
Low-Memory Adaptive Pre�x CodingTravis Gagie� Marek Karpinskiy Yakov Nekri
hyAbstra
tIn this paper we study the adaptive pre�x 
oding problem in 
ases wherethe size of the input alphabet is large. We present an online pre�x 
odingalgorithm that uses O(�1=�+�) bits of spa
e for any 
onstants " > 0, � > 1, anden
odes the string of symbols in O(log log�) time per symbol in the worst 
ase,where � is the size of the alphabet. The upper bound on the en
oding lengthis �nH(s) + (� ln2 + 2+ �)n+ O(�1=� log2 �) bits.1 Introdu
tionIn this paper we present an algorithm for adaptive pre�x 
oding that uses sublinearspa
e in the size of the alphabet. Spa
e usage 
an be an important issue in situationswhere the available memory is small; e.g., in mobile 
omputing, when the alphabetis very large, and when we want the data used by the algorithm to �t into �rst-level
a
he memory.For instan
e, Version 5.0 of the Uni
ode Standard [14℄ provides 
ode points for99 089 
hara
ters, 
overing \all the major languages written today". The Standarditself may be the only do
ument to 
ontain quite that many distin
t 
hara
ters, butthere are over 50 000 Chinese 
hara
ters, of whi
h everyday Chinese uses severalthousand [15℄. One reason there are so many Chinese 
hara
ters is that ea
h 
onveysmore information than an English 
hara
ter does; if we 
onsider syllables, morphemesor words as basi
 units of text, then the English `alphabet' is 
omparably large.Compressing strings over su
h alphabets 
an be awkward; the problem 
an be severelyaggravated if we have only a small amount of (
a
he) memory at our disposal.Stati
 and adaptive pre�x en
oding algorithms that use linear spa
e in the sizeof the alphabet were extensively studied. The 
lassi
al algorithm of Hu�man [8℄enables us to 
onstru
t an optimal pre�x-free 
ode and en
ode a text in two passes inO(n) time. Hen
eforth in this paper, n denotes the number of 
hara
ters in the text,and � denotes the size of the alphabet; H(s) = P�i=1 fain log2 nfai is the zeroth-order�Department of Computer S
ien
e, University of Eastern Piedmont. Email:travis�mfn.unipmn.it . Supported by Italy-Israel FIRB grant \Pattern Dis
overy Algorithms inDis
rete Stru
tures, with Appli
ations to Bioinformati
s".yDepartment of Computer S
ien
e, University of Bonn. Email:fmarek,yashag�
s.uni-bonn.de . 1



entropy1 of s, where fa denotes the number of o

urren
es of 
hara
ter a in s. Thelength of the en
oding is (H + d)n bits, and the redundan
y d 
an be estimated asd � pmax + 0:086 where pmax is the probability of the most frequent 
hara
ter [6℄.The drawba
k to the stati
 Hu�man 
oding is the need to make two passes overdata: we 
olle
t the frequen
ies of di�erent 
hara
ters during the �rst pass, and then
onstru
t the 
ode and en
ode the string during the se
ond pass. Adaptive 
odingavoids this by maintaining a 
ode for the pre�x of the input string that has alreadybeen read and en
oded. When a new 
hara
ter si is read, it is en
oded with the
ode for s1 : : : si�1; then the 
ode is updated. The FGK algorithm [11℄ for adaptiveHu�man 
oding en
odes the string in (H + 2 + d)n + O(� log �) bits, while theadaptive Hu�man algorithm of Vitter [16℄ guarantees that the string is en
oded in(H +1+ d)n+O(� log �) bits. The adaptive Shannon 
oding algorithms of Gagie [4℄and Karpinski and Nekri
h [10℄ en
ode the string in (H + 1)n + O(� log �) bits and(H+1)n+O(� log2 �) bits respe
tively. All of the above algorithms use spa
e at leastlinear in the size of the alphabet, to 
ount how often ea
h distin
t 
hara
ter o

urs.All algorithms for adaptive pre�x 
oding, with ex
eption of [10℄, en
ode and de
odein �(nH) time, i.e. the time to pro
ess the string depends on H and hen
e on thesize of the input alphabet. The algorithm of [10℄ en
odes a string in O(n) time, andde
oding takes O(n logH) time.Compression with sub-linear spa
e usage was studied by Gagie and Manzini [5℄who proved the following lower bound: For any g independent of n and any 
onstants� > 0 and � > 1, in the worst 
ase we 
annot en
ode s in �H(s)n + o(n log �) + gbits if, during the single pass in whi
h we write the en
oding, we use O(�1=���)bits of memory. In [5℄ the authors also presented an algorithm that divides theinput string into 
hunks of length O(�1=� log �) and en
odes ea
h individual 
hunkwith a modi�
ation of the arithmeti
 
