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Abstract. We present a data structure that supports three-dimensional
range reporting queries in O(log log U + (log log n)3 + k) time and uses
O(n logε n) space, where U is the size of the universe, k is the number of
points in the answer, and ε is an arbitrary constant. This result improves
over the data structure of Alstrup, Brodal, and Rauhe (FOCS 2000) that
uses O(n log1+ε n) space and supports queries in O(log n + k) time and
the data structure of Nekrich (SoCG’07) that uses O(n log4 n) space and
supports queries in O(log log U +(log log n)2 +k) time. Our result allows
us to significantly reduce the space usage of the fastest previously known
static and incremental d-dimensional data structures, d ≥ 3, at a cost of
increasing the query time by a negligible O(log log n) factor.

1 Introduction

The range reporting problem is to store a set of d-dimensional points
P in the data structure, so that for a query rectangle Q all points in
Q ∩ P can be reported. In this paper we significantly improve the space
usage and pre-processing time of the fastest previously known static and
semi-dynamic data structures for orthogonal range reporting with only a
negligible increase in the query time.

The range reporting is extensively studied at least since 1970s; the
history of this problem is rich with different trade-offs between query
time and space usage. Static range reporting queries can be answered in
O(logd n + k) time and O(n logd−1 n) space using range trees [4] known
since 1980; here and further k denotes the number of points from P in
the query rectangle. The query time can be reduced to O(logd−1 n +
k) time by applying the fractional cascading technique of Chazelle and
Guibas [8] designed in 1985. The space usage was further improved by
Chazelle [6]. In 90s, Subramanian and Ramaswamy [12] and Bozanis,
Kitsios, Makris, and Tsakalidis [5] showed that d-dimensional queries can
be answered in Õ(logd−2 n + k) time1 at a cost of higher space usage:
⋆ Email marek@cs.uni-bonn.de.

⋆⋆ Email yasha@cs.uni-bonn.de.
1 We define eO(f(n)) = O(f(n) logc(f(n))) for a constant c.



Source Query Time Space

[4] O(logd n + k) O(n logd−1 n)
[8] O(logd−1 n + k) O(n logd−1 n)
[6] O(logd−1 n + k) O(n logd−2+ε n)
[12] O(logd−2 n log∗∗ n + k) O(n logd−1 n)
[5] O(logd−2 n + k) O(n logd n)
[2] O(logd−2 n/(log log n)d−3 + k) O(n logd−2+ε n)
[11] O(logd−3 n/(log log n)d−5 + k) O(n logd+1+ε n)
[1]† O(logd−3 n/(log log n)d−5 + k) O(n logd+ε n)
This paper O(logd−3 n/(log log n)d−6 + k) O(n logd−2+ε n)

Table 1. Data structures in d > 3 dimensions; † indicates that a data structure is ran-
domized. We define log∗(n) = min{ t | log(t) n ≤ 1 } and log∗∗ n = min{ t | log∗(t) n ≤
1 } where log∗(t) n denotes computing log∗ t times.

their data structures use O(n logd−1 n) and O(n logd n) space respectively.
Alstrup, Brodal, and Rauhe [2] designed a data structure that answers
queries in Õ(logd−2 n + k) time and uses O(n logd−2+ε n) space for an
arbitrary constant ε > 0. Recently, Nekrich [11] reduced the query time
by Õ(log n) factor and presented a data structure that answers queries
in O(logd−3 n/(log log n)d−4 + k) time for d > 3. Unfortunately, the data
structure of [11] uses O(n logd+1+ε n) space. Very recently, Afshani [1] re-
duced the space usage to O(n logd+ε n); however his data structure uses
randomization. In this paper we present a data structure that matches
the space efficiency of [2] at a cost of increasing the query time by
a negligible O(log log n) factor: our data structure supports queries in
O(logd−3 n/(log log n)d−5 + k) time and uses O(n logd−2+ε n) space for
d > 3. See Table 1 for a more precise comparison of different results.

