Low-Memory Adaptive Prefix Coding

Travis Gagie* Marek Karpinski' Yakov Nekrich!

Abstract

In this paper we study the adaptive prefix coding problem in cases where
the size of the input alphabet is large. We present an online prefix coding
algorithm that uses O(o'/**€) bits of space for any constants ¢ > 0, A > 1, and
encodes the string of symbols in O(loglog o) time per symbol in the worst case,
where ¢ is the size of the alphabet. The upper bound on the encoding length
is \nH(s) + (A In2 42 + e)n + O(c'/* log? o) bits.

1 Introduction

In this paper we present an algorithm for adaptive prefix coding that uses sublinear
space in the size of the alphabet. Space usage can be an important issue in situations
where the available memory is small; e.g., in mobile computing, when the alphabet
is very large, and when we want the data used by the algorithm to fit into first-level
cache memory.

For instance, Version 5.0 of the Unicode Standard [14] provides code points for
99089 characters, covering “all the major languages written today”. The Standard
itself may be the only document to contain quite that many distinct characters, but
there are over 50000 Chinese characters, of which everyday Chinese uses several
thousand [15]. One reason there are so many Chinese characters is that each conveys
more information than an FEnglish character does; if we consider syllables, morphemes
or words as basic units of text, then the FEnglish ‘alphabet’ is comparably large.
Compressing strings over such alphabets can be awkward; the problem can be severely
aggravated if we have only a small amount of (cache) memory at our disposal.

Static and adaptive prefix encoding algorithms that use linear space in the size
of the alphabet were extensively studied. The classical algorithm of Huffman |[§]
enables us to construct an optimal prefix-free code and encode a text in two passes in
O(n) time. Henceforth in this paper, n denotes the number of characters in the text,

and o denotes the size of the alphabet; H(s) = >_7 oy logy 7 is the zeroth-order

i=1 n

*Department of Computer Science, University of FEastern Piedmont. Email:
travisOmfn.unipmn.it . Supported by Italy-Israel FIRB grant “Pattern Discovery Algorithms in
Discrete Structures, with Applications to Bioinformatics”.

T Department of Computer Science, University of Bonn. Email:
{marek,yasha}@cs.uni-bonn.de .

entropy! of s, where f, denotes the number of occurrences of character a in s. The
length of the encoding is (H + d)n bits, and the redundancy d can be estimated as
d < pmax + 0.086 where pha.x is the probability of the most frequent character [6].
The drawback to the static Huffman coding is the need to make two passes over
data: we collect the frequencies of different characters during the first pass, and then
construct the code and encode the string during the second pass. Adaptive coding
avoids this by maintaining a code for the prefix of the input string that has already
been read and encoded. When a new character s; is read, it is encoded with the
code for s;...s;_1; then the code is updated. The FGK algorithm [11] for adaptive
Huffman coding encodes the string in (H + 2 4+ d)n + O(ologo) bits, while the
adaptive Huffman algorithm of Vitter [16] guarantees that the string is encoded in
(H+1+4+d)n+ O(o logo) bits. The adaptive Shannon coding algorithms of Gagie [4]
and Karpinski and Nekrich [10] encode the string in (H + 1)n + O(o log o) bits and
(H+1)n+O(c log? o) bits respectively. All of the above algorithms use space at least
linear in the size of the alphabet, to count how often each distinct character occurs.
All algorithms for adaptive prefix coding, with exception of [10], encode and decode
in O(nH) time, i.e. the time to process the string depends on H and hence on the
size of the input alphabet. The algorithm of [10] encodes a string in O(n) time, and
decoding takes O(nlog H) time.

Compression with sub-linear space usage was studied by Gagie and Manzini [5]
who proved the following lower bound: For any g independent of n and any constants
e >0 and A > 1, in the worst case we cannot encode s in AH(s)n + o(nlogo) + g
bits if, during the single pass in which we write the encoding, we use O(c'/*~¢)
bits of memory. In [5] the authors also presented an algorithm that divides the
input string into chunks of length O(¢*/*log) and encodes each individual chunk
with a modification of the arithmetic coding, so that the string is encoded with
(AH(s) + p)n + O(c'/* log o) bits. However, their algorithm is quite complicated and
uses arithmetic coding; hence, codewords are not self-delimiting and the encoding
is not ‘instantaneously decodable’. Besides that, their algorithm is based on static
encoding of parts of the input string.