oding, so that the string is en
oded with(�H(s)+�)n+O(�1=� log �) bits. However, their algorithm is quite 
ompli
ated anduses arithmeti
 
oding; hen
e, 
odewords are not self-delimiting and the en
odingis not `instantaneously de
odable'. Besides that, their algorithm is based on stati
en
oding of parts of the input string.In this paper we present an adaptive pre�x 
oding algorithm that uses O(�1=�+�)bits of memory and en
odes a string s with �nH(s)+(� ln 2+2+ �)n+O(�1=� log2 �)bits. The en
oding and de
oding work in O(log log �) time per symbol in the worst
ase, and the whole string s is en
oded/de
oded in O(n logH(s)) time. A randomizedimplementation of our algorithm uses O(�1=� log2 �) bits of memory and works inO(n logH) expe
ted time. Our method is based on a simple but e�e
tive form ofalphabet-partitioning (see, e.g., [1℄ and referen
es therein) to trade o� the size ofa 
ode and the 
ompression it a
hieves: we split the alphabet into frequent andinfrequent 
hara
ters; we prefa
e ea
h o

urren
e of a frequent 
hara
ter with a 1,and ea
h o

urren
e of an infrequent one with a 0; we repla
e ea
h o

urren
e ofa frequent 
hara
ter by a 
odeword, and repla
e ea
h o

urren
e of an infrequent
hara
ter by that 
hara
ter's index in the alphabet.1For ease of des
ription, we sometimes simply denote the entropy by H if the string s is 
learfrom the 
ontext. 2



We make a natural assumption that unen
oded �les 
onsist of 
hara
ters repre-sented by their indi
es in the alphabet (
f. ASCII 
odes), so we 
an simply 
opythe representation of an infrequent 
hara
ter from the original �le. One diÆ
ulty isthat we 
annot identify the frequent 
hara
ters using a low-memory one-pass algo-rithm: a

ording to the lower bound of [9℄ any online algorithm that identi�es a setof 
hara
ters F , su
h that ea
h s 2 F o

urs at least �n times for some parameter�, needs 
(� log n� ) bits of memory in the worst 
ase. We over
ome this diÆ
ulty bymaintaining the frequen
ies of symbols that o

ur in a sliding window.In se
tion 2, we review the data stru
tures that are used by our algorithm. In se
-tion 3 we present a novel en
oding method, hen
eforth 
alled sliding-window Shannon
oding. Analysis of the sliding-window Shannon 
oding is given in se
tion 4.2 PreliminariesThe di
tionary data stru
ture 
ontains a set S � U , so that for any element x 2 Uwe 
an determine whether x belongs to S. We assume that jSj = m. The followingdi
tionary data stru
ture is des
ribed in [7℄Lemma 1 There exists a O(m) spa
e di
tionary data stru
ture that 
an be 
on-stru
ted in O(m logm) time and supports membership queries in O(1) time.In the 
ase of a polynomial-size universe, we 
an easily 
onstru
t a data stru
turethat uses more spa
e but also supports updates. The following Lemma is folklore.Lemma 2 If jU j = mO(1), then there exists a O(m1+") spa
e di
tionary data stru
turethat 
an be 
onstru
ted in O(m1+") time and supports membership queries and updatesin O(1) time.Proof : We regard S as a set of binary strings of length logU . All strings 
an be storedin a trie T with node degree 2"0 logU = m", where "0 = (logU= logm) � ". The height ofT is O(1), and the total number of internal nodes is O(m). Ea
h internal node usesO(m") spa
e; hen
e, the data stru
ture uses O(m1+") spa
e and 
an be 
onstru
tedin O(m1+") time. Clearly, queries and updates are supported in O(1) time. �If we allow randomization, then the dynami
 O(m) spa
e di
tionary 
an be main-tained. We 
an use the result of [3℄:Lemma 3 There exists a randomized O(m) spa
e di
tionary data stru
ture that sup-ports membership queries in O(1) time and updates in O(1) expe
ted time.All of the above di
tionary data stru
tures 
an be augmented so that one or moreadditional re
ords are asso
iated with ea
h element of S; the re
ord(s) asso
iatedwith element a 2 S 
an be a

essed in O(1) time.In Se
tion 3, we also use the following dynami
 partial-sums data stru
ture, dueto Mo�at [12℄: 3