Our result for d-dimensional range reporting is obtained as a corol-
lary of the three-dimensional data structure that supports queries in
O(log log U + (log log n)3 + k) time and uses O(n log1+ε n) space. Our
three-dimensional data structure is to be compared with the data struc-
ture of [2] that also uses O(n log1+ε n) space but answers queries in
O(log n + k) time and the data structure of [11] that answers queries
in O(log log U + (log log n)3 + k) time but needs O(n log4 n) space. See
Table 2 for a more extensive comparison with previous results. A corol-
lary of our result is an efficient semi-dynamic data structure that supports
three-dimensional queries in Õ(log n+k) time and insertions in O(log5 n)
time. Thus we improve the update time of the data structure from [11]
that supports insertions in O(log8 n) time.
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If we are ready to pay penalties for each point in the answer,
the space usage can be further reduced: we describe a data struc-
ture that uses O(n logd−2 n(log log n)3) space and answers queries in
O(logd−3 n(log log n)3 +k log log n) time. We can also use this data struc-
ture to answer emptiness queries (to determine whether query rectangle
Q contains points from P ) and one-reporting queries (i.e. to report an
arbitrary point from P ∩ Q if P ∩ Q 6= ∅). This is an Õ(log n) factor im-
provement in query time over the data structure from [2]. Other similar
data structures are either slower or require higher penalties for each point
in the answer.

Source Query Time Space
[6] O(log2 n + k) O(n log1+ε n)
[12] O(log n log∗∗ n + k) O(n log2 n)
[5] O(log n + k) O(n log3 n)
[2] O(log n + k) O(n log1+ε n)
[11] O(log log U + (log log n)2 + k) O(n log4+ε n)
[1]† O(log log U + (log log n)2 + k) O(n log3 n)
This paper O(log log U + (log log n)3 + k) O(n log1+ε n)

Table 2. Three-dimensional data structures; † indicates that a data structure is ran-
domized.

Throughout this paper, ε denotes an arbitrarily small constant, k
denotes the number of points in the answer, and U denotes the size of the
universe. If each point in the answer can be output in constant time, we
will sometimes say that the query time is O(f(n)) (instead of O(f(n) +
k)). In section 3 we describe a space efficient data structure for three-
dimensional range reporting on a grid. In section 4 we describe a variant
of our data structure that uses less space but needs O(log log n) time to
output each point in the answer.

2 Preliminaries

We use the same notation as in [13] to denote the special cases of three-
dimensional range reporting queries: a product of three half-open inter-
vals will be called a (1,1,1)-sided query; a product of a closed interval
and two half-open intervals will be called a (2,1,1)-sided query; a prod-
uct of two closed intervals and one half-open interval (resp. three closed
intervals) will be called a (2,2,1)-sided (resp. (2,2,2)-sided) query. Clearly
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(1,1,1)-sided queries are equivalent to dominance reporting queries, and
(2,2,2)-sided query is the general three-dimensional query. The following
transformation is described in e.g. [13] and [12].

Lemma 1. Let 1 ≤ ai ≤ bi ≤ 2 for i = 1, 2, 3. A data structure that
answers (a1, a2, a3) queries in O(q(n)) time, uses O(s(n)) space, and can
be constructed in O(c(n)) time can be transformed into a data structure
that answers (b1, b2, b3) queries in O(q(n)) time, uses O(s(n) logt n) space
and can be constructed in O(c(n) logt n) time for t = (b1 − a1) + (b2 −
a2) + (b3 − a3).

We will also need the following folklore result:

Lemma 2. There exists a O(n1+ε) space data structure that supports
range reporting queries on a d-dimensional grid of size n for any constant
d in O(k) time.

