always mean a parallel algorithm
from [Lu86] which places the maximal independent set problem in NC2.

Algorithm par-LargeDefMatch(r), r ≥ (k − 2)k

In: k-graph H with n ≥ n0, n ≡ r (mod k) and δ(H) ≥ n−r
k

Out: r-deficient matching M1

1. Compute in parallel a maximal matching M1 in H applying a MIS algo-
rithm to the intersection graph of H . Let W := V (H) \ V (M1).

2. Repeat while |W | > r

(a) Arbitrarily divide W into t :=
⌊

|W |
(k−1)k

⌋

disjoint sets S of size |S| =

(k − 1)k. Call this family of sets S. Define an auxiliary bipartite
graph G = (V1, V2, E(G)) as follows:

• V1 = M1 and V2 = S; thus |V2| = t.

• For each e ∈ V1 and S ∈ V2 put in parallel an edge {e, S} ∈
E(G) if and only if there are two vertices ue, ve ∈ e, ue 6= ve

and two disjoint (k − 1)−element subsets XS, YS of S such that
e′e,S := XS ∪ {ue} ∈ H and e′′e,S := YS ∪ {ve} ∈ H,.

(b) Compute in parallel a maximal matching M2 in G using a parallel
MIS algorithm.

(c) For every edge (e, S) ∈ M2 in parallel absorb into M1 the set of
vertices XS ∪ YS , by replacing e with e′e,S and e′′e,S , at the same
time releasing from M1 the remaining k − 2 vertices of e, i.e., M1 :=
(M1 − {e}) ∪ {e′e,S, e′′e,S}. Set W := V (H) \ V (M1).

3. Return M1.

To show that the above algorithm computes a desired matching we need the
following fact.

Fact 1. Any maximal matching M2 in the bipartite graph G defined in the

algorithm saturates every vertex of V2, that is, V (M2) ⊇ V2.

7

The algorithm par-LargeDefMatch(r) finds an r-deficient matching in
O(log n) iterations and thus its time complexity is O(log3 n). Note that in the
case of graphs discussed in [DKH93], only one iteration in step 2 was sufficient,
saving one logarithmic factor in time complexity.

2.2 Proof of Theorem 3

Let us begin by noting that without loss of generality we may restrict the range
of r to 0 < r ≤ k. Indeed, if r1 < r2 and ri ≡ n (mod k), i = 1, 2, then any
r1-deficient matching contains an r2-deficient matching.

The algorithm par-SmallDefMatch presented below uses as subroutine
par-LargeDefMatch. In addition, following the absorbing technique intro-
duced in [RRS09], we will need another parallel subroutine which computes a
so called powerful matching.

Definition 1 (absorbing edge,[RRS09]). Given a set S of k + 1 vertices, an

edge e ∈ H is called S-absorbing if there are two disjoint edges e′ and e′′ in H
such that |e′ ∩ S| = k − 1, |e′ ∩ e| = 1, |e′′ ∩ S| = 2 and |e′′ ∩ e| = k − 2.

The key feature of the absorbing edge is that there are Θ(nk) of them for
every set S in the input hypergraph H (see Fact 2.2 in [RRS09]).

Definition 2 (powerful matching). A matching M in a k-graph H is called

powerful if for every set S ⊂ V of size k + 1 the number of S-absorbing edges

in M is at least k − 2.

To construct a small, powerful matching in H , we first create an auxiliary
graph G = (X ∪ Y, E), where X is an independent set. The vertices in Y
represent all matchings in H of size k − 2, while the vertices in X represent the
families FS of all matchings of size k− 2 consisting of S-absorbing edges, where
S runs through all subsets of vertices of size k + 1. The xy edges of G, where
x ∈ X and y ∈ Y , exhibit the membership of the matchings in the families
FS , while the y′y′′ edges, where y′, y′′ ∈ Y , indicate whether the two matchings
represented by y′ and y′′ have a vertex in common. Now, our goal is to construct
an independent subset D of Y of size O(log n) which dominates all vertices of X .
Then the union of the (k− 2)-matchings represented by the vertices of D forms
the desired powerful matching in H . This can be done efficiently in parallel if

degG(x) ≥ c|Y | for all x ∈ X and ∆(G[Y]) = o
(

1
log n

|Y |
)

. (1)

Algorithm par-IndDomSet

In: graph G = (X ∪ Y, E), G[X] = ∅, satisfying (1)
Out: independent subset D ⊆ Y dominating X , |D| = O(log n)

1. Repeat until X = ∅:

(a) For all y ∈ Y compute in parallel degG(y, X); set y0 for the lexico-
graphically first y for which degG(y, X) ≥ c

2 |X |;

8

(b) Set D := D ∪ {y0}; X := X \ {x : xy0 ∈ E},
Y := Y \ ({y0} ∪ {y : yy0 ∈ E})

2. Return D.

Algorithm par-SmallDefMatch(r), 0 < r ≤ k

In: k-graph H with δ(H) ≥ n
k

+ C log n and n ≥ n0, n ≡ r (mod k).
Out: r-deficient matching M

1. Compute a powerful matching M0 (|M0| ≤
1
k
C log n), as in Definition 2,

applying par-IndDomSet to the auxiliary graph G described above.

2. H ′ := H − V (M0), [notice that δ(H ′) ≥ 1
k
|V (H ′)|].

3. Compute a (k(k − 2) + r)−deficient matching M1 using algorithm
par-LargeDefMatch(k(k − 2) + r) in H ′.

4. T := V (H) \ (V (M1) ∪ V (M0)), [notice that |T | = k(k − 2) + r].

5. Repeat until |T | = r: [k − 2 sequential iterations]

(a) for an arbitrary set S ⊆ T, |S| = k + 1, and an S−absorbing edge
e ∈ M0, set M0 := M0\{e}∪{e′, e′′}, where e′, e′′ are as in Definition
1;

(b) T := V (H) \ V (M ′
0 ∪ M1).