Lemma 4 There is a dynami
 sear
hable partial-sums data stru
ture that stores asequen
e of O(log �)-bit real numbers p1; : : : ; pk in O(k log �) bits and supports thefollowing operations in O(log i) time:� given an index i, return the i-th partial sum p1 + � � �+ pi;� given a real number b, return the index i of the largest partial sum p1+ � � �+pi �b;� given an index i and a real number d, add d to pi.3 Adaptive 
odingThe adaptive Shannon 
oding algorithm we present in this se
tion 
ombines ideas fromKarpinski and Nekri
h's algorithm [10℄ with the sliding-window approa
h, to en
odes in �nH(s) + (� ln 2 + 2 + �)n + O(�1=� log2 �) bits using O(n logH) time overalland O(log log �) time for any 
hara
ter, O(�1=�+�) bits of memory and one pass, forany given 
onstants � � 1 and � > 0. Whereas Karpinski and Nekri
h's algorithm
onsiders the whole pre�x already en
oded, our new algorithm en
odes ea
h 
hara
ters[i℄ of s based only on the window wi = s[max(i�`; 1)::(i�1)℄, where ` = �
�1=� log ��and 
 is a 
onstant we will de�ne later in terms of � and �. (With 
 = 10, for example,we produ
e an en
oding of fewer than �nH(s) + (2�+2)n+O(�1=� log2 �) bits; with
 = 100, the bound is �nH(s) + (0:9� + 2)n + O(�1=� log2 �) bits.) Let f(a; s[i::j℄)denote the number of o

urren
es of a in s[i::j℄. For 1 � i � n, if f(s[i℄; wi) � `=�1=�,then we write a 1 followed by s[i℄'s 
odeword in our adaptive Shannon 
ode; otherwise,we write a 0 followed by s[i℄'s dlog �e-bit index in the alphabet.As in the 
ase of the quantized Shannon 
oding [10℄, our algorithm maintains a
anoni
al Shannon 
ode. In a 
anoni
al 
ode [13, 2℄, ea
h 
odeword 
an be 
hara
-terized by its length and its position among 
odewords of the same length, hen
e-forth 
alled o�set. The 
odeword of length j with o�set k 
an be 
omputed asPj�1h=1 nh=2h + (k � 1)=2j .We maintain four dynami
 data stru
tures: a queue Q, an augmented di
tionaryD, an array A �0::dlog �1=�e; 0::b�1=�
� and a sear
hable partial-sums data stru
tureP . (We a
tually use A only while de
oding but, to emphasize the symmetry betweenthe two pro
edures, we refer to it in our explanation of en
oding as well.) When we
ome to en
ode or de
ode s[i℄,� Q stores wi;� D stores ea
h 
hara
ter a that o

urs in wi, its frequen
y f(a;wi) there and, iff(a;wi) � `=�1=�, its position in A;� A[℄ is an array of doubly-linked lists. The list A[j℄, 0 � j � dlog �1=�e, 
ontainsall 
hara
ters with 
odeword length j sorted by the 
odeword o�sets; we denoteby A[j℄:l the pointer to the last element in A[j℄.� C[j℄ stores the number of 
odewords of length j4