Proof: One dimensional range reporting queries on a grid of size n can
be answered in O(k) time using a trie with node degree nε. Using range
trees [4] with node degree ρ we can transform a d-dimensional O(s(n))
space data structure into a (d + 1)-dimensional data structure that uses
O(s(n)h(n) ·ρ) space and answers range reporting queries in O(q(n)h(n))
time, where h(n) = log n/ log ρ is the height of the range tree. Since
ρ = nε, h(n) = O(1). Hence, the query time does not depend on dimension
and the space usage increases by a factor O(nε) with each dimension.
We use Lemma 2 to obtain a data structure that supports queries that
are a product of a (d−1)-dimensional query on a universe of size n1−ε and
a half-open interval. We will show in the next Lemma that such queries
can be answered in O(n) space and O(1) time.

Lemma 3. There exists a O(n) space data structure that supports range
reporting queries of the form Q′ × [−∞, x) where Q′ is a (d − 1)-
dimensional query on U1 × U2 × . . . × Ud1 and |U1| · |U2| · . . . · |Ud−1| =
O(n1−ε).

Proof: There are O(n1−ε) possible projections of points onto the first
d − 1 coordinates. Let min(p1, . . . , pd−1) denote the point with min-
imal d-th coordinate among all points whose first d − 1 coordinates
equal to p1, p2, . . . , pd−1. We store points min(p1, . . . , pd−1) for all p1 ∈
U1,p2 ∈ U2,. . .,pd−1 ∈ Ud−1 in a data structure M . Since M contains
O(n1−ε) points, we can use Lemma 2 and implement M in O(n) space.
For all possible p1 ∈ U1,p2 ∈ U2,. . .,pd−1 ∈ Ud−1 we also store a list
L(p1, . . . , pd−1) of points whose first d − 1 coordinates are p1, . . . , pd−1;
points in L(p1, . . . , pd−1) are sorted by their d-th coordinates. Given a
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query Q = Q′ × [−∞, x), we first answer Q using the data structure M .
Then, for every point p = (p1, . . . , pd−1, pd) found with help of M , we
traverse the corresponding list L(p1, . . . , pd−1) and report all points in
this list whose last coordinate does not exceed x.

In several places of our proofs we will use the reduction to rank
space technique [9, 6]. This technique allows us to replace coordinates
of a point by its rank. Let Px, Py, and Pz be the sets of x, y-, and
z-coordinates of points from P . For a point p = (px, py, pz), let p′ =
(rank(px, Px), rank(py, Py), rank(pz, Pz)), where rank(e, S) is defined as
the number of elements in S that are smaller than or equal to e. A point p
belongs to an interval [a, b]×[c, d]×[e, f ] if and only if a point p′ belongs to
an interval [a′, b′]×[c′, d′]×[e′, f ′] where a′ = succ(a, Px), b′ = pred(b, Px),
c′ = succ(c, Py), d′ = pred(d, Py), e′ = succ(e, Pz), f ′ = pred(f, Pz), and
succ(e, S) (pred(e, S)) denotes the smallest (largest) element in S that is
greater (smaller) than or equal to e. Reduction to rank space can be used
to improve the query time. Following [2], we can also use this technique to
reduce the space usage: if a data structure contains m elements, reduction
to rank space allows us to store each element in O(log m) bits.

3 Space-Efficient Three-Dimensional Data Structure

In this section we describe a data structure that supports three-
dimensional range reporting queries in O((log log n)3 + log log U + k)
time where U is the universe size and uses O(n log1+ε n) space. Our data
structure combines the recursive divide-and-conquer approach introduced
in [2], the result of Lemma 3, and the transformation of (a1, a2, a3)-queries
into (b1, b2, b3)-queries described in Lemma 1. We start with a descrip-
tion of a space-efficient modification of the data structure for (1,1,1)-sided
queries. Then, we obtain data structures for (2, 1, 1)-sided and (2, 2, 1)-
sided queries using the recursive divide-and-conquer and Lemma 3. Fi-
nally, we obtain the data structure that supports arbitrary queries using
Lemma 1.

