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hyAbstra
tWe study a new variant of 
olored orthogonal range sear
hing prob-lem: given a query re
tangle Q all 
olors 
, su
h that at least a fra
tion� of all points in Q are of 
olor 
, must be reported. We des
ribe sev-eral data stru
tures for that problem that use pseudo-linear spa
e andanswer queries in poly-logarithmi
 time.1 Introdu
tionThe 
olored range reporting problem is a variant of the range sear
hingproblem in whi
h every point p 2 P is assigned a 
olor 
 2 C. The setof points P is pre-pro
essed in the data stru
ture so that for any givenre
tangle Q all distin
t 
olors of points in Q 
an be reported eÆ
iently. Inthis paper we 
onsider a variant of this extensively studied problem in whi
honly frequently o

urring 
olors must be reported.We say that a 
olor 
 2 C � -dominates re
tangleQ if at least a � -fra
tionof points in Q are of that 
olor: jf p 2 P \Q j 
ol(p) = 
 gj � � jP \Qj, where
ol(p) denotes the 
olor of point p. We 
onsider several data stru
tures thatallow us to report 
olors that dominate Q 1.Motivation Standard 
olored range reporting problem arises in many ap-pli
ations. Consider a database in whi
h every obje
t is 
hara
terized byseveral numeri
al values (point 
oordinates) and some attribute (
olor). Forinstan
e the 
ompany database may 
ontain information about age andsalary of ea
h employee. The attribute asso
iated with ea
h employee isher position. The query 
onsists in reporting all di�erent job types for allemployees with salary between 40.000 and 60.000 who are older than 40 and�Dept. of Computer S
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olor 
 domi-nates re
tangle Q . 1



younger than 60 years old. Colored range reporting also o

urs naturallyin 
omputational biology appli
ations: ea
h amino a
id is asso
iated with
ertain attributes (hydrophobi
, 
harged, et
.). We may want to reportdi�erent attributes asso
iated with amino a
ids in 
ertain range [10℄.However, in 
ertain appli
ations we are not interested in all attributesthat o

ur in the query range. Instead, we may be interested in reportingthe typi
al attributes. For instan
e, in the �rst example above we may wishto know all job types, su
h that at least a fra
tion � of all employees with agiven salary and age range have a job of this type. In this paper we des
ribedata stru
tures that support su
h and similar queries.Related Work. Traditional 
olored range reported queries 
an be eÆ-
iently answered in one, two, and three dimensions. There are data stru
-tures that use pseudo-linear spa
e and answer one- and two-dimensional
olored range reporting queries in O(logn + k) time [7℄, [8℄ and three-dimensional 
olored queries in O(log2 n+k) time [7℄, where k is the numberof 
olors. A semi-dynami
 data stru
ture of Gupta et al. [7℄ supports two-dimensional queries in O(log2 n+ k) time and insertions in O(log3 n) amor-tized time. Colored orthogonal range reporting queries in d dimensions 
anbe answered in O(logn+ k) time with a data stru
ture that uses O((n1+"))spa
e [1℄, but no eÆ
ient pseudo-linear spa
e data stru
ture is known ford > 3.De Berg and Haverkort [4℄ 
onsider a variant of the 
olored range sear
h-ing in whi
h only signi�
ant 
olors must be reported. A 
olor 
 is signi�
antin re
tangle Q if at least a fra
tion � of points of that 
olor belong to Q,jf p 2 Q \ P j 
ol(p) = 
 gj � � jfp 2 P j 
ol(p) = 
 gj. For d = 1, de Bergand Haverkort [4℄ des
ribe a linear spa
e data stru
ture that answers queriesin O(logn + k) time, where k is the number of sign�
ant 
olors. For d � 2sign�
ant queries 
an be answered approximately: in O(logn + k) time we
an report all a set of 
olors su
h that ea
h 
olor is (1� ")� -signi�
ant fora �xed 
onstant " and all � -signi�
ant 
olors are reported. The only knowndata stru
ture that eÆ
iently answers exa
t signi�
an
e queries uses 
ubi
spa
e [4℄.The problem of �nding the elements o

urring at least �n times in a streamof data was studied in the 
ontext of streaming algorithms [11℄, [6℄, [9℄. It ispossible to �nd all elements that o

