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Abstract

We design a 3/2 approximation algorithm for the Generalized Steiner Tree prob-

lem (GST) in metrics with distances 1 and 2. This is the first polynomial time

approximation algorithm for a wide class of non-geometric metric GST instances

with approximation factor below 2.

1 Introduction

We design a 3/2 approximation algorithm for constructing generalized Steiner trees

(Steiner Forests) for metrics with distances 1 and 2. With the exception of geometric

metrics [5], there were no wide classes of instances known with approximation ratios

better than 2. This was in contrast to similar problems like Traveling Salesman and

Steiner Tree Problems [2], [3].

2 Definitions and Notation

A metric with distances 1 and 2 can be represented as a graph with edges being pairs

of distance 1 and non-edges being pairs of distance 2. We will use GST[1,2] to denote

the Generalized Steiner Tree Problem restricted to such metrics.
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The problem instance of GST(1,2) will be a graph G = (V,E) that defines a

metric in this way, and a collection R of subsets of V called required sets. We say

that ∪R∈RR is the set of terminals. In a proper instance, the required sets do not

overlap and have more than one element. It is obvious that for every family of

requirements R, there exists a unique family prop(R) that is equivalent and proper.

A valid solution is a set of unordered node pairs F such that each Ri is contained

in a connected component of (V, F ). The objective is to minimize |F ∩E|+2|F −E|.

We will use in the sequel some notation and terminology introduced in [3].

A basic building block of our solutions is an s-star consisting of a non-terminal

c, called the center, s terminals t1, . . . , ts and edges (c, t1), . . . , (c, ts). In [3] we used

also a more general version of a building block, an (r, s)-comet consisting of a non-

terminal center c, non-terminal fork nodes f1, . . . , fs plus r +2s terminals, the center

is connected to r terminals and all the fork nodes, while each fork node is connected

to two terminals of its own.

If s < 3 we say that the star is degenerate, and proper, otherwise.

In the analysis of our algorithm, we will view its selections as transformations

of an input instance, so after each phase we have a partial solution and a residual

instance. We formalize these notions as follows.

A partition Π of V induces a graph (Π, E(Π)) where (A,B) ∈ E(Π) if (u, v) ∈ E

for some u ∈ A, v ∈ B). We say that (u, v) is a representative of (A,B).

Similarly, Π induces required sets. Let RΠ = {A ∈ Π : A ∩ R 6= ∅}, then

RΠ = prop({RΠ : R ∈ R}).

In our algorithms, we augment initially empty solution F . Edge set F defines par-

tition Π(F ) into connected components of (V, F ). In a step, we identify a connected

set A in the induced graph (Π(F ), E(Π(F ))) and we augment F with representatives

of edges that form a spanning tree of A. We will call it “collapsing A”, because A

will become a single node of (Π(F ), E(Π(F ))).

Thus, if we select some ”building block” C, F is going to be augmented by the

representatives of the edges in C, and this changes the ”residual” graph in which we

make our next selection. For that reason we will use terms ”select” and ”collapse”

as synonyms,

3 Analyzing Greedy Heuristics

We introduce a new way of analyzing greedy heuristics for our problem, and in

this section we illustrate it on the example of the Rayward-Smith heuristic [6] for

STP[1,2]. This heuristic has approximation ratio of exactly 4/3, as demonstrated

by Bern and Plassman [4]. However, the new analysis method is tighter (see Theo-

rem 1) and characterizes the effect of more general classes of greedy choices, as we

will show in the next section. We have reformulated the Rayward-Smith heuristic as

follows.
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While there is more than one terminal

perform the first possible operation from the following list:

1. Preprocessing: Collapse an edge between terminals.

2. Collapsing of stars: Collapse an s-star S with maximum s.

3. Finishing: Connect two terminals with a non-edge.

If we can perform a step of Preprocessing, the approximation ratio can only

improve since such the collapsed edge can be forced into the optimal solution. Thus

it suffices to analyze the case when no two terminals share a cost-1 connection.