Lemma 4. [11] Given a set of three-dimensional points P and a param-
eter t, we can construct in O(n log3 n) time a O(n) space data structure
T that supports the following queries on a grid of size n:
(i) for a given query point q, T determines in O((log log n)2) time whether
q is dominated by at most t points of P
(ii) if q is dominated by at most t points from P , T outputs in O(t +
(log log n)2) time a list L of O(t) points such that L contains all points
of P that dominate q.

5



As described in [11], Lemma 4 allows us to answer (1,1,1)-sided queries
in O((log log n)2) time and O(n log n) space. We can reduce the space us-
age to O(n log log n) using an idea that is also used in [1]. In the proofs
of Lemmas 5, 6, and 7, as well as Theorem 1, we assume that all point
coordinates belong to a universe of size n. Reduction to rank space tech-
nique described in section 2 allows us to transform a data structure on a
grid of size n into a data structure on a grid of size U , so that the query
time increases by an additive term O(log log U) and the space usage is
not increased.

Lemma 5. There exists a data structure that answers (1,1,1)-sided
queries in O((log log U + log log n)2 + k) time, uses O(n log log n) space,
and can be constructed in O(n log3 n log log n) time.

Proof: For each parameter t = 22i, i = 1, 2, . . . , log log n/2, we construct
a data structure Ti of Lemma 4. Given a query point q, we examine
data structures T1, T2, . . . , Tlog log n/2 and check whether q is dominated
by more than 22i points for i = 1, 2, . . . , log log n/2. Thus we identify i,
such that q is dominated by more than 22i and less than 22i+2 points
or determine that q is dominated by at least log n points. In the former
case, we generate in O((log log n)2 + 22i+2) time a list L that contains
all points that dominate q. Then, we examine all points in L and output
all points that dominate q in O(22i+2) time. The total query time is
O(i · (log log n)2 + 22i+2) = O((log log n)2 + k), because k ≥ 22i. If q is
dominated by at least log n points of P , we can use a linear space data
structure with O(log n) query time, e.g. the data structure of Chazelle
and Edelsbrunner [7], to answer the query in O(log n + k) = O(k) time.

Since each data structure Ti uses linear space, the space usage of the
described data structure is O(n log log n).

Lemma 6. There exists a data structure that answers (2,1,1)-sided
queries in O(log log U + (log log n)3 + k) time, uses O(n logε n) space,
and can be constructed in O(n log3 n log log n) time.

Proof: We divide the grid into x-slices Xi = [xi−1, xi] × n × n and y-
slices Yj = n × [yj−1, yj ] × n, so that each x-slice contains n1/2+γ points
and each y-slice contains n1/2+γ points; the value of a constant γ will be
specified below. The cell Cij is the intersection of the i-th x-slice and the
j-th y-slice, Cij = Xi∩Yj. The data structure Dt contains a point (i, j, z)
for each point (x, y, z) ∈ P ∩Cij. Since the first two coordinates of points
in Dt are bounded by n1/2−γ , Dt uses O(n) space and supports (2,1,1)-
sided queries in constant time by Lemma 3. For each x-slice Xi there
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are two data structures that support two types of (1,1,1)-sided queries,
open in +x and in −x directions. For each y-slice Yj, there is a data
structure that supports (1, 1, 1)-sided queries open in +y direction. For
each y-slice Yj and for each x-slice Xi there are recursively defined data
structures. Recursive subdivision stops when the number of elements in a
data structure is smaller than a predefined constant. Hence, the number
of recursion levels is v log log n for v = log 2

1+2γ

2.