ur at least �n times in the multi-set of nelements with an algorithm that O(1=�) spa
e and with two passes throughthe data [11℄, [6℄, [9℄. However, any algorithm that performs only one passthrough the data must use 
(m log nm) bits of spa
e, where m is the numberof di�erent elements (
olors in our terminology) in the multi-set [9℄.Our Results In this paper we show that we 
an �nd domination 
olors2



in an arbitrary d-dimensional re
tangle in poly-logarithmi
 time using apseudo-linear spa
e data stru
ture.� We des
ribe a stati
 O(�n) spa
e data stru
ture that supports one-dimensional queries inO(� logn log logn) time. A stati
O(�n log logn)spa
e data stru
ture supports one-dimensional domination queries inO(� logn) time.� In the 
ase when all 
oordinates are integers bounded by U , thereis a O(�n) spa
e stati
 data stru
ture that supports one-dimensionaldomination queries in O(� log logn log logU) time� There is a dynami
 O(�n) spa
e data stru
ture that supports one-dimensional domination queries and insertions in O(� logn) time anddeletions in O(� logn) amortized time. We 
an redu
e the update timeto (amortized) O(logn) by in
reasing the spa
e usage to O(�n logn)� There is a data stru
ture that supports domination queries in d di-mensions in O(� logd n) time and uses O(�n logd�1 n) spa
e� There is a dynami
 data stru
ture that answers domination queriesin d dimensions in O(� logd+1 n) time, uses O(�n logd�1 n) spa
e, andsupports insertions in O(� logd+1 n) time and deletions inO(� logd+1 n)amortized timeWe des
ribe stati
 and dynami
 data stru
tures for one-dimensional dom-ination queries in se
tions 2 and 3. Data stru
tures for multi-dimensionaldomination queries are des
ribed in se
tion 4.2 Stati
 Domination Queries in One DimensionThe following simple property plays an important role in all data stru
turesfor domination queries.Observation 1 If Q = Q1 [ Q2, Q1 \ Q2 = ;, and 
olor 
 is dominant inQ, then either 
 is dominant in Q1 or 
 is dominant in Q2.Due to this property a query on a set Q 
an be de
omposed into queries onsome disjoint sets Q1; : : : ; Qp su
h that [Qi = Q and p is a 
onstant: we�nd the dominating 
olors for ea
h Qi and for ea
h 
olor 
 that dominatessome Qi we determine whether 
 dominates Q by a range 
ounting query.Our data stru
ture is based on the same approa
h as exponential sear
htrees [2℄. Let P be the set of all points. In one-dimensional 
ase we do notdistinguish between a point and its 
oordinate. P is divided into �n intervalsI1; : : : ; I�n so that ea
h Pi = P \Ii 
ontains between n2=3=2 and 2n2=3 points3



and �n = �(n1=3). Let li and ri denote the left and right bounds of intervalIi. For ea
h 1 � i � j � �, the list Lij 
ontains the set of 
olors thatdominate [li; rj℄. We denote by nij the total number of points in [li; rj℄.Ea
h interval Ii is re
ursively subdivided in the same manner: an intervalthat 
ontains m points is divided into �m subintervals and ea
h subinterval
ontains between m2=3=2 and 2m2=3 points. If some interval Ij is dividedinto Ij;1; : : : ; Ij;�, then we say that Ij is a parent of Ij;i (Ij;i is a 
hild of Ij).The tree T re
e
ts the division of intervals into sub-intervals: ea
h tree nodeu 
orresponds to an interval Iu and a node u is a 
hild of v if and only if Iuis a 
hild of Iv . The root of T 
orresponds to P and leaves of T 
orrespondto points of P . The node of depth i 
ontains n(2=3)i points. Hen
e, the nodeof depth log 32 logn 
ontains O(1) points and the height of T is O(log logn).For every 
olor 
, we also store all points of 
olor 
 in a data stru
ture thatsupports range 
ounting queries.Consider a query Q = [a; b℄. Let la and lb be the leaves of T in whi
ha and b are stored, and let q be the lowest 
ommon an
estor of la and lb.The sear
h pro
edure visits all nodes on the path from la to q (lb to q);for ea
h visited node u we 
onstru
t the set of 
olors Su, su
h that every
 2 Su dominates Iu \ [a; b℄. We also 
ompute the total number of pointsin Iu \ [a; b℄. Let u be the 
urrently visited node of T situated betweenlb and q, and suppose that the node v visited immediately before u is the(i+ 1)-st 
hild of u. Due to Observation 1 only 
olors stored in L1i and Svmay dominate Iu \Q. For ea
h 
olor 
 in L1i[Sv we 
ount how many timesit o