In this paper we present an adaptive prefix coding algorithm that uses O(c'/*+€)
bits of memory and encodes a string s with A H(s) +(An2+2+e)n+O(c'/* log® o)
bits. The encoding and decoding work in O(loglog o) time per symbol in the worst
case, and the whole string s is encoded/decoded in O(nlog H(s)) time. A randomized
implementation of our algorithm uses O(c'/*log® o) bits of memory and works in
O(nlog H) expected time. Our method is based on a simple but effective form of
alphabet-partitioning (see, e.g., [1] and references therein) to trade off the size of
a code and the compression it achieves: we split the alphabet into frequent and
infrequent characters; we preface each occurrence of a frequent character with a 1,
and each occurrence of an infrequent one with a 0; we replace each occurrence of
a frequent character by a codeword, and replace each occurrence of an infrequent
character by that character’s index in the alphabet.

LFor ease of description, we sometimes simply denote the entropy by H if the string s is clear
from the context.

We make a natural assumption that unencoded files consist of characters repre-
sented by their indices in the alphabet (cf. ASCII codes), so we can simply copy
the representation of an infrequent character from the original file. One difficulty is
that we cannot identify the frequent characters using a low-memory one-pass algo-
rithm: according to the lower bound of [9] any online algorithm that identifies a set
of characters I', such that each s € F' occurs at least ©On times for some parameter
©, needs 2(o log 2) bits of memory in the worst case. We overcome this difficulty by
maintaining the frequencies of symbols that occur in a sliding window.

In section 2, we review the data structures that are used by our algorithm. In sec-
tion 3 we present a novel encoding method, henceforth called sliding-window Shannon
coding. Analysis of the sliding-window Shannon coding is given in section 4.

2 Preliminaries

The dictionary data structure contains a set S C U, so that for any element x € U
we can determine whether x belongs to S. We assume that |S| = m. The following
dictionary data structure is described in [7]

Lemma 1 There exists a O(m) space dictionary data structure that can be con-
structed in O(mlogm) time and supports membership queries in O(1) time.

In the case of a polynomial-size universe, we can easily construct a data structure
that uses more space but also supports updates. The following Lemma is folklore.

Lemma 2 If|U| = m®W, then there exists a O(m'*) space dictionary data structure
that can be constructed in O(m'*¢) time and supports membership queries and updates
in O(1) time.

Proof: We regard S as a set of binary strings of length log /. All strings can be stored
in a trie T with node degree 218V — m? where ¢/ = (logU/logm)-<. The height of
T is O(1), and the total number of internal nodes is O(m). Each internal node uses
O(m®) space; hence, the data structure uses O(m'*®) space and can be constructed
in O(m!'"®) time. Clearly, queries and updates are supported in O(1) time. O

If we allow randomization, then the dynamic O(m) space dictionary can be main-
tained. We can use the result of [3]:

Lemma 3 There exists a randomized O(m) space dictionary data structure that sup-
ports membership queries in O(1) time and updates in O(1) expected time.

All of the above dictionary data structures can be augmented so that one or more
additional records are associated with each element of S; the record(s) associated
with element a € S can be accessed in O(1) time.

In Section 3, we also use the following dynamic partial-sums data structure, due
to Moffat [12]:

Lemma 4 There is a dynamic searchable partial-sums data structure that stores a
sequence of O(logo)-bit real numbers py,...,px in O(klogo) bits and supports the
following operations in O(logi) time:

e given an index i, return the i-th partial sum p; +--- + p;;

e given a real number b, return the index i of the largest partial sum py+---+p; <

b .

?

e given an wndex i and a real number d, add d to p;.

3 Adaptive coding

The adaptive Shannon coding algorithm we present in this section combines ideas from
Karpinski and Nekrich’s algorithm [10] with the sliding-window approach, to encode
s in AnH(s) + (An2 + 2 + e)n + O(c'/* log® o) bits using O(nlog H) time overall
and O(loglog) time for any character, O(c'/**) bits of memory and one pass, for
any given constants A > 1 and € > 0. Whereas Karpinski and Nekrich’s algorithm
considers the whole prefix already encoded, our new algorithm encodes each character
sli] of s based only on the window w; = s|max(i—#¢,1)..(i—1)], where £ = [ca'/* log 7|
and c is a constant we will define later in terms of A and e. (With ¢ = 10, for example,
we produce an encoding of fewer than AnH(s) + (2A + 2)n + O(c/* log® o) bits; with
c = 100, the bound is MH(s) + (0.9X + 2)n + O(c'/*log® o) bits.) Let f(a,sli..j])
denote the number of occurrences of a in s[i..j|. For 1 <i < n, if f(si],w;) > ¢/a'/*,
then we write a 1 followed by s[i]’s codeword in our adaptive Shannon code; otherwise,
we write a 0 followed by s[i]’s [log o]-bit index in the alphabet.