Let T ∗ be an optimal Steiner tree and let T = T ∗ ∩ E be its Steiner skeleton

consisting of its edges (cost-1 connections),

Let TRS be the Steiner tree given by Rayward-Smith heuristic. We are going to

prove the following

Theorem 1 cost(TRS) < cost(T ∗) + 1

3
cost(T ).

In the analysis of the Collapsing of stars and Finishing, we update the following

three values after each iteration:

CA = the total cost F , the set of edges collapsed so far, initially, CA = 0;

CR = the cost of the reference solution Tref derived from the optimum solution T ∗;

Tref is a solution of the residual problem in (VF , EF );

P = the sum of potentials distributed among objects, which will be defined later.

The sum CA + CR + P will be the promised cost, PromCost.

We will define the potential satisfying the following conditions:

(a) initially, P < cost(T )/3 ≤ cost(T ∗)/3;

(b) after each star collapse, PromCost will be unchanged or decreased.

(c) at termination, CR = 0 (Tref will be empty) and P = 0.

These properties clearly imply our claim, as the initial PromCost would satisfy

the statement of the theorem, PromCost cannot increase and at the termination we

return a solution with that cost.

Initially, Tref = T = T ∗ ∩ E. In the analysis, we also use the skeleton of Tref ,

T sk
ref = Tref ∩ E, the set of 1-cost connections of Tref . The potential is given to the

following objects:

• edges of T sk
ref ;

• C-comps which are connected components of T sk
ref ;

• S-comps which are Steiner full components of T sk
ref .
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The total potential of edges, C-comps and S-comps is denoted PE, PC and PS

respectively. At all times, the potential of each edge e ∈ T sk
ref is p(e) = 1

3
.

Initially, the potential of each C-comp and S-comp is zero.

A Steiner tree is called bridgeless if no two Steiner points are adjacent and each

Steiner point has degree at least 3.

Lemma 1 Without increasing PromCost, we can transform the optimum solution

T ∗ into a bridgeless reference solution Tref , while the new potential p satisfies

(i) each C-comp C has p(C) ≥ −2

3
and if C has fewer than 3 edges, p(C) = 0;

(ii) each S-comp S has p(S) = 0;

Proof. Because CA and PS remain zero, to see that PromCost does not increase

it suffices that each transformation of Tref and p satisfies ∆CR + ∆PE + ∆PC ≤ 0.

The bridgeless Steiner tree is obtained using the following two types of steps.

Path step. Suppose that T sk
ref contains a Steiner point v of degree 2. We remove

two edges incident to v from T sk
ref adding a non-edge (cost-2 connection) to Tref . The

potential for the both resulting C-comps is set to 0. One can see that ∆CR = 0,

∆PE = −2

3
(two edges removed) and ∆PC ≤ 2

3
(∆PC = 2

3
if the component C that

was split had p(C) = −2

3
.

If the removal of edges in a Path step creates Steiner points of degree 1, we remove

them; this can only decrease PromCost.

Bridge Step. Suppose that we cannot perform a Path step and e ∈ T sk
ref is a bridge,

i.e., an edge e = (u, v) between Steiner points. We remove this edge from Tref

(replacing with a non-edge between terminals); this splits a C-comp C into C0 and

C1. Each new C-comp has at lest two edges since u and v originally have degree at

least 3. We set p(C0) = p(C) and p(C1) = −2

3
. Thus ∆CR = 1 (the cost is increased

by 1), ∆PE = −1

3
and ∆PC = −2

3
(one more C-comp with potential −2

3
.

Note that if we create a C-comp with two edges, we can apply a Bridge Step; this

is because we assume than there are no edges between terminals. ❒

From now on our reference Steiner tree Tref is assumed to be bridgeless.

Now we will prove

Lemma 2 After collapsing an s-star S, s > 3, conditions (i)-(ii) of Lemma 1 are

satisfied and PromCost does not increase.