urs in Iu \ Q using the range 
ounting data stru
ture for that 
olor.Thus we 
an 
onstru
t Su by answering at most 2� 
ounting queries. Nodesbetween la and q are pro
essed in the same way. Finally, we examine all
olors in sets Sp and Sr and list Lij of the node q, where p and r are nodeson the paths from q to la and lb respe
tively, p is the i-th 
hild of q, andr is the j-th 
hild of q. The sear
h pro
edure visits O(log logn) nodes andanswers O(� log logn) 
ounting queries. Hen
e, queries 
an be answered inO(logn log logn) time.If an interval I 
ontains m points, then all lists Lij 
ontain O(m2=3) ele-ments. Data stru
tures for range 
ounting queries use O(n) spa
e. Thereforethe spa
e usage of our data stru
ture is O(n).We 
an redu
e the query time to O(logn) by storing range 
ountingdata stru
tures for ea
h interval: for every interval Iu and every 
olor 
,su
h that f p 2 P \ Iu j 
ol(p) = 
 g 6= ;, we store a data stru
ture thatsupports range 
ounting queries in time O(log jIuj). The total number of
olors in all intervals Iu for all nodes u situated on the same level of tree T4



does not ex
eed the number of points in P . Therefore the total number ofelements in all range 
ounting data stru
tures is O(n log logn). The queryis pro
essed in the same way as des
ribed above. We must answer O(�)
ounting queries on Iq, O(�) range 
ounting queries on 
hildren of Iq, O(�)range 
ounting queries on 
hildren of 
hildren of Iq, et
. Therefore the querytime isO(�(log(jIqj)+log(jIqj2=3)+log(jIqj4=9)+: : :)) = O(�P(2=3)i logn) =O(� logn).We obtain the following resultTheorem 1 There exists a O(�n log logn) spa
e data stru
ture that sup-ports one-dimensional domination queries in O(� logn) time. There ex-ists a O(�n) spa
e data stru
ture that supports one-dimensional dominationqueries in O(� logn log logn) time.In the 
ase when all point 
oordinates are integers bounded by a parame-ter U we 
an easily answer one-dimensional 
ounting queries in O(log logU)time. As shown above, a domination query 
an be answered by answeringO(� log logn) 
ounting queries; hen
e, the query time isO(� log logn log logU).Sin
e it is not ne
essary to store range 
ounting data stru
tures for ea
h in-terval, all range 
ounting data stru
tures use O(n) spa
e.Theorem 2 There exists a O(�n) spa
e data stru
ture that supports one-dimensional domination queries in O(� log logU log logn) time.3 Dynami
 Domination Queries in One DimensionLet T be a binary tree on the set of all p 2 P . With every internal node v weasso
iate a range rng(v) = [lv; rv), where lv is the leftmost leaf des
endantof v and rv is the leaf that follows the rightmost leaf des
endant of v. T isimplemented as a balan
ed binary tree, so that insertions and deletions aresupported in O(logn) time and the tree height is O(logn). In ea
h nodev we store the number of its leaf des
endants, and the list Lv; Lv 
ontainsall 
olors that dominate rng(v). For every 
olor 
 in Lv we also maintainthe number of points of 
olor 
 that belong to rng(v). For ea
h 
olor 
there is also a data stru
ture that stores all points of 
olor 
 and supportsone-dimensional range 
ounting queries.A query Q = [a; b℄ is answered by traversing the paths from la to q andfrom lb to q, where la and lb are the leaves that 
ontain a and b respe
tively,and q is the lowest 
ommon an
estor of a and b. As in the previous se
tion,in every visited node u the sear
h pro
edure 
onstru
ts the set of 
olors Su,su
h that every 
 2 Su dominates rng(v) \ [a; b℄. Suppose that a node v on5



