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Abstract

In this work we relate the deterministic complexity of factoring polynomials (over
finite fields) to certain combinatorial objects we call m-schemes. We extend the known
conditional deterministic subexponential time polynomial factoring algorithm for fi-
nite fields to get an underlying m-scheme. We demonstrate how the properties of
m-schemes relate to improvements in the deterministic complexity of factoring poly-
nomials over finite fields assuming the generalized Riemann Hypothesis (GRH). In
particular, we give the first deterministic polynomial time algorithm (assuming GRH)
to find a nontrivial factor of a polynomial of prime degree n where (n−1) is a smooth
number.
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1 Introduction

We consider the classical problem of finding a nontrivial factor of a given polynomial over a
finite field. This problem has various randomized polynomial time algorithms – Berlekamp

[Ber67], Cantor and Zassenhaus [CZ81], von zur Gathen and Shoup [GS92], Kaltofen and
Shoup [KS98] – but its deterministic complexity is a longstanding open problem. In this
paper we study the deterministic complexity of the problem assuming the generalized

Riemann Hypothesis (GRH). The assumption of GRH in this paper is needed only to find
primitive r-th nonresidues in a finite field Fq which are in turn used to find a root x (if it

exists in Fq) of “special” polynomials: xr − a over Fq (see [Evd89]).
Assuming GRH, there are many deterministic factoring algorithms known but all of

them are exponential-time except on special instances. Rónyai [Ró92] showed under GRH
that any polynomial f(x) ∈ Z[x], such that Q[x]/(f) is a Galois extension, can be factored

modulo p in deterministic polynomial time except for finitely many primes p. Rónyai’s
result generalizes previous results by Huang [Hua91], Evdokimov [Evd89] and Adleman,

Manders and Miller [AMM77]. Over special finite fields, Bach, von zur Gathen and Lenstra
[BGL01] showed that polynomials over finite fields of characteristic p can be factored in

deterministic polynomial time if φk(p) is smooth for some integer k, where φk(x) is the
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k-th cyclotomic polynomial. This result generalizes the previous works of Rónyai [Ró89],
Mignotte and Schnorr [MS88], von zur Gathen [vzG87], Camion [Cam83] and Moenck

[Moe77].
The line of research that we extend in this paper was started by Rónyai [Ró88]. There

it was shown how to use GRH to find a nontrivial factor of a polynomial f(x), where

the degree n of f(x) has a small prime factor, in deterministic polynomial time. The
basic idea of [Ró88], in the case when n is even, was to go to a ring extension A(2) :=

Fq[x1, x2]/(f(x1), f2(x1, x2)) of A(1) := Fq[x1]/(f(x1)), where f2(x1, x2) := f(x2)
x2−x1

, and

then use the symmetry of A(2) to decompose A(2) under GRH. A decomposition of A(2)

gives us a nontrivial factor of f(x) since n is even. [Ró88] showed that this basic idea
can be extended to the case when a prime r|n but then the deterministic algorithm finds
a nontrivial factor of f(x) in time poly(log q, nr). The nr dependence appears in the

complexity estimate because this is roughly the dimension of the algebras, like:

Fq[x1, . . . , xr]/(f(x1), . . . , fr(x1, . . . , xr)) (1)

in which the algorithm does computation. Naively, it would seem that this algorithm
will take time poly(log q, nn) in the worst case (for example when n is a prime). But

Evdokimov [Evd94] showed that Rónyai’s algorithm can be modified such that it is enough
to work with algebras like (1) with r = log n, thus, polynomial factoring can be done

deterministically in time poly(log q, nlogn) under GRH.
We extend Evdokimov’s algorithm and show that our algorithm has an underlying nat-

ural combinatorial structure that we call an m-scheme (a generalization of superschemes
introduced by Smith [Smi94]). An m-scheme on n points is, roughly speaking, a partition

P of the set [n]m, where [n] denotes the set {1, . . . , n}:

[n]m = ∪P∈PP

that satisfies certain “natural” properties (defined in Section 2). There is an abundance
of examples of m-schemes in algebraic combinatorics:

• a regular graph on n vertices is an example of a 2-scheme on n points,

• a strongly regular graph on n vertices is an example of a 3-scheme on n points,

• an association scheme (see [Zie]) gives rise to a 3-scheme and vice-versa. See Section
2.2 for these kind of examples.