As in the case of the quantized Shannon coding [10], our algorithm maintains a
canonical Shannon code. In a canonical code [13, 2], each codeword can be charac-
terized by its length and its position among codewords of the same length, hence-
forth called offset. The codeword of length 7 with offset k& can be computed as

/28 4 (k- 1)/27

We maintain four dynamic data structures: a queue (), an augmented dictionary
D, an array A [0..[logo/*],0..[c"/*]] and a searchable partial-sums data structure
P. (We actually use A only while decoding but, to emphasize the symmetry between
the two procedures, we refer to it in our explanation of encoding as well.) When we
come to encode or decode s]i],

e () stores wy;

e D stores each character a that occurs in w;, its frequency f(a,w;) there and, if
f(a,w;) > £/a'/*, its position in A;

e Al| is an array of doubly-linked lists. The list A[j], 0 < j < [loga'/*], contains
all characters with codeword length 7 sorted by the codeword offsets; we denote
by A[j].l the pointer to the last element in A[j].

e ('[j] stores the number of codewords of length j

4

o P stores C[j]/27 for each j and supports prefix sum queries.

We implement @ in O(¢log o) = O(a'/*log® o) bits of memory, A in O(c/*log? o)
bits, and P in O(log®¢) bits by Lemma 4. The dictionary D uses O(a'/**€) bits
and supports queries and updates in O(1) worst-case time by Lemma 2; if we allow
randomization, we can apply Lemma 3 and reduce the space usage to O(o/* log? o)
bits, but updates are supported in O(1) expected time. Therefore, altogether we use
O(o'/2*€) bits of memory; if randomization is allowed, the space usage is reduced to
O(c'/* log? o) bits.

To encode sli], we first search in D and, if f(s[i],w;) < £/o'/*, we simply write
a 0 followed by sli|’s index in the alphabet, update the data structures as described
below, and proceed to s|i + 1]; if f(s[i],w;) > ¢/o'/*, we use P and sli|’s position
Alj, k| in A to compute

7—1

> Ol 4 (k—1)/2 < 1.

h=0

The first j = [log(¢/f(sli],w;))] bits of this sum’s binary representation are enough
to uniquely identify s|i| because, if a character a # sli| is stored at A[j’, k'], then

‘(iC[h]/Qh —1/2J> (ic 1/2" + —1)/2]”)

therefore, we write a 1 followed by these bits as the codeword for si].

To decode s|i], we read the next bit in the encoding; if it is a 0, we simply interpret
the following [logo] bits as s[i]’s index in the alphabet, update the data structures,
and proceed to s[i +1]; if it is a 1, we interpret the following [log o'/*] bits (of Wthh
sli|’s codeword is a preﬁx) as a bmary fraction b and search in P for index j of the
largest partial sum >7~1 C'[h] /2" < b. Knowing 7 tells us the length of s[i]’s codeword
or, equivalently, its row in A; we can also compute its offset,

il h
. {b i 2 J 1

> 1/27;

thus, we can find and write si|.
Encoding or decoding s|i| takes O(1) time for querying D and A and, if f(s[i], w;) >
¢/, then

¢
O (log log m) = O(loglog o)

time to query P. After encoding or decoding sli|, we update the data structures as
follows:

e we dequeue s[i —¢] (if it exists) from @ and enqueue s|i]; we decrement s[i — ¢]’s
frequency in D and delete it if it does not occur in w;y1; insert si] into D if it
does not occur in w; or, if it does, increment its frequencys;

5

e we remove s[i —¥¢| from A (by replacing it with the last character in its list A[j],
decrementing C'[j], and updating D) if

J(slt = €], wiy1) < 0/at/* < f(sli — €], wi) ;

e we move s|i — ¢] from list A[j] to list A[j + 1] if

f(s[i—i],wm)w - PgWW ;

this is done by replacing s|i — ¢] with A[j].[, and appending s[i — ¢] at the end
of Alj + 1]; pointers A[j].l and A[j + 1|.I and counters C[j] and C[j + 1] are
also updated;

Mogo/*] > [log

e if necessary, we insert s|i| into A or move it from A[j] to A[j + 1]; these pro-
cedures are symmetric to deleting s[i — ¢] and to moving s[i — ¢] from A[j] to

Alj—1]
e finally, if we have changed ', the data structure P is updated.