the path from lb to q is visited and let u be the 
hild of v that is also on thepath from lb to q. If u is the left 
hild of v, then rng(v)\[a; b℄ = rng(u)\[a; b℄and Sv = Su. If u is the right 
hild of v, then rng(v) \ [a; b℄ = rng(w) [(rng(u)\ [a; b℄) where w is a sibling of u. Colors that dominate rng(w) arestored in Lw; we know 
olors that dominate (rng(u) \ [a; b℄) be
ause u wasvisited before v and Su is already 
onstru
ted. Hen
e, we 
an 
onstru
t Svby examining ea
h 
olor 
 2 Lw [ Su and answering the 
ounting query forea
h 
olor. Sin
e one-dimensional dynami
 range 
ounting 
an be answeredin O(logn) time, we spend O(� logn) time in ea
h tree node. Nodes on thepath from la to q are pro
essed in a symmetri
 way. Finally we examine the
olors stored in Sq1 and Sq2 , where q1 and q2 are the 
hildren of q, and �ndthe 
olors that dominate rng(q)\ [a; b℄ = [a; b℄.When a new element is inserted(deleted), we insert a new leaf l into T(remove l from T ). For every an
estor v of l, the list Lv is updated.After a new point of the 
olor 
p is inserted, the 
olor 
p may dominaterng(v) and 
olors in Lv may 
ease to dominate rng(v). We may 
he
kwhether 
p must be inserted into Lv and whether some 
olors 
 2 Lv must beremoved from Lv by performing at most � +1 range 
ounting queries. Sin
ea new point has O(logn) an
estors, insertions are supported in O(� log2 n)time.When a point of 
olor 
p is deleted, we may have to delete the 
olor 
pfrom Lv . We 
an test this by performing one 
ounting query. However, wemay also have to insert some new 
olor 
 into Lv be
ause the number ofpoints stored in des
endants of the node v de
reased by one. To implementthis, we store the set of 
andidate 
olors L0v; L0v 
ontains all 
olors that(�=2)-dominate rng(v). For ea
h 
olor 
 2 L0v we test whether 
 be
amea � -dominating 
olor after deletion. When the number of leaf des
endantsof the node v de
reased by a fa
tor 2, we re-build the list L0v . If Pv is theset of leaf des
endants of v (that is, points that belong to rng(v)), then we
an 
onstru
t the set of distin
t 
olors that o

ur in Pv in O(jPvj log(jPvj))time. We 
an also �nd the sets of 
olors that � -dominate and (�=2)-dominaterng(v) in O(jPvj log(jPvj)) time. Sin
e we re-build L0v after a sequen
e of atleast jPv=2j deletions, re-build of some L0v in
urs an amortized 
ost O(logn).Every deletions may a�e
tO(logn) an
estors; hen
e, deletions are supportedin O(log2 n) amortized time.We 
an speed-up the update operations by storing in ea
h tree node uthe set of distin
t 
olors in Pu, denoted by Cu. For ea
h 
olor 
 2 Cu, westore how many times points with 
olor 
 o

ur in Pu. When a new point pis inserted/deleted, we 
an update Cv for ea
h an
estor v of p in O(1) time.Using Cv, we 
an de
ide whether a given new 
olor must be inserted into6