Given a query Q = [a, b] × (−∞, c] × (−∞, d] we identify the indices
i1, i2, and j such that projections of all cells Cij , i1 < i < i2, j < j1,
are entirely contained in [a, b] × (−∞, c]. Let a0 = xi1−1, b0 = xi2−1, and
c0 = yj1−1. The query Q can be represented as Q = Q1 ∪ Q2 ∪ Q3 ∪ Q4,
where Q1 = [a0, b0]×(−∞, c0]×(−∞, d], Q2 = [a, a0)×(−∞, c]×(−∞, d],
Q3 = (b0, b]×(−∞, c]×(−∞, d], and Q4 = [a0, b0]×(c0, c]×(−∞, d]. Query
Q1 can be answered using At. Queries Q2 and Q3 can be represented
as Q2 = ([−∞, a0) × (−∞, c] × (−∞, d]) ∩ Xi1 and Q3 = ((−∞, b] ×
(−∞, c] × (−∞, d]) ∩ Xi2 ; hence, Q2 and Q3 are equivalent to (1, 1, 1)-
sided queries on x-slices Xi1 and Xi2 . The query Q4 can be answered
by a recursively defined data structure for the y-slice Yj1 because Q4 =
([a0, b0]×(−∞, c]×(−∞, d])∩Yj1 . If i1 = i2 and the query Q is contained
in one x-slice, then Q is processed by a recursively defined data structure
for the corresponding x-slice. Thus a query is reduced to one special
case that can be processed in constant time, two (1, 1, 1)-sided queries,
and one (2,1,1)-sided query answered by a data structure that contains
n1/2+γ elements.

Queries Q2 and Q3 can be answered in O((log log n)2) time, the query
Q1 can be answered in constant time. The query Q4 is answered by a
recursively defined data structure that contains O(n1/2+γ) elements. If
i1 = i2 or j1 = 1, i.e. if Q is entirely contained in one x-slice or one y-
slice, then the query is answered by a data structure for the corresponding
slice that contains O(n1/2+γ) elements. Hence, the query time q(n) =
O((log log n)2) + q(n1/2+γ) and q(n) = O((log log n)3).

The data structure consists of O(log log n) recursion levels. The total
number of points in all data structures on the i-th recursion level is 2in.
Hence all data structures on the i-th recursion level require O(2in log n)
bits of space. The space usage can be reduced by applying the reduction
to rank space technique [9, 6]. As explained in section 2, reduction to rank
space allows us to replace point coordinates by their ranks. Hence, if we
use this technique with a data structure that contains m elements, each
point can be specified with O(log m) bits. Thus, we can reduce the space

7



1

0 2 3 4 5 6 7

2

3

4

5

y

y

y

y

y

a b

c

xx x1 x x x x x

Fig. 1. Example of a (2, 1, 1)-sided query projected onto the xy-plane. i1 = 1, i2 = 4,
j = 3.

usage by replacing point coordinates by their ranks on certain recursion
levels.

We apply reduction to rank space on every δ log log n-th recursion
level for δ = ε/3. Let V be an arbitrary data structure on recursion level
r = sδ log log n − 1 for 1 ≤ s ≤ (1/δ) log 2

1+2γ

2 · log log n. Let W be the

set of points that belong to an x-slice or a y-slice of V . We store a dic-
tionary that enables us to find for each point p = (px, py, pz) from W
a point p′ = (p′x, p′y, p

′

z) where p′x = rank(px,Wx), p′y = rank(py,Wy),
p′z = rank(pz,Wz), and Wx,Wy, and Wz are the sets of x-, y-, and z-
coordinates of all points in W . Let W ′ be the set of all points p′. Con-
versely there is also a dictionary that enables us to find for a point p′ ∈ W ′

the corresponding p ∈ W . The data structure that answers queries on W
stores points in the rank space of W . In general, all data structures on
recursion levels r, r + 1, . . . , r + δ log log n − 1 obtained by subdivision of
W store points in rank space of W . That is, point coordinates in all those
data structures are integers bounded by |W |. If such a data structure R
is used to answer a query Q, then for each point pR ∈ R ∩ Q, we must
find the corresponding point p ∈ P . Since range reduction was applied
O(1) time, we can find for any pR ∈ R the corresponding p ∈ P in O(1)
time.

Each data structure on level r = sδ log log n for 0 ≤ s ≤ (1/δ)v ·
log log n and v = log 2

1+2γ

2 contains O(nl) elements for l = (1/2 + γ)r.