6. Return M := M0 ∪ M1.

It is clear that the above algorithm returns an r-deficient matching in a
polylogarithmic number of steps.

2.3 Proof of Theorem 4

In our construction we will apply an absorbing configuration motivated by the
proof in [RRSS08].

Definition 3 (absorbing configuration). Given a set S = {x1, x2, . . . , xk} of k
vertices, a triplet of vertex disjoint edges e1, e2, e3 ∈ H is called S-absorbing

configuration if there are four disjoint edges f1, f2, f3 and f4 in H such that
f1 ∩ e1 = {v}, |f1 ∩ e2| = k − 1, f2 ∩ e1 = {w}, f2 = {u} ∪ {x1, . . . , xk−1} and
f3 ∩ e3 = T and f4 = {xk} ∪ (e3 − T) ∪ (e1 − {v, w}).

Algorithm par-PerfectMatch

In: k-graph H with δ(H) ≥ n
k

+ k
4 and n ≥ n0, n ≡ 0 (mod k).

Out: perfect matching M

1. Compute a k-deficient matching M1 using the parallel algorithm
par-SmallDefMatch(k) in H .

9

2. T := V (H) − V (M1).

3. For every triple of edges e1, e2, e3 ∈ M1, in parallel check if they span an
absorbing configuration as in Definition 3.

4. Use an absorbing configuration found in step 3 to absorb the vertices of
T and obtain a perfect matching M.

5. Return M.

The existence of an absorbing configuration in a hypergraph H with δ(H) ≥
n
k

+ k
4 , searched for in step 3, is guaranteed by the proof in [RRSS08].

3 Toward Understanding the Hardness Gap (the

Proof of Theorem 1)

Claim 5.2 in [RRS09] asserts that if H is a k-graph on n > n0 vertices, n divisible
by k, δ(H) ≥ (1

2 − ǫ)n, and at least one of two conditions, (i) or (ii), holds, then
H has a perfect matching.

We say that a partition V (H) = A∪B is even-complete [odd-complete] if for
all even [odd] r, the subhypergraphs Er := Er(A, B) and Kr(A, B) differ only
by an ǫ′-fraction of edges, where ǫ′ is a function of ǫ which tends to zero when ǫ
does. (For the definitions of Er := Er(A, B) and Kr(A, B), as well as of c-small
vertices in Er, see [RRS09], Sect. 4.1)

Algorithm PerfectMatch

In: k-graph H with δ(H) ≥ (1
2 − ǫ)n and n ≥ n0, n ≡ 0 (mod k).

Out: YES if H has a perfect matching, NO otherwise.

1. If (i) or (ii) hold, return YES.

2. Otherwise, let A := NH(S1), B := V \ A, where (S1, . . . , Sk) is a k-tuple
violating (i).

3. If k is odd and (A, B) is odd-complete, swap A and B around;

4. If (A, B) is even-complete set k′ = k−1 if k is odd and k′ = k−2 otherwise
and do:

(a) Identify the set S of all 0.3-small vertices of Ek′ and move them to
the other side, that is, reset A := A △ S and B := B △ S.

(b) If |A| is even or
⋃

r odd Er 6= ∅, return YES

(c) Return NO

5. If (A, B) is odd-complete (and so k is even) set k′ = k
2 + 1 if k is divisible

by 4 and k′ = k
2 otherwise and do:

(a) Identify the set S of all 0.3-small vertices of Ek′ ; reset A := A △ S
and B := B △ S.

10

(b) If |A| ≡ n
k

(mod 2) or
⋃

r even Er 6= ∅, return YES.

(c) Return NO.

We give the detailed correctness proof in the full version of the paper.

2

References

[AFS08] A. Asadpour, U. Feige and A. Saberi, Santa Claus Meets Hypergraph
Matchings, Proc. of APPROX-RANDOM 2008: 10–20.

[DKH93] E. Dalhaus, P. Hajnal, M. Karpiński, On the parallel complexity of
Hamiltonian cycle and matching problem on dense graphs, J. Alg. 15
(1993),367–384

[Ed65] J. Edmonds, Paths, trees and flowers, Canad J. Math. 17 (1965), 449–
467

[GJ79] M.R. Garey, D,S, Johnson, Computers and intractability, Freeman,
1979

[Ha95] P.E. Haxell. A Condition for Matchability in Hypergraphs, Graphs
and Combinatorics (1995), Vol 11, 245–248.

[KO06] D. Kühn, D. Osthus, Critical chromatic number and the complexity of
perfect packings in graphs, 17th ACM-SIAM Symposium on Discrete
Algorithms 2006 (SODA), 851–859

[Lu86] M. Luby, A simple parallel algorithm for the maximal independent set
problem, SIAM J. Comput., vol 15(4), 1986, pp. 1036–1053.

[RRS09] V. Rödl, A. Ruciński, E. Szemerédi, Perfect matchings in large uni-
form hypergraphs with large minimum collective degree, JCT A 116(3)
(2009) 613–636.

[RRSS08] V. Rödl, A. Ruciński, M. Schacht, and E. Szemerédi, A note on per-
fect matchings in uniform hypergraphs with large minimum collective
degree, Commen. Math. Univ. Carol., 49(4): 633–636, (2008)

[Sz09] E. Szymańska, The Complexity of Almost Perfect Matchings in Uni-
form Hypergraphs with High Codegree, Proc. of IWOCA 2009, to
appear.

[Sa09] G. Särkózy, A fast parallel algorithm for finding Hamiltonian cycles
in dense graphs. Discrete Mathematics 309, 2009, pp. 1611–1622.

11