• n-schemes on n points always arise from groups. See Section 2.3 for constructing

them from groups and [Smi94] for the converse. This important example suggests
that m-schemes can be considered as a generalization of finite groups.

• curiously enough, m-schemes on n points also appear when the (m−1)-dimensional

Weisfeiler-Lehman method for graph isomorphism is applied to a graph on n vertices,
see [CFI92].

The m-schemes that appear in our polynomial factoring algorithm possess a special struc-
ture and we believe that their properties can be exploited to get a deterministic and

efficient polynomial factoring algorithm (under GRH). We demonstrate that this belief
infact works in several cases.
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It is a standard result that to solve polynomial factoring it is enough to factor polyno-
mials that split completely over prime fields (see Berlekamp [Ber67, Ber70] and Zassenhaus

[Zas69]). Thus, we will assume in this paper that the input polynomial f(x) of degree n
has n distinct roots in Fp for some prime p. Our algorithm for factoring f(x) constructs
an r-scheme on the n roots while working in the algebra of Equation (1), over a suitable

Fq ⊇ Fp. We give several results in this work showing how to utilise the properties of
these underlying r-schemes to efficiently find a nontrivial factor of f(x).

The paper is organized as follows. We formally define m-schemes in Section 2 and
exhibit two important examples. In Section 3 we introduce our framework of the tensor

powers A⊗m of the algebra A := Fp[x]/(f(x)) and present our algorithm that constructs
an underlying m-scheme, on the n roots of f(x), while working in A⊗m. In Section 4

we show how to interpret Evdokimov’s subexponential algorithm in our framework of m-
schemes and give a conjecture about the structure of m-schemes which if true would make

our algorithm deterministic polynomial time under GRH. We also prove the conjecture in
the important example of m-schemes arising from groups. In Section 5 we show that our
framework of m-schemes finds a nontrivial factor of f(x) in deterministic polynomial time

under GRH if n is a prime and (n − 1) is smooth. In Section 6 we show that the levels
r (as in Equation (1)) in Evdokimov’s algorithm can be reduced to logn

1.5 using properties

of m-schemes. In Section 7 we introduce a concept of primitivity in m-schemes, inspired
from the connectivity of graphs, and give some hints how it could improve the factoring

algorithm.

2 Introducing m-schemes

In this section we define special partitions of the set [n]m that we call m-schemes on n
points. These combinatorial objects are closely related to superschemes which were first

defined by [Smi94].

2.1 Basic definitions

Let V = {v1, . . . , vn} be a set of n distinct elements. For 1 ≤ s ≤ n, define the set of
s-tuples:

V (s) := {(vi1, . . . , vis) ∈ V s | vi1, . . . , vis are s distinct elements of V }.

If s > 1 there are s projections πs
1, . . . , π

s
s : V (s) → V (s−1) given as:

πs
i : (v1, . . . , vi−1, vi, vi+1, . . . , vs) 7→ (v1, . . . , vi−1, vi+1, . . . , vs).

The symmetric group on s elements Symms acts on V (s) in a natural way by permuting
the coordinates of the s-tuples. To be more accurate, the action is the following: for

σ ∈ Symms,
(v1, . . . , vi, . . . , vs)

σ = (v1σ , . . . , viσ , . . . , vsσ).

For 1 ≤ m ≤ n an m-collection on V is a collection Π of partitions P1,P2, . . . ,Pm of
V = V (1), V (2), . . . , V (m) respectively. For 1 ≤ s ≤ m we denote by ≡Ps the equivalence

relation on V (s) corresponding to the partition Ps. We call the equivalence classes of ≡Ps

colors at level s.
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We define below some natural properties of collections that are relevant to us. Let
Π = {P1,P2, . . . , Pm} be an m-collection on V .