Lv in O(1) time. Using Cv we 
an also re-build L0v in O(jCvj) = O(jPvj)time. Hen
e, we 
an support insertions in O(� logn) time and deletions inO(logn) time with help of lists Cv. The total number of elements in all Cvis O(�n logn).Thus we obtain the followingTheorem 3 There exists a O(�n) spa
e data stru
ture that supports one-dimensional domination queries and insertions in O(� log2 n) time and dele-tions in O(� log2 n) amortized time. There exists a O(�n logn) spa
e datastru
ture that supports one-dimensional domination queries and insertionsin O(� logn) time and deletions in O(� logn) amortized time.4 Multi-Dimensional Domination QueriesWe 
an extend our data stru
tures to support d-dimensional queries for anarbitrary 
onstant d using the standard range trees [3℄ approa
h.Theorem 4 There exists a O(n logd n) spa
e data stru
ture that supports d-dimensional orthogonal range domination queries in O(logd�1 n(log logn)2)time.We des
ribe how we 
an 
onstru
t a d-dimensional data stru
ture if we knowhow to 
onstru
t a (d � 1)-dimensional data stru
ture. A range tree Td is
onstru
ted on the set of d-th 
oordinates of all points. An arbitrary interval[ad; bd℄ 
an be represented as a union of O(logn) node ranges. Hen
e, an ar-bitrary d-dimensional query Q = Qd�1�[ad; bd℄ 
an be represented as a unionof O(logn) queries Q1; : : : ; Qt, where t = O(logn) and Qi = Qd�1� rng(vi)for some node vi of T . In ea
h node v of T we store a (d�1)-dimensional datastru
ture Dv that 
ontains the �rst d�1 
oordinates of all points whose d-th
oordinates belong to rng(v). Dv supports modi�ed domination queries ind�1 dimensions: for a (d�1)-dimensional query re
tangle Q, Dv outputs all
olors that dominate Q � rng(v). Using Dvi we 
an �nd (at most �) 
olorsthat dominate Qi = Q0�rng(v). Sin
e Q is a union ofO(logn) rangesQi, we
an identify a set C that 
ontains O(� logn) 
andidate 
olors by answeringO(logn) modi�ed (d� 1)-dimensional domination queries. As follows fromObservation 1, only a 
olor from C 
an dominate Q. Hen
e, we 
an identifyall 
olors that � -dominate Q by answering O(� logn) d-dimensional range
ounting queries. Thus the query time for d-dimensional queries 
an be 
om-puted with the formula q(n; d) = O(logn)q(n; d� 1)+O(� logn)
(n; d� 1),where q(n; d) is the query time for d-dimensional domination queries and
(n; d) is the query time for d-dimensional 
ounting queries. We 
an answer7



d-dimensional range 
ounting queries in O(logd�1 n) time and O(n logd�1 n)spa
e [5℄. We 
an answer one-dimensional domination queries in O(logn)time by Theorem 1. Therefore d-dimensional domination queries 
an an-swered in O(� logd n) time.We 
an apply the redu
tion to rank spa
e te
hnique [12℄, [5℄ and repla
eall point 
oordinates with labels from [1; n℄. This will in
rease the querytime by an additive term O(logn). Sin
e point 
oordinates are bounded byn, we 
an apply Theorem 2 and answer one-dimensional domination queriesin O((log logn)2) time using a O(n) spa
e data stru
ture. Sin
e the spa
eusage grows by a O(logn) fa
tor with ea
h dimension, our data stru
tureuses O(n logd�1 n) spa
e.Theorem 5 There exists a data stru
ture that supports domination queriesin d dimensions in O(� logd n) time and uses O(n logd�1 n) spa
e.The same range trees approa
h 
an be also applied to the dynami
 one-dimensional data stru
ture for domination queries. Sin
e one-dimensionaldynami
 domination queries 
an be answered in O(� log2 n) time and dy-nami
 range 
ounting queries 
an be answered in O(logd n) time andO(n logd�1 n) spa
e, d-dimensional domination queries 
an be answered inO(logd+1 n) time, and the spa
e usage is O(�n logd�1 n). Sin
e updates aresupported in O(log2 n) (amortized) time in one-dimensional 
ase and up-date times grow by O(logn) fa
tor with ea
h dimension, d-dimensional datastru
ture supports updates in O(logd+1 n) (amortized) time.Theorem 6 There is a dynami
 data stru
ture that answers dominationqueries in d dimensions in O(� logd+1 n) time, uses O(�n logd�1 n) spa
e,and supports insertions in O(� logd+1 n) time and deletions in O(� logd+1 n)amortized time.Con
lusionWe presented data stru
tures for a new variant of 
olored range reportingproblem. Our data stru
tures use pseudo-linear spa
e and report all � -dominating 
olors in poly-logarithmi
 time in the 
ase when the parameter� is small, i.e. 
onstant or poly-logarithmi
 in n. It would be interesting to
onstru
t eÆ
ient data stru
tures for larger values of � .Another interesting problem is 
onstru
tion of an eÆ
ient data stru
turethat �nds for an arbitrary given re
tangle Q and a (�xed) parameter p,the p most frequently o

urring 
olors in the re
tangle Q. That is, the8



data stru
ture must �nd the set of 
olors Cp = f 
1; : : : ; 
p g, su
h thatjf p 2 P \ Q j 
ol(p) = 
i; 
i 2 Cp gj � jf p 2 P \ Q j 
ol(p) = 
; 
 62 Cp gjA
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