All of these updates, except the last one, take O(1) time, and updating P takes
O(loglog o) time in the worst case. When we insert a new element s[i] into @, this
may lead to updating P as described above. We may decrement the length of sli]
or insert a new codeword for the symbol si]. In both cases, we can P updated in
O(length(s|i])) time, where length(s|i]) is the current codeword length of s[i]. When
we delete an element s|i — ¢], we may increment the codeword length of s[i — ¢] or
remove it from the code. If the codeword length is incremented, then we update P
in O(length(s[i — ¢])) time. If we remove the codeword for s[i — ¢|, then we also
update P in O(length(s|i — ¢])) time; in the last case we can charge the cost of
updating P to the previous occurrence of s|i — ¢| in the string s, when s[i — ¢] was
encoded with length(s[i — ¢]) bits. The codeword lengths of symbols s|i] and s|i — ¢
are O <log log m> and O <log log m> respectively. Hence, by Jensen’s
inequality, in total we encode s in O(nlog H') time, where H' is the average number
of bits per character in our encoding. In the next section, we will prove that the
sliding-window Shannon coding encodes s in AnH (s)+(An2+2+€)n+O(ct/* log® o)
bits. Since we can assume that o is not vastly larger than n, our method works in
O(nlog H) time.

If the dictionary D is implemented as in Lemma 3, the analysis is exactly the
same, but a string s is processed in expected time O(nlog H).

Lemma 5 Sliding-window Shannon coding can be implemented in O(nlog H) time
overall and O(logloga) time for any character, O(c'/**€) bits of memory and one
pass. If randomization is allowed, sliding-window Shannon coding can be implemented
in O(c'/*log® o) bits of memory and O(nlog H) expected time.

4 Analysis

In this section we prove the upper bound on the encoding length of sliding-window
Shannon coding and obtain the following Theorem.

Theorem 1 We encode s in, and later decode it from, AsnH(s) + (AIn2+4 24 e)n +
O(c'/*log® o) bits using O(nlog H) time overall and O(logloga) time for any char-
acter, O(al/“e) bits of memory and one pass. If randomization is allowed, the mem-
ory usage can be reduced to O(c'/*log® o) bits and s can be encoded and decoded in
O(nlog H) expected time.

Proof: Consider any substring s’ = s|k..(k+ ¢ — 1)] of s with length ¢, and let F' be
the set of characters a such that

f (. shmas(h — 1) (k£ D)) >

notice |F| < 20YA. For k <i <k +/¢—1,if s[i] € F but f(s|i],w;) < £/o'/*, then
we encode s[i] using

[logo] + 1
< Mogo/* 42
14
< Al +2
o8 max (f(s[z], w;), 1)
< Alog £ +2

max (f (s[i], sk..(i— 1)]) , 1)
bits; if f(s[i],w;) > €/0'/*, then we encode s[i] using

/ /
[log f(s[i],w,')-‘ e T Gl sleti—)1

bits; finally, if s[i] & F, then we again encode s|i] using

[logo] + 1
< Alogo'/* 42
¢
< Mo st — D)t = 1))
¢
= AT

bits. Therefore, the total number of bits we use to encode s’ is less than

14
A Z & e (f (@ sl (= D)), 1) |

a€F sli=
k<z<k+l 1
)\Zf a, s') log ¢ 2¢
ey flas)
= Mlogt —)\Z Z log (max (f (a,s[k..(i—1)]),1)) —
ack k<izk+l 1
)\Zf a, s;)log f(a,s") + 2¢;
agF
since
Flas)—1
Z log max (f (a,s[k’..(i— 1)]) , 1) = Z log j,
s[t]=a, 7j=1
E<i<kie—1

we can rewrite our bound as

fla,s")—1
A (élogé Z Z logj — Zf(a, s') log f(a, s')) + 2/

a€F j=1 agF
= A (€log€ — Zlog((f(a, sy — 1)) — Z f(a, s")log f(a, s')) + 24,
o€l agF

by Stirling’s Formula,

¢log ¢ — Zlog((f(a, sy — 1)1

a€F
= Llogl—Y log((f(a,shN) + > log f(a,s)
a€F o€l
< {llogl — Z (a,s')log f(a,s') — f(a,s')In2) + |F|log¢
a€F
< fllogt — Z f(a,s)log f(a,s") +¢In2 + 20 og ¢,
a€F

so we can again rewrite our bound as

A <€log€ —) " fla,¢)log f(a,s') + In2 + 25" log€> 120

14 22X\ /A og ¢
—)\za: f(a,s')logm + ()\ln2+2+ ﬁ) €

2)\c'/* log €> /

=)\KH(SI)+<)\1n2+2+ 7

Recall ¢ = (cal/A log O'—‘, SO

22X\ /A og ¢
14
2\c'/* log (cal/A log aw
[col/Mog o]
2) (loge+ (1/A) log o + loglogo + 1)
clogo