Compatibility: We say that Π is compatible at level 1 < s ≤ m if ū, v̄ ∈ P ∈ Ps

implies that for every 1 ≤ i ≤ s there exists Q ∈ Ps−1 such that πs
i (ū), πs

i (v̄) ∈ Q. In
other words, if two tuples (at level s) have the same color then for every projection the

projected tuples (at level s − 1) have the same color as well. It follows that for a class
P ∈ Ps, the sets πs

i (P ) := {πs
i (v̄)|v̄ ∈ P}, for all i ∈ [s], are colors in Ps−1.

Regularity: We say that Π is regular at level 1 < s ≤ m if ū, v̄ ∈ Q ∈ Ps−1 implies
that for every 1 ≤ i ≤ s and for every P ∈ Ps,

#{ū′ ∈ P | πs
i (ū′) = ū} = #{v̄′ ∈ P | πs

i (v̄′) = v̄}

We call the tuples in P ∩ (πs
i )−1(ū) as πs

i -fibers of ū in P . So regularity, in other words,
means that the cardinalities of the fibers above a tuple depend only on the color of the
tuple.

The above two properties motivate the definition of the subdegree of a color P over a
color Q as #P

#Q
when Π is compatible and regular at level s and πs

i (P ) = Q for some i.

Invariance: An m-collection is invariant at level 1 < s ≤ m if for every P ∈ Ps, and
σ ∈ Symms we have:

Pσ := {v̄σ|v̄ ∈ P} ∈ Ps.

In other words, the partitions P1, . . . ,Pm are invariant under the action of the correspond-

ing symmetric group.
Homogeneity: We say that the m-collection Π is homogeneous if |P1| = 1.

Symmetry: We say that an m-collection Π is symmetric at level s if for every P ∈ Ps

and σ ∈ Symms, we have Pσ = P .

Antisymmetry: We say that an m-collection Π is antisymmetric at level s if for
every P ∈ Ps and 1 6= σ ∈ Symms, we have Pσ 6= P .

Definition 1. An m-collection is called compatible, regular, invariant, symmetric, or

antisymmetric if it is at every level 1 < s ≤ m compatible, regular, invariant, symmetric,
or antisymmetric respectively.

An m-collection is called an m-scheme if it is compatible, regular and invariant.

We should remark that the m-schemes that appear in our factoring algorithm are
homogeneous and antisymmetric as well. Let us now see some easily describable examples

of m-schemes.

2.2 Example: 3-schemes from coherent configurations

Coherent configurations are standard combinatorial objects that have strongly regular
graphs as examples (see [Came99]). Recall that a coherent configuration is just a 2-scheme
{P1,P2} that also has a composition property:

Composition: For any Pi, Pj, Pk ∈ P2 and an (α, β) ∈ Pk the number:

#{γ ∈ V | (α, γ) ∈ Pi and (γ, β) ∈ Pj}

is independent of which tuple (α, β) in Pk we chose. In other words, the relations Pi and

Pj can be “composed” to get a bigger relation that is just a “linear combination” of the
relations in P2.
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In the literature a homogeneous coherent configuration is usually called an association
scheme. In this paper we do not enforce symmetricity or antisymmetricity in the definition

of an association scheme. Coherent configurations and 3-schemes are similar notions.
From a coherent configuration {P1,P2} we can define a partition P3 on the triples

such that for any two triples (u1, u2, u3) and (v1, v2, v3) we have:

(u1, u2, u3) ≡P3
(v1, v2, v3) if and only if (u1, u2) ≡P2

(v1, v2), (u1, u3) ≡P2
(v1, v3),

(u2, u3) ≡P2
(v2, v3).