Hence an arbitrary element of a data structure on level r can be specified
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with l · log n bits. The total number of elements in all data structures on
the r-th level is n2r. Hence all elements in all data structures on the r-th
recursion level need O(n2r((1+2γ

2 )r) log n log log n) bits.

We choose γ so that 1 + 2γ ≤ 2ε/(3v). Since r ≤ v log log n,
(1 + 2γ)r ≤ 2(ε/3) log log n ≤ logε/3 n. Therefore all data structures on
level r use logε/3 n · O(n log n log log n) = O(n log1+2ε/3 n) bits of space
or O(n log2ε/3 n) words of log n bits. The number of elements in all data
structures on levels r +1, r +2, . . . increases by a factor two in each level.
Hence, the total space needed for all data structures on all levels q, r ≤ q <
r + δ log log n, is (

∑δ log log n−1
f=1 2f )O(n log2ε/3 n) = O(2δ log log nn logε n).

Since δ ≤ ε/3, 2δ log log n ≤ logε/3 n. Thus all data structures in a group
of δ log log n consecutive recursion levels use O(n logε n) words of space.
Since there are O(1/δ) = O(1) such groups of levels, the total space usage
is O(n logε n).

The data structure on level 0 (the topmost recursion level) can be
constructed in O(n log3 n log log n) time. The total number of elements
in all data structures on level s is 2sn log log n. But each data structure
on the r-th recursion level contains at most nr = nl elements and can
be constructed in O(l3 · nr log3 n log log n) time where l = (1 + 2γ)r/2r.
Hence, all data structure on the r-th recursion level can be constructed
in O((2rl3)n log n log log n) = O(((1 + 2γ)3r/22r)n log3 n log log n) time.
We can choose γ so that (1 + 2γ)3 ≤ 2 and (1 + 2γ)3r/22r ≤ 1/2r .
Then, all data structure on the r-th recursion level can be constructed
in O((1/2r)n log3 n log log n) time. Summing up by all r, we see that all
recursive data structures can be constructed in O(n log3 n log log n) time.

Lemma 7. There exists a data structure that answers (2,2,1)-sided
queries in O(log log U + (log log n)3 + k) time, uses O(n logε n) space,
and can be constructed in O(n log3 n log log n) time.

Proof: The proof technique is the same as in Lemma 6. The grid is di-
vided into x-slices Xi = [xi−1, xi]×n×n and y-slices Yj = n×[yj−1, yj ]×n
in the same way as in the proof of Lemma 6. Each x-slice Xi supports
(2, 1, 1)-sided queries open in +y and −y direction; each y-slice Yj sup-
ports (2, 1, 1)-sided queries open in +x and −x direction. All points are
also stored in a data structure At that contains a point (i, j, z) for each
point (x, y, z) ∈ P ∩Cij . For every x-slice and y-slice there is a recursively
defined data structure. The reduction to rank space technique is applied
on every δ log log n-th level in the same way as in the Lemma 6.
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Fig. 2. Example of a (2,2,1)-sided query projected onto the xy-plane. i1 = 2, i2 = 7,
j1 = 2, and j2 = 5.

Given a query Q = [a, b]×[c, d]×(−∞, e] we identify indices i1, i2, j1, j2

such that all cells Cij , i1 < i < i2 and j1 < j < j2 are entirely contained in
Q. Then Q can be represented as a union of a query Q1 = [a0, b0]×[c0, d0]×
(−∞, e] and four (2, 1, 1)-sided queries Q2 = [a, a0) × [c, d] × (−∞, e],
Q3 = (b0, b] × [c, d] × (−∞, e], Q4 = [a0, b0] × [c, c0) × (−∞, e], and Q5 =
[a0, b0] × (d0, d] × (−∞, e], where a0 = xi1 , b0 = xi2−1, c0 = yj1, and
d0 = yj2−1. The query Q1 can be answered in constant time, and queries
Qi, 1 < i ≤ 5, can be answered using the corresponding x- and y-slices.
Since queries Qi, 1 < i ≤ 5, are equivalent to (2,1,1)-sided queries each
of those queries can be answered in O((log log n)3 + k) time.