2X(log e+ 3)
c

(we will give tighter inequalities in the full paper, but use these here for simplicity);
for any constants A > 1 and e > 0, we can choose a constant c large enough that

2X(log e+ 3)
c

<€,
so the number of bits we use to encode s’ is less than MH(s') + (AIn2+2+€)f. With
c = 10, for example,
2\(log ¢ + 3)
c

so our bound is less than MH(s") 4 (2A 4+ 2)¢; with ¢ = 100, it is less than MH (s') +
(0.9A + 2)¢.

Since the product of length and empirical entropy is superadditive —i.e., |s1|H(s1)+
|so| H(s2) < |s182| H(s182) — we have

< (2—1In2)A,

Ln/t) -1
¢ Z H (s[(j 4+ 1)..(j + 1)) < nH(s)

so, by the bound above, we encode the first ¢|n/¢| characters of s using fewer than
AnH(s) 4+ (An2+ 24 €)n bits. We encode the last ¢ characters of s using fewer than

MH (s[(n—€)..n]) + (AIn2 + 2 +) = O(flog 0) = O(c'/* log? o)

bits so, even counting the bits we use for s[(n — € + 1)..¢|n/¢]] twice, in total we
encode s using fewer than

MH(s) + (An2+2 4 e)n + O(c* log? o)

bits. O

If the most common o!/*

characters in the alphabet make up much more than half
of s (in particular, when A = 1) then, instead of using an extra bit for each character,
we can keep a special escape codeword and use it to indicate occurrences of characters
not in the code. The analysis becomes somewhat complicated, however, so we leave

discussion of this modification for the full paper.

9

5

Summary

In this paper we presented an algorithm that uses space sub-linear in the alphabet
size and achieves an encoding length that is close to the lower bound of [5]. Our
algorithm processes each symbol in O(loglog o) worst-case time, whereas linear-space
prefix coding algorithms can encode a string of n symbols in O(n) time, i.e. in time
independent of the alphabet size o. It is an interesting open problem whether our
algorithm (or one with the same space bound) can be made to run in O(n) time.

References

(1]

[2]
[3]

D. Chen, Y .-J. Chiang, N. D. Memon, and X. Wu. Alphabet partitioning for semi-adaptive
Huffman coding of large alphabets. IEEF Transactions on Communications, 55:436-443, 2007.

J. B. Connell. A Huffman-Shannon-Fano code. Proceedings of the IEFE, 61:1046-1047, 1973.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. E.
Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM Journal on Computing,
23:738-761, 1994.

T. Gagie. Dynamic Shannon coding. Information Processing Letters, 102:113-117, 2007.

T. Gagie and G. Manzini. Space-conscious compression. In Proceedings of the 32nd Symposium
on Mathematical Foundations of Computer Science, pages 206-217, 2007.

R. G. Gallager. Variations on a theme by Huffman. IEEE Transactions on Information Theory,
24:668-674, 1978.

T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic dictionaries. Journal of Algorithms,
41:69-85, 2001.

D. A. Huffman. A method for construction of minimum-redundancy codes. Proceedings of the

IRE, 40:1098-1101, 1952.

R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple algorithm for finding frequent
elements in streams and bags. ACM Transactions on Database Systems, 28:51-55, 2003.

M. Karpinski and Y. Nekrich. A fast algorithm for adaptive prefix coding. Algorithmica, to
appear.

D. E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6:163-180, 1985.

A. Moffat. Linear time adaptive arithmetic coding. IEEE Transactions on Information Theory,

36:401-406, 1990.

E. S. Schwartz and B. Kallick. Generating a canonical prefix encoding. Communications of the

ACM, 7:166-169, 1964.
Unicode Consortium. The Unicode Standard, Version 5.0. Addison-Wesley Professional, 2006.

P. Vines and J. Zobel. Compression techniques for Chinese text. Software: Practice and

Ezperience, 28(12):1299-1314, 1998.

J. S. Vitter. Design and analysis of dynamic Huffman codes. Journal of the ACM, 1987(4):825-
845, 1987.

10