It follows that for P ∈ P3, the cardinality #{u3 ∈ V |(u1, u2, u3) ∈ P} of the π3
3-fibers

of (u1, u2) in P is exactly #{u3 ∈ V |(u1, u3) ∈ π3
2(P ) and (u2, u3) ∈ π3

1(P )} and thus

regularity at level 3 is equivalent to the composition property of {P1,P2}. It is easy to
show that {P1,P2,P3} also satisfies compatibility and invariance, thus, it is a 3-scheme.

Similarly, a converse can be shown:

Lemma 2. If Π = {P1,P2,P3} is a homogeneous 3-scheme then {P1,P2} is an associa-
tion scheme.

Proof. By the hypothesis we already have that {P1,P2} is a homogeneous 2-scheme. Thus,
we only need to show the composition property. Let Pi, Pj, Pk ∈ P2 and let (α, β) ∈ Pk.
Then by compatibility at level 3 there exists a subset S ⊆ P3 such that the set:

{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj}
can be partitioned as:

⊔P∈S{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj , (α, γ, β) ∈ P}
which again by the compatibility of Π at level 3 is:

⊔P∈S{γ ∈ V | (α, γ, β) ∈ P}
now by the regularity of Π at level 3 the size of the above sets is simply #P

#Pk
which is

independent of the choice of (α, β). Thus, {P1,P2} has the composition property. 2

2.3 Example: orbit schemes

Permutation groups provide a host of examples (see [Smi94]). Let G ≤ SymmV be a

permutation group. The orbits of G on the s-tuples (1 ≤ s ≤ m ≤ n) give an m-scheme.
More formally, define the partition Ps as: for any two s-tuples (u1, . . . , us) and (v1, . . . , vs)

in V (s), (u1, . . . , us) ≡Ps (v1, . . . , vs) iff ∃σ ∈ G, (σ(u1), . . . , σ(us)) = (v1, . . . , vs). It is
easy to see that these partitions naturally satisfy compatibility, regularity and invariance
properties and hence form an m-scheme. We call m-schemes arising in this way orbit

m-schemes.
The orbit scheme is homogeneous if and only if G is transitive. Furthermore, assume

that G is transitive and for some integer m < n, gcd(m!, |G|) = 1. Then the corresponding
orbit m-scheme is a homogeneous antisymmetric m-scheme. Our attention to this class of

examples has been drawn by D. Pasechnik.
At the moment, we are not aware of any other examples of homogeneous antisymmetric

m-schemes with m → ∞. The homogeneous antisymmetric m-schemes are the ones that
arise in our factoring algorithm and we do believe that their parameters satisfy more

stringent conditions than the general m-schemes. For a conjecture along these lines see
Section 4.1.
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2.4 Difference between various notions of schemes

The term schemes arises in the mathematical literature in many contexts. Our m-schemes

should not be confused with the notion of schemes in algebraic geometry. However, our
m-schemes are closely related to association schemes, superschemes (Smith [Smi94]) and

height t presuperschemes (Wojdy lo [Woj01]). Smith’s superschemes are m-schemes that
also satisfy a suitable higher dimensional generalization of the composition property. It

is not difficult to see that a superscheme on n points is just a n-scheme on n points.
Wojdy lo’s height t presuperscheme consists of the bottom t levels of a superscheme. In

particular, a level 0 presuperscheme is just an association scheme. It can be shown that a
height t presuperscheme on n-points consists just of the first (t+2) levels of a (t+3)-scheme

on n points.

3 Decomposition of tensor powers of algebras

In this section we describe our polynomial factoring algorithm and simultaneously show

how m-schemes appear in the algorithm. Recall that in the input we are given a polynomial
f(x) ∈ Fp of degree n having distinct roots α1, . . . , αn in Fp. For any extension field k of

Fp we have the natural associated algebra A := k[X ]/(f(X)). Note that A is a completely
split semisimple n-dimensional algebra over the field k, i.e. A is isomorphic to kn the

direct sum of n copies of the one-dimensional k-algebra k. We interpret A as the set of
functions:

V := {α1, . . . , αn} → k

equipped with the pointwise operations. Algorithmically, we have A by structure constants
with respect to some basis b1, . . . , bn (for example, 1, X, . . . , Xn−1) and the problem of

factoring f(X) completely can be viewed as finding an explicit isomorphism from A to
kn.