� P stores C[j℄=2j for ea
h j and supports pre�x sum queries.We implement Q in O(` log �) = O(�1=� log2 �) bits of memory, A in O(�1=� log2 �)bits, and P in O(log2 �) bits by Lemma 4. The di
tionary D uses O(�1=�+�) bitsand supports queries and updates in O(1) worst-
ase time by Lemma 2; if we allowrandomization, we 
an apply Lemma 3 and redu
e the spa
e usage to O(�1=� log2 �)bits, but updates are supported in O(1) expe
ted time. Therefore, altogether we useO(�1=�+�) bits of memory; if randomization is allowed, the spa
e usage is redu
ed toO(�1=� log2 �) bits.To en
ode s[i℄, we �rst sear
h in D and, if f(s[i℄; wi) < `=�1=�, we simply writea 0 followed by s[i℄'s index in the alphabet, update the data stru
tures as des
ribedbelow, and pro
eed to s[i + 1℄; if f(s[i℄; wi) � `=�1=�, we use P and s[i℄'s positionA[j; k℄ in A to 
ompute j�1Xh=0 C[h℄=2h + (k � 1)=2j � 1 :The �rst j = dlog(`=f(s[i℄; wi))e bits of this sum's binary representation are enoughto uniquely identify s[i℄ be
ause, if a 
hara
ter a 6= s[i℄ is stored at A[j0; k0℄, then����� j�1Xh=0 C[h℄=2h + (k � 1)=2j!� j0�1Xh=0 C[h℄=2h + (k0 � 1)=2j0!����� � 1=2j ;therefore, we write a 1 followed by these bits as the 
odeword for s[i℄.To de
ode s[i℄, we read the next bit in the en
oding; if it is a 0, we simply interpretthe following dlog �e bits as s[i℄'s index in the alphabet, update the data stru
tures,and pro
eed to s[i+1℄; if it is a 1, we interpret the following dlog �1=�e bits (of whi
hs[i℄'s 
odeword is a pre�x) as a binary fra
tion b and sear
h in P for index j of thelargest partial sumPj�1h=0C[h℄=2h � b. Knowing j tells us the length of s[i℄'s 
odewordor, equivalently, its row in A; we 
an also 
ompute its o�set,k = $b�Pj�1h=0 C[h℄=2h2j %+ 1 ;thus, we 
an �nd and write s[i℄.En
oding or de
oding s[i℄ takesO(1) time for queryingD and A and, if f(s[i℄; wi) �`=�1=�, then O� log log `f(s[i℄; wi)� = O(log log �)time to query P . After en
oding or de
oding s[i℄, we update the data stru
tures asfollows:� we dequeue s[i�`℄ (if it exists) from Q and enqueue s[i℄; we de
rement s[i�`℄'sfrequen
y in D and delete it if it does not o

ur in wi+1; insert s[i℄ into D if itdoes not o

ur in wi or, if it does, in
rement its frequen
y;5



� we remove s[i�`℄ from A (by repla
ing it with the last 
hara
ter in its list A[j℄,de
rementing C[j℄, and updating D) iff(s[i� `℄; wi+1) < `=�1=� � f(s[i� `℄; wi) ;� we move s[i� `℄ from list A[j℄ to list A[j + 1℄ ifdlog �1=�e � �log `f(s[i� `℄; wi+1)� > �log `f(s[i� `℄; wi)� ;this is done by repla
ing s[i� `℄ with A[j℄:l, and appending s[i� `℄ at the endof A[j + 1℄; pointers A[j℄:l and A[j + 1℄:l and 
ounters C[j℄ and C[j + 1℄ arealso updated;� if ne
essary, we insert s[i℄ into A or move it from A[j℄ to A[j + 1℄; these pro-
edures are symmetri
 to deleting s[i � `℄ and to moving s[i � `℄ from A[j℄ toA[j � 1℄� �nally, if we have 
hanged C, the data stru
ture P is updated.All of these updates, ex
ept the last one, take O(1) time, and updating P takesO(log log �) time in the worst 
ase. When we insert a new element s[i℄ into Q, thismay lead to updating P as des
ribed above. We may de
rement the length of s[i℄or insert a new 
odeword for the symbol s[i℄. In both 
ases, we 
an P updated inO(length(s[i℄)) time, where length(s[i℄) is the 
urrent 
odeword length of s[i℄. Whenwe delete an element s[i � `℄, we may in
rement the 
odeword length of s[i � `℄ orremove it from the 
ode. If the 
odeword length is in
remented, then we update Pin O(length(s[i � `℄)) time. If we remove the 
odeword for s[i � `℄, then we alsoupdate P in O(length(s[i � `℄)) time; in the last 
ase we 
an 
harge the 
ost ofupdating P to the previous o

urren
e of s[i� `℄ in the string s, when s[i � `℄ wasen
oded with length(s[i� `℄) bits. The 
odeword lengths of symbols s[i℄ and s[i� `℄are O � log log `f(s[i℄;wi)� and O � log log `f(s[i�`℄;wi)� respe
tively. Hen
e, by Jensen'sinequality, in total we en
ode s in O(n logH 0) time, where H 0 is the average numberof bits per 
hara
ter in our en
oding. In the next se
tion, we will prove that thesliding-window Shannon 
oding en
odes s in �nH(s)+(� ln 2+2+�)n+O(�1=� log2 �)bits. Sin
e we 
an assume that � is not vastly larger than n, our method works inO(n logH) time.If the di
tionary D is implemented as in Lemma 3, the analysis is exa
tly thesame, but a string s is pro
essed in expe
ted time O(n logH).Lemma 5 Sliding-window Shannon 
oding 
an be implemented in O(n logH) timeoverall and O(log log �) time for any 
hara
ter, O(�1=�+�) bits of memory and onepass. If randomization is allowed, sliding-window Shannon 
oding 
an be implementedin O(�1=� log2 �) bits of memory and O(n logH) expe
ted time.6