Proof. Suppose that the terminals of S be in a C-comps. To break cycles created

in Tref when we collapse S, we replace s − 1 connections, of which a − 1 are cost-2

connections between different C-comps and s − a edges within C-comps.

If this is the entire modification, ∆CA = s, ∆CR = −s−a+2, ∆PE = −1

3
(s−a)

(for edges removed from T sk
ref ) while ∆PC ≤ 2

3
(a−1) (for removing potential of a−1

C-comps, each −2

3
or 0) hence

∆PromCost = s − s − a + 2 − 1

3
(s − a) + 2

3
(a − 1) = 1

3
(4 − s) ≤ 0.

However, the new C-comp that we create can be trivial; in this case we need to

increase the estimate of ∆PC by 2

3
. If that C-comp had but one edge left, this edge
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would be removed from Tref and T sk
ref , which decreases the estimate of ∆CR by 1

and ∆CE by 1

3
. If that C-comp had two edges left, we would remove them from T sk

ref

using a Path step, this does not change CR but decreases CE by 2

3
. Therefore our

estimate of PromCost does not increase. ❒

Once we collapsed s-stars for s > 3 we redistribute potential between C-comps

and S-comps by increasing potential of each nontrivial C-comp by 1

6
bringing it to

−1

2
and decreasing potential of one of its S-comps to −1

6
. This will replace conditions

(i)-(ii) with

(i’) each C-comp C has p(C) ≥ −1

2
and each trivial C-comp (with at most one

edge) has p(C) = 0;

(ii’) each S-comp S has p(S) ≥ −1

6
;

Lemma 3 After collapsing a 3-star, conditions (i’)-(ii’) are satisfied and PromCost

does not increase.

Proof. Suppose that the terminals of the selected star S belong to 3 different C-

comps. Then we replace two cost-2 connections from Tref with 3 collapsed edges,

while we decrease the number of C-comps by 2, thus

∆PromCost = ∆CA + ∆CR + ∆PC ≤ 3 − 4 + 21

2
= 0.

Suppose that the terminals of S belong to 2 different C-comps. ∆CR = 3 because

we remove one cost-2 connection from Tref and one edge from an S-comp. This S-

comp becomes a 2-star, hence we remove it from T using a Path Step, so together

we remove 3 edges from T sk
ref and ∆PE = 1.

One S-comp disappears, so ∆PS = −1

6
. Because we collapse two C-comps into

one, ∆PC = −1

2
. Consequently,

∆PromCost = 3 − 3 − 31

3
+ 1

2
+ 1

6
< 0.

If the terminals of the selected star belong to a single C-comp and we remove

2 edges from a single S-comp, we also remove the third edge of this S-comp and

∆CR = −3, while ∆PE = −1, ∆PS = 1

6
, and if its C-comp degenerates to a single

node, we have ∆PC = 1

2
(otherwise, zero). This yields the same change in PromCost

as the previous case.

Finally, if the terminals of the selected star belong to a single C-comp and we

remove 2 edges from two S-comps, we have ∆CA + ∆CR = 1. Because we apply

Path Steps to those two S-comps, ∆PE = −2. while ∆PS = 1

3
and ∆PC ≤ 1

2
. Thus

∆PromCost is at most −1

6
. ❒

To complete the proof of Theorem 1 it suffices to see that when no more star

collapsing is possible, Tref consists of cost 2-connections, T sk
ref = ∅ and thus the

remaining potential is zero. Each finishing step increases CA by 2 and decreases CR

by 2, with no changes in PromCost. When we terminate, we have a solution with

cost CA = PromCost.

5



4 3/2 Approximation for GST with Distances

1 and 2

In the heuristic for STP[1,2]we could start with Preprocessing in which we col-

lapsed every edge (cost-1 connection) between terminals, arguing that such an edge

can be forced as a component of an optimum solution T ∗. In GST[1,2]this is no

longer valid, because this could be an edge between different connected components

of T ∗. Indeed, we need to increase our potential and thus PromCost to create a “bud-

get” for this class of wrong selections: connecting sets that should not be connected.