How do the factors of f(X) appear in A? They appear as zero divisors in A. Recall
that a zero divisor is a nonzero element z(X) ∈ A such that y(X)z(X) = 0 for some

nonzero element y(X) ∈ A. This means that f(X)|y(X) · z(X) which implies (by the
nonzeroness of y and z) gcd(f(X), z(X)) factors f(X) nontrivially. As gcd of polynomials

can be computed by the deterministic polynomial time Euclidean algorithm, we infer
that finding a zero divisor in the factor algebra k[X ]/(f(X)) is – up to polynomial time
deterministic reductions – equivalent to finding a nontrivial divisor of f(X). Furthermore,

computing an explicit isomorphism with kn is equivalent to factoring f(X) completely.
How are the ideals of A related to the roots of f(x)? Let I be an ideal of A. The

support of I , Supp(I) is defined as

Supp(I) := V \ {v ∈ V | a(v) = 0 for every a ∈ I}

Conversely, for U ⊆ V , the ideal I(U) is defined as:

I(U) := {b ∈ A | b(u) = 0 for every u ∈ U}

and I⊥(U) is the annihilator of I(U):

I⊥(U) := {a ∈ A | ab = 0 for every b ∈ I(U)}.
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It can be easily seen that Supp is an inclusion preserving bijection from the ideals of
A to the subsets of V with inverse map I⊥. In view of this correspondence, partial

decompositions of A into sums of pairwise orthogonal ideals correspond to partitions of
the set V . Let us formulate the above discussion in a lemma.

Lemma 3. If I1, . . . , It are pairwise orthogonal ideals of A such that A = I1 + · · · + It

then V = Supp(I1) ⊔ · · · ⊔ Supp(It).

We now move up to the tensor powers of A and there we show a way of getting the
partitions of V (m). For m ∈ [n], let A⊗m denote the mth tensor power of A. A⊗m is

also a completely split semisimple algebra; it is isomorphic to knm

. We again interpret
it as the algebra of functions from V m to k. Note that in this interpretation the rank 1

tensor element h1⊗· · ·⊗hm corresponds to a function V m → k that maps (x1, . . . , xm) 7→
h1(x1) · · ·hm(xm) .

The essential part A(m) of A⊗m is the ideal consisting of the functions which vanish on
all the m-tuples (v1, . . . , vm) with vi = vj for some i 6= j. Then A(m) can be interpreted as

the algebra of functions V (m) → k. We show below that a basis for A(m) can be computed
easily and then this is the algebra where our factoring algorithm does computations.

Lemma 4. Given f(X), a polynomial of degree n having n distinct roots in Fp, a basis

for A(m) = (k[X ]/(f(X)))(m) over k ⊇ Fp can be computed by a deterministic algorithm
in time poly(logp, nm).

Proof. To see this, consider embeddings µi of A into A⊗m (i = 1, . . . , m) given as µi(a) =

1⊗ . . .⊗ 1⊗ a⊗ 1 ⊗ . . .⊗ 1 where a is of course in the i-th place. In the interpretation as
functions, µi(A) correspond to the functions on V m which depend only on the ith element

in the tuples. Observe that the set, for 1 ≤ i < j ≤ m:

∆m
i,j = {b ∈ A⊗m | (µi(a) − µj(a))b = 0 for every a ∈ A}

is the ideal of A⊗m consisting of the functions which are zero on every tuple (v1, . . . , vm)
with vi 6= vj. Given a basis for A, a basis for ∆m

i,j can be computed by solving a system of

linear equations in time polynomial in the dimension of A⊗m (over k) which is nm. Finally,
notice that A(m) can be computed as well since it is the annihilator of

∑

1≤i<j≤m ∆m
i,j. 2

Remark 5. The algebras A(m) which we are now going to work with have a simple ex-
plicit description, for example, A(1) is ofcourse k[X1]/(f(X1)) and A(2) is nothing but
k[X1, X2]/(f(X1), f2(X1, X2)) where f2(X1, X2) is a polynomial in A(1)[X2] defined as
f(X2)

X2−X1
. Similarly, we can write down an expression for A(m) inductively.