If the query Q is entirely contained in one x-slice or one y-slice, then
Q is processed by a data structure for the corresponding x-slice resp.
y-slice. Since the data structure consists of at most v log log n recursion
levels, the query can be transferred to a data structure for an x- or y-slice
at most v log log n times for v = log 2

1+2γ

2. Hence, the total query time is

O(log log n + (log log n)3 + k) = O((log log n)3 + k).

The space usage and construction time are estimated in exactly the
same way as in Lemma 6

Theorem 1. There exists a data structure that answers three-dimensional
orthogonal range reporting queries in O(log log U + (log log n)3 + k) time,
uses O(n log1+ε n) space, and can be constructed in O(n log4 n log log n)
time.
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Proof: This result directly follows from Lemma 7 and Lemma 1.
Furthermore, we also obtain the result for d-dimensional range report-

ing, d ≥ 3.

Corollary 1. There exists a data structure that answers d-dimensional
orthogonal range reporting queries in O(logd−3 n/(log log n)d−6 +k) time,
uses O(n logd−2+ε n) space, and can be constructed in O(n logd+1+ε n)
time.

Proof: We can obtain a d-dimensional data structure from a (d − 1)-
dimensional data structure using range trees with node degree logε n. See
e.g. [2], [11] for details.

Using Theorem 1 we can reduce the space usage and update time of
the semi-dynamic data structure for three-dimensional range reporting
queries.

Corollary 2. There exists a data structure that uses O(n log1+ε n) space,
and supports three-dimensional orthogonal range reporting queries in
O(log n(log log n)2 + k) time and insertions in O(log5+ε n) time.

Proof: We can obtain the semi-dynamic data structure from the static
data structure using a variant of the logarithmic method [3]. A detailed
description can be found in [11]. The space usage remains the same, the
query time increases by a O(log n/ log log n) factor, and the amortized

insertion time is O( c(n)
n log1+ε n), where c(n) is the construction time of

the static data structure.
The result of Corollary 2 can be also extended to d > 3 dimensions

using range trees.

4 Three-Dimensional Emptiness Queries

We can further reduce the space usage of the three-dimensional data
structure if we allow O(log log n) penalties for each point in the answer.
Such a data structure can also be used to answer emptiness and one-
reporting queries. As in the previous section, we design space-efficient
data structures for (2, 1, 1)-sided and (2, 2, 1)-sided queries. The proof is
quite similar to the data structure of section 3 but some parameters must
be chosen in a slightly different way.

Theorem 2. There exists a data structure that answers three-dimensional
orthogonal range reporting queries in O(log log U+(log log n)3+k log log n)
time, uses O(n log n(log log n)3) space, and can be constructed in time
O(n log4 n log log n) .
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For completeness, we provide the proof of Theorem 2 in the Appendix.
Using the standard range trees and reduction to rank space techniques
we can obtain a d-dimensional data structure for d > 3

Corollary 3. There exists a data structure that answers d-dimensional
orthogonal range reporting queries for d > 3 in O(logd−3 n(log log n)3 +
k log log n) time, uses O(n logd−2 n(log log n)3) space, and can be con-
structed in O(n logd+1 n log log n) time.
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Appendix. Proof of Theorem 2

Lemma 8. There exists a data structure that answers (2,1,1)-sided
queries in O(log log U+(log log n)3+k log log n) time, uses O(n(log log n)2)
space, and can be constructed in O(n log3 n log log n) time.