4 AnalysisIn this se
tion we prove the upper bound on the en
oding length of sliding-windowShannon 
oding and obtain the following Theorem.Theorem 1 We en
ode s in, and later de
ode it from, �nH(s) + (� ln 2 + 2 + �)n+O(�1=� log2 �) bits using O(n logH) time overall and O(log log �) time for any 
har-a
ter, O(�1=�+�) bits of memory and one pass. If randomization is allowed, the mem-ory usage 
an be redu
ed to O(�1=� log2 �) bits and s 
an be en
oded and de
oded inO(n logH) expe
ted time.Proof : Consider any substring s0 = s[k::(k+ `� 1)℄ of s with length `, and let F bethe set of 
hara
ters a su
h thatf �a; s[max(k � `; 1)::(k + ` � 1)℄� � `�1=� ;noti
e jF j � 2�1=�. For k � i � k + ` � 1, if s[i℄ 2 F but f(s[i℄; wi) < `=�1=�, thenwe en
ode s[i℄ usingdlog �e+ 1< � log �1=� + 2< � log `max �f(s[i℄; wi); 1� + 2� � log `max �f �s[i℄; s[k::(i� 1)℄� ; 1� + 2bits; if f(s[i℄; wi) � `=�1=�, then we en
ode s[i℄ using�log `f(s[i℄; wi)�+ 1 < � log `max �f �s[i℄; s[k::(i� 1)℄� ; 1� + 2bits; �nally, if s[i℄ 62 F , then we again en
ode s[i℄ usingdlog �e+ 1< � log �1=� + 2< � log `f �s[i℄; s[max(k � `; 1)::(k + ` � 1)℄� + 2� � log `f(s[i℄; s0) + 2
7



bits. Therefore, the total number of bits we use to en
ode s0 is less than�Xa2F Xs[i℄=a;k�i�k+`�1 log `max �f �a; s[k::(i� 1)℄� ; 1�+�Xa 62F f(a; s0) log `f(a; s0) + 2`= �` log ` � �Xa2F Xs[i℄=a;k�i�k+`�1 log �max �f �a; s[k::(i� 1)℄� ; 1����Xa 62F f(a; si) log f(a; s0) + 2` ;sin
e Xs[i℄=a;k�i�k+`�1 logmax �f �a; s[k::(i� 1)℄� ; 1� = f(a;s0)�1Xj=1 log j ;we 
an rewrite our bound as�0�` log `�Xa2F f(a;s0)�1Xj=1 log j �Xa 62F f(a; s0) log f(a; s0)1A+ 2`= � ` log ` �Xa2F log((f(a; s0)� 1)!)�Xa 62F f(a; s0) log f(a; s0)!+ 2` ;by Stirling's Formula,` log ` �Xa2F log((f(a; s0)� 1)!)= ` log ` �Xa2F log((f(a; s0)!) +Xa2F log f(a; s0)� ` log ` �Xa2F �f(a; s0) log f(a; s0)� f(a; s0) ln 2� + jF j log `� ` log ` �Xa2F f(a; s0) log f(a; s0) + ` ln 2 + 2�1=� log ` ;so we 
an again rewrite our bound as� ` log ` �Xa f(a; s0) log f(a; s0) + ` ln 2 + 2�1=� log `! + 2`= �Xa f(a; s0) log `f(a; s0) +�� ln 2 + 2 + 2��1=� log `` � `= �`H(s0) +�� ln 2 + 2 + 2��1=� log `` � ` :8