Like the case of m = 1, ideals and partial decompositions of A(m) into pairwise or-
thogonal ideals correspond to subsets and partitions of the set V (m) respectively. If I is

an ideal of A(m) then we again define the support of I , Supp(I) as:

Supp(I) := V (m) \ {v̄ ∈ V (m) | a(v̄) = 0 for every a ∈ I}

Lemma 3 generalizes to:

Lemma 6. For any s ≤ n, if Is,1, . . . , Is,ts are pairwise orthogonal ideals of A(s) such that

A(s) = Is,1 + · · ·+ Is,ts then V (s) = Supp(Is,1) ⊔ · · · ⊔ Supp(Is,ts).

Now we will describe our polynomial factoring algorithm that produces m-schemes.
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Algorithm Description

Input: a degree n polynomial f(x) having n distinct roots in Fp. Given 1 < m ≤ n

we can wlog assume that we also have the smallest field extension k ⊇ Fp having s-th
nonresidues for all s ∈ [m] (computing k will take poly(log p, mm) time under GRH).

Output: a nontrivial factor of f(x) or a homogeneous, antisymmetric m-scheme on the

n points: V := {α ∈ Fp|f(α) = 0}.

Algorithm overview:

We define A(1) = A = k[x]/(f(x)) and compute A(s), for all s ∈ [m], in time poly(log p, nm)
(by Lemma 4).

Now observe that Autk(A(s)) contains Symms. To see this, just note that there is an

action of Symms on A(s) as a group of algebra automorphism, for σ ∈ Symms this action
is the linear extension of:

(bi1 ⊗ · · · ⊗ bis)σ = bi1σ ⊗ · · · ⊗ bisσ .

This knowledge of explicit automorphisms of A(s) can be exploited to efficiently decompose
these algebras under GRH (see Theorem 2.3 in [Ró92]). Thus, for all 1 < s ≤ m we can

compute mutually orthogonal ts ≥ 2 ideals Is,i of A(s), such that:

A(s) = Is,1 + . . . + Is,ts

By Lemma 6, the above decomposition induces partitions Ps for all 1 < s ≤ m such that:

Ps : V (s) = Supp(Is,1) ⊔ · · · ⊔ Supp(Is,ts)

Thus, together with P1 := {V } we have an m-collection Π := (P1, . . . ,Pm) on the set V .
Now we will show how to refine this m-collection to an m-scheme using algebraic

operations on the ideals Is,i of A(s). To do that, we first need a tool to relate lower level
ideals Is−1,i to higher level ideals Is,i′ . For every 1 < s ≤ m, we have s embeddings
ιsj : A⊗(s−1) → A⊗s sending bi1 ⊗ · · · ⊗ bis−1

to bi1 ⊗ · · · ⊗ bij−1
⊗ 1 ⊗ bij ⊗ · · · bis−1

.

Restricting to A(s−1) and multiplying the images of ιsj by the identity element of A(s),

we obtain algebra embeddings A(s−1) → A(s) denoted also by ιs1, . . . , ι
s
s. In the function

interpretation, ιsj(A(s−1)) is just the set of functions in A(s) which do not depend on the

jth coordinate of tuples.
Compatibility of the m-collection Π at level 1 < s ≤ m corresponds to: for every pair

of ideals Is−1,i and Is,i′ in the decomposition of A(s−1) and A(s) respectively and for every
j ∈ {1, . . . , s}, the ideal ιsj(Is−1,i)Is,i′ can be assumed to be either zero or Is,i′ . Otherwise