Proof: The data structure consists of the same components as the data
structure of Lemma 6. But the size of x-slices and y-slices is reduced, so
that each x-slice and each y-slice contains n1/2 logp n points for a constant

12



p ≥ 2. The data structure Dt contains a point (i, j, zmin) for each cell Cij =
Xi∩Yj, Cij ∩P 6= ∅, such that zmin is the minimal z-coordinate of a point
in Cij ∩ P . The data structure Dt can contain up to n/ log2p n elements.
Combining the results of Lemma 1 and Lemma 6, we can implement At in
O((n/ log2p n) log n log log n) = O(n) space, so that queries are supported
in O((log log n)2 + k) time. A list Lij contains all points in Cij sorted
by their z-coordinates. For each x-slice Xi, there are two data structures
that support (1, 1, 1)-sided queries open in +x and −x direction. For
each y-slice Yj there is a data structure for (1, 1, 1)-sided queries open in
+y direction. For each x-slice and y-slice, there is a recursively defined
data structure. As shown in Proposition 1 of [10], the total number of
elements in a data structure on the r-th recursion level can be estimated as
sr(n) = O(n1/2r

logp n
√

log log n). The recursive sub-division stops when
a data structure contains no more than log n elements. In this case, the
data structure is implemented using e.g. the data structure of [2], so that
queries are answered in O(log log n) time and O(log n(log log n)1+ε) space.

In the same way as in Lemma 6, the query Q can be represented
as a union of (at most) one (2,1,1)-sided query on At, two (1,1,1)-sided
queries on x-slices, and one (2,1,1)-sided query on a recursively defined
data structure for a y-slice. Hence, the query time is O((log log n)3) if we
ignore the time we need to output points in the answer.

Unlike the data structure of Lemma 6, we apply range reduction on
every recursion level. Since the number of elements in a data structure on
level r is = O(n1/2r

logp n
√

log log n), every element in a data structure
on level r can be represented with log(sr(n)) = O((1/2r) log n+log log n)
bits. The total number of elements in all data structures on level r is
O(n2r). Hence, all level r data structures need O(n log n + n2r log log n)
bits. Summing up by all recursion levels, the total space usage is
O(n log n log log n)+

∑rmax−1
r=1 n2r log log n. The maximum recursion level

rmax = log log n + cr for a constant cr. Hence, the second term can be
estimated as

∑rmax
r=1 n2r log log n = O(n log n log log n). If a data struc-

ture on the recursion level rmax contains m elements, then it uses
O(m(log log n)1+ε) words of space because m ≤ log n. All data struc-
tures on level rmax use O(n log n log log n) words of space. Thus the data
structure uses O(n log log n) words of log n bits.

The drawback of applying reduction to rank space on each recursion
level is that we must pay a (higher than a constant) penalty for each point
in the answer. Consider a data structure Dr on the r-th level of recursion,
and let Pr be the set of points stored in Dr. Coordinates of any point
stored in Dr belong to the rank space of Pr. To obtain the point p ∈ P
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that corresponds to a point pr ∈ Pr we need O(r) = O(log log n) time.
Hence, our data structure answers queries in O((log log n)3 + k log log n)
time.

The construction time can be estimated with the formula

c(n) = O(n log3 n log log n) + 2(n1/2/ logp n)c(n1/2 logp n)

Therefore, c(n) = O(n log3 n log log n).

Lemma 9. There exists a data structure that answers (2,2,1)-sided
queries in O(log log U+(log log n)3+k log log n) time, uses O(n(log log n)3)
space, and can be constructed in O(n log3 n log log n) time.

Proof: The data structure is the same as in Lemma 8 but in each x-
slice there are two data structures for (2, 1, 1)-sided queries open in +x
and −x directions, and in each y-slice there are two data structures for
(2, 1, 1)-sided queries open in +y and −y direction.

The query is processed in the same way as in Lemma 7. The space
usage can be analyzed in the same way as in Lemma 8. Construction
time can be estimated with the formula c(n) = O(n log3 n log log n) +
2(n1/2/ logp n)c(n1/2 logp n) and c(n) = O(n log3 n log log n).

Finally, we can apply Lemma 1 and obtain the data structure for
three-dimensional orthogonal range reporting queries.
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