Re
all ` = �
�1=� log ��, so2��1=� log ``= 2��1=� log �
�1=� log ��d
�1=� log �e� 2� � log 
+ (1=�) log � + log log � + 1�
 log �� 2�(log 
+ 3)
(we will give tighter inequalities in the full paper, but use these here for simpli
ity);for any 
onstants � � 1 and � > 0, we 
an 
hoose a 
onstant 
 large enough that2�(log 
+ 3)
 < � ;so the number of bits we use to en
ode s0 is less than �`H(s0)+(� ln 2+2+ �)`. With
 = 10, for example, 2�(log 
+ 3)
 < (2� ln 2)� ;so our bound is less than �`H(s0) + (2�+2)`; with 
 = 100, it is less than �`H(s0) +(0:9� + 2)`.Sin
e the produ
t of length and empiri
al entropy is superadditive| i.e., js1jH(s1)+js2jH(s2) � js1s2jH(s1s2) | we have` bn=`
�1Xj=0 H �s[(j`+ 1)::(j + 1)`℄� � nH(s)so, by the bound above, we en
ode the �rst `bn=`
 
hara
ters of s using fewer than�nH(s)+ (� ln 2+2+ �)n bits. We en
ode the last ` 
hara
ters of s using fewer than�`H(s[(n � `)::n℄) + (� ln 2 + 2 + �)` = O(` log �) = O(�1=� log2 �)bits so, even 
ounting the bits we use for s[(n � ` + 1)::`bn=`
℄ twi
e, in total ween
ode s using fewer than�nH(s) + (� ln 2 + 2 + �)n+O(�1=� log2 �)bits. �If the most 
ommon �1=� 
hara
ters in the alphabet make up mu
h more than halfof s (in parti
ular, when � = 1) then, instead of using an extra bit for ea
h 
hara
ter,we 
an keep a spe
ial es
ape 
odeword and use it to indi
ate o

urren
es of 
hara
tersnot in the 
ode. The analysis be
omes somewhat 
ompli
ated, however, so we leavedis
ussion of this modi�
ation for the full paper.9



5 SummaryIn this paper we presented an algorithm that uses spa
e sub-linear in the alphabetsize and a
hieves an en
oding length that is 
lose to the lower bound of [5℄. Ouralgorithm pro
esses ea
h symbol in O(log log �) worst-
ase time, whereas linear-spa
epre�x 
oding algorithms 
an en
ode a string of n symbols in O(n) time, i.e. in timeindependent of the alphabet size �. It is an interesting open problem whether ouralgorithm (or one with the same spa
e bound) 
an be made to run in O(n) time.Referen
es[1℄ D. Chen, Y.-J. Chiang, N. D. Memon, and X. Wu. Alphabet partitioning for semi-adaptiveHu�man 
oding of large alphabets. IEEE Transa
tions on Communi
ations, 55:436{443, 2007.[2℄ J. B. Connell. A Hu�man-Shannon-Fano 
ode. Pro
eedings of the IEEE, 61:1046{1047, 1973.[3℄ M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. E.Tarjan. Dynami
 perfe
t hashing: Upper and lower bounds. SIAM Journal on Computing,23:738{761, 1994.[4℄ T. Gagie. Dynami
 Shannon 
oding. Information Pro
essing Letters, 102:113{117, 2007.[5℄ T. Gagie and G. Manzini. Spa
e-
ons
ious 
ompression. In Pro
eedings of the 32nd Symposiumon Mathemati
al Foundations of Computer S
ien
e, pages 206{217, 2007.[6℄ R. G. Gallager. Variations on a theme by Hu�man. IEEE Transa
tions on Information Theory,24:668{674, 1978.[7℄ T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministi
 di
tionaries. Journal of Algorithms,41:69{85, 2001.[8℄ D. A. Hu�man. A method for 
onstru
tion of minimum-redundan
y 
odes. Pro
eedings of theIRE, 40:1098{1101, 1952.[9℄ R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple algorithm for �nding frequentelements in streams and bags. ACM Transa
tions on Database Systems, 28:51{55, 2003.[10℄ M. Karpinski and Y. Nekri
h. A fast algorithm for adaptive pre�x 
oding. Algorithmi
a, toappear.[11℄ D. E. Knuth. Dynami
 Hu�man 
oding. Journal of Algorithms, 6:163{180, 1985.[12℄ A. Mo�at. Linear time adaptive arithmeti
 
oding. IEEE Transa
tions on Information Theory,36:401{406, 1990.[13℄ E. S. S
hwartz and B. Kalli
k. Generating a 
anoni
al pre�x en
oding. Communi
ations of theACM, 7:166{169, 1964.[14℄ Uni
ode Consortium. The Uni
ode Standard, Version 5.0. Addison-Wesley Professional, 2006.[15℄ P. Vines and J. Zobel. Compression te
hniques for Chinese text. Software: Pra
ti
e andExperien
e, 28(12):1299{1314, 1998.[16℄ J. S. Vitter. Design and analysis of dynami
 Hu�man 
odes. Journal of the ACM, 1987(4):825{845, 1987. 10