we can efficiently compute a subideal of Is,i′ , hence, refining Is,i′ and the m-collection Π.
Regularity of the m-collection Π at level 1 < s ≤ m corresponds to: for every pair of

ideals Is−1,i and Is,i′ in the decomposition of A(s−1) and A(s), respectively, and for every
j ∈ {1, . . . , s}, ιsj(Is−1,i)Is,i′ can be assumed to be a free module over ιsj(Is−1,i). Otherwise
by trying to find a free basis, we can efficiently compute a zero divisor in Is−1,i, hence,

refining Is−1,i and the m-collection Π.
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Compatibility and regularity of Π create a natural connection between the ideals of
levels (s−1) and s, for all 1 < s ≤ m. In the case when a pair of ideals Is−1,i and Is,i′ in the

decomposition of A(s−1) and A(s) respectively satisfies ιsj(Is−1,i)Is,i′ = Is,i′ : Is,i′ is a free
module over ιsj(Is−1,i) which in other words means that the elements in Is,i′ can be viewed
as univariate polynomials with coefficients in Is−1,i. The rank of the free module Is,i′ over

ιsj(Is−1,i) can easily be seen to be equal to the subdegree of Supp(Is,i′) over Supp(Is−1,i).
Invariance of the m-collection Π at level 1 < s ≤ m may be assumed, since if for

some σ ∈ Symms the decomposition of A(s) is not σ-invariant, then we can find two ideals
Is,i and Is,i′ such that Iσ

s,i ∩ Is,i′ is neither zero nor Is,i′ , thus, we can efficiently refine Is,i′

and the m-collection Π.
Homogeneity of the m-collection Π corresponds to: the algebra A(1) = A is not in a

decomposed form.
Antisymmetricity of the m-collection Π at level 1 < s ≤ m corresponds to: for any

ideal Is,i at level 1 < s ≤ m and for any σ ∈ Symms \ {id}, we can assume Iσ
s,i 6= Is,i.

Otherwise σ is an algebra automorphism of Is,i and hence we can find its subideal efficiently
under GRH by [Ró92], thus, refining Is,i and the m-collection Π.

Note that invariance and antisymmetricity at level s entail s! | ts.
By the observations above: we can keep applying ideal operations in the algebras A(s),

s ∈ [m], till either we get a nontrivial factor of f(x) or the underlying m-collection Π
becomes a homogeneous, antisymmetric m-scheme on n points. The time taken by our

algorithm is clearly poly(logp, nm).

Remark 7. At this point we are able to reprove Ronyai’s result [Ró88]: under GRH, we
can deterministically find a nontrivial factor of a degree n polynomial over Fp in time
poly(logp, nr), where r is the smallest prime divisor of n. The proof is to algorithmically

try constructing an r-scheme as above and show by an easy divisibility argument that there
exist no homogeneous, antisymmetric r-schemes on n points if r is a divisor of n. This

guarantees that our algorithm will be forced to find a nontrivial factor of f(x).

4 m-schemes in Evdokimov’s Algorithm

We saw in the last section how to either find a nontrivial factor of a given f(x) or construct
an m-scheme on the n roots of f(x). Our aim is to analyse the “bad case” of the algorithm
when we get no nontrivial factor but instead we get an antisymmetric, homogeneous m-

scheme. Can the properties of these m-schemes be used to factor f(x)? In the rest of the
paper we will try to answer that question. Here we start with an exposition of Evdokimov’s

idea [Evd94] in our framework of m-schemes. We show below that [Evd94] exploited the
presence of matchings in the m-schemes.

Definition 8. A color P ∈ Ps, for 1 < s ≤ m, in an m-scheme {P1, . . . ,Pm} is called a

matching if there exist 1 ≤ i < j ≤ s such that πs
i (P ) = πs

j (P ) and |πs
i (P )| = |P |.

The presence of matchings can be used to efficiently refine the underlying m-scheme.

Lemma 9. If the color P ∈ Ps is a matching then under GRH we can refine the m-scheme

Π = {P1, . . . ,Pm} deterministically in time poly(logp, nm).