Instead, we can start with the following preprocessing that is safe in the context

of GST[1,2]:

G-Preprocessing: While there exists an edge or an s-star (with s ≥ 3)

contained in one of the required sets Ri, collapse it.

We can also normalize the optimum solution T ∗ to assure these two properties:

Steiner nodes have degree at least 3 and cost-2 connections connect only pairs of

terminals from the same required set Ri. Steiner nodes of degree 1 can be obviously

removed, Steiner nodes of degree 2 and cost-2 connections can be removed, and

reconnection, if needed, can be achieved by connecting terminals that have to be

connected.

Because the terminals of the edge (s-star) selected by G-Preprocessing is surely

contained in a single connected component of the optimum forest T ∗, while we in-

crease CA by 1 (s), we decrease the cost of the T ∗ of the residual problem by 1 (s−1),

thus preserving the approximation ratio of 1/1 (s/(s − 1)).

Thus we can proceed with the assumption that no steps of G-Preprocessing can be

performed. After the preprocessing, we can perform normalization of the “reference

tree” Tref that we initialize with T ∗. Because Tref has multiple connected component

and it may also contain edges between terminals, we introduce two new notions:

• F-comps which are connected components of the forest Tref ;

• T-comps which are connected components of the subgraph of T sk
ref that is induced

by the terminals.

We also introduce the second component of the potential, pg, such that the sum

of all p(object) and pg(object) does not exceed 1

2
cost(T ∗). We will use pg to cover

the cost of connections made between different F-comps, the class of errors that are

specific to the generalized problem.

We can give pg(e) = 1

6
for every edge of T ∗ ∩ E, for edges inside a T -comp we

can increase it to pg(e) = 1

2
. For each non-edge e′ in T ∗ we can give pg(e

′) = 1.

Moreover, to each initial C-comp C we can give pg(C) = −2

3
. Let pg(F ) be the sum

of pg potentials of objects contained in an F-comp F .

We can define PromCost′ = PromCost + PF where PF is the sum of all pg(F )’s.

Our goal is to build a solution by collapsing selected connections without increasing
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PromCost′. When we make a connection within an F-comp, we do not increase

PromCost and PF does not increase either.

When we make a selection that connects two F-comps, say F1, F2 into F = F1∪F2,

we can cover the cost of that connection using pg(F1), and F can use pg(F2) for a

future connection with another F-comp. Because we will not connect distinct F-comps

with non-edges, such a connection costs at most 3

2
(this is the cost of connections

made by a 3-stars, larger stars and edges make connections with a smaller cost). This

is safe if pg(Fi) ≥
3

2
.

Lemma 4 If a required set of terminals Ri has more than 2 nodes, it is contained

in an initial F-comp F such that pg(F ) ≥ 3

2
.

Proof. Tree F may contain three kinds of connections: e is a T-connection if it is

an edge between terminals, and pg(e) = 1

2
, a 2-connection if it is a non-edge, and

pg(e) = 1 and a C-connection, any other edge, and pg(e) = 1

6
.

If F contains a C-connection, it contains a Steiner node, and thus at least 3 C-

connections and a C-comp; those objects alone give pg of 31

6
+ 2

3
= 3

2
− 1

6
. If there are

no other connections in F , it is a 3-star, but in this case all terminals of that star are

in Ri and we would collapse it in G-Preprocessing. And any other connection would

increase pg(F ) to at least 3

2
.

Now we assume that F does not contain C-connections. If it contains a 2-

connection, it must contain another connection as well, and the least possible pg(F )

is 1+ 1

2
if this other connection is a T-connection. In the remaining case, F has some

a terminals, a− 1 T-connections and pg(F ) = (a− 1)1

2
. Again, if a > 3 then pg(F ) is

sufficiently high and if a = 3 then only Ri are terminals of F and the T-connections

would be collapsed in G-preprocessing. ❒

We can also observe that

Lemma 5 If a required set of terminals Ri has 2 nodes, it is contained in an initial

F-comp F such that pg(F ) ≥ 1.

For this reason, it always safe to collapse edges between terminals. However, the

status of the resulting merged sets of terminals requires some reasoning. Let us say

that a set of terminals F is safe if it has pg(F ) ≥ 3

2
. When we merge two sets of

terminals, F1 and F2 using a connection with cost c, the union F = F1 ∪ F2 will get

pg(F ) = pg(F1) + pg(F2) − c. If c = 1, then union is safe as long as at least one

of F1, F2 is safe, but not otherwise. However, suppose that after a union creating

a larger unsafe set F an edge (of the residual graph) is contained in F . Then the

balance of F is more favorable, by 1, then our pessimistic reasoning that deemed F

unsafe, and this suffices to tag is safe.

Thus we can perform a bit bolder preprocessing if we keep track which resulting

requirement sets are safe, and which are not.
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GE-Preprocessing (G-preprocessing, extended version): Tag each re-

quired set of terminals Ri as safe if |Ri| > 2 and unsafe otherwise. While

you can, do the following: collapse s-star contained in a required set

and collapse any edge between two terminals. In the latter case, if these

two terminals were in two different required sets and thus the collapsing

replaces them with their union, tag the union safe if at least one of the

merged requirement was safe. Moreover, if the collapsed edge is contained

in some requirement set, tag that set safe.

We are now left with the problem: what to do with the unsafe sets that remain

after the GE-Preprocessing. To address this problem, we need a stronger version of

Lemma 1.

Lemma 6 Without increasing PromCost we can transform the optimum solution T ∗

into a reference solution that satisfies the conditions of Lemma 1 and in which each

T-comp has a cost-1 connection to at most one Steiner point.

Proof. The reasoning is the same as in Lemma 1, except that we need to perform

Bridge Step in the situation when we have a T-comp connected to more then one

Steiner node. If we cannot remove such a connection as a Path step, we break a

C-comp into two, so each of the resulting parts has at least two edges adjacent to

Steiner nodes (the sufficient premise for reasoning of the Bridge Step). ❒

Now we can justify

Annihilation of unsafe sets: After GE-Preprocessing, break each

unsafe set of requirements into original requirements, connect them in-

dividually with cost-2 connections and remove from further consideration.

Lemma 7 Annihilation of unsafe sets does not increase PromCost′.

Proof. Consider an unsafe requirement R′. It is created from a union of some p

pair requirements R1, . . . , Rp (each with two terminals). Because R′ remains unsafe,

GE-preprocessing did not collapsed exactly p − 1 1-cost connections inside R′, so it

consists of p + 1 connected components (T-comps). We increase CA by p + 1 by

replacing these p − 1 connections with p non-edges.

A pair Ri that is connected separately in Tref contributes 3 to PromCost′ and

after annihilation uses only the correct cost, 2, so this case has a surplus. One can

see that the most tight case is when in Tref every T-comp of R′ is connected by an

edge to some Steiner node (a connection to a terminal would be performed already).

Thus we remove those connections and decrease CR by p+1, remove the connections

made by GE-Preprocessing and decrease CA by p−1 and reconnect with p non-edges;

this does not change CA + CR, while the sum of potentials can only decrease. ❒
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We conclude that after the Annihilation of unsafe sets we can proceed with

the heuristic described in the previous section without increasing PromCost′, and

PromCost′ is initialized as not larger than 3

2
cost(T ∗).

We construct now our approximation algorithm to consist of GE-Preprocessing

followed by Annihilation of unsafe sets and followed by Rayward-Smith heuristics.

With the above we have the following main result.

Theorem 2 There exists a polynomial time 3/2-approximation algorithm for the

GST[1,2].
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