9



Proof. Following the notation of the above definition, it is obvious that if color P is a
matching then both πs

i and πs
j are bijections, therefore the map πs

i (πs
j )−1 is a permutation

of πs
j(P ). Furthermore, this permutation is nontrivial as P ⊆ V (s). So in the corre-

sponding orthogonal ideals decomposition of A(1), . . . ,A(m), both the maps ιsi and ιsj give
isomorphisms Is−1,ℓ′ → Is,ℓ, where the ideals Is−1,ℓ′ and Is,ℓ correspond to πs

j (P ) and P

respectively. This means that the map (ιsi )
−1ιsj is a nontrivial automorphism of Is−1,ℓ′ . It

follows from [Ró92] that, assuming GRH, we can obtain a proper decomposition of Is−1,ℓ′

and hence refine the m-scheme Π. 2

Now we show the idea of [Evd94] to find a matching in log2 n levels.

Lemma 10. If the m-scheme Π := {P1, . . . ,Pm} on n points is antisymmetric at the
second level, |P1| < n and m ≥ log2 n then there is a matching in {P1, . . . ,Pm}.

Proof. We will give an effective way of finding a matching given such a Π. Choose P1 ∈ P1

with d1 := |P1| > 1. It is clear that Q2 = P
(2)
1 is a disjoint union of some colors in P2.

Choose a smallest color P2 ∈ P2 with P2 ⊆ Q2. By the definition of an m-scheme:

π2
1(P2) = π2

2(P2) = P1. Also, by antisymmetry we can infer that d2 :=
|P2|
|P1|

< d1/2. If
d2 = 1 then P2 is a matching.

If d2 > 1 then we proceed in the following iterative way. Suppose that, for some
2 < s < m, we have already chosen colors P1 ∈ P1, . . . , Ps−1 ∈ Ps−1 with πi

i−1(Pi) =

πi
i(Pi) = Pi−1 and 1 < di :=

|Pi|
|Pi−1|

< di−1/2 for every 2 ≤ i ≤ s − 1. Since ds−1 > 1, the

set Qs = {v̄ ∈ V (s)|πs
s−1(v̄) ∈ Ps−1, π

s
s(v̄) ∈ Ps−1} is nonempty. Let Ps be a smallest class

from Ps with Ps ⊆ Qs. Again antisymmetry implies that ds := |Ps|
|Ps−1|

< ds−1/2. If ds = 1

then Ps is clearly a matching. Otherwise we proceed to the level (s + 1) and further halve

the subdegree. This procedure finds a matching in at most log2 d1 ≤ log2 n rounds. 2

From our algorithm in the last section and the above two lemmas it follows that, under

GRH, we can completely factor f(x) deterministically in poly(logp, nlog n) time. This is
the result of Evdokimov [Evd94].

It might be worth noting that in the above Lemma we used antisymmetry (and even in-
variance) merely at level 2. Indeed, if a compatible and regular m-collection {P1, . . . ,Pm}
is antisymmetric at level 2 then for every 1 < s ≤ m and every s-element subset
{v1, . . . , vs} ⊆ V we have (v1, . . . , vs−1, vs) 6≡Ps (v1, . . . , vs, vs−1). (This can be seen

by projecting to the last two coordinates.)

4.1 A Conjecture about Matchings

Here we make a conjecture about the structure of homogeneous, antisymmetric 4-schemes

and higher schemes. It might seem a bit unmotivated but we show below, interestingly,
that it is true in the case of orbit schemes. Note that orbit schemes are the only (infinite)
family of 4-schemes we currently know that are homogeneous and antisymmetric.

Conjecture 11. There exists a constant m ≥ 4 such that every homogeneous, antisym-

metric m-scheme contains a matching.
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It is clear by Lemma 9 that a proof of this conjecture would result in a deterministic
polynomial time algorithm for factoring polynomials over finite fields (under GRH).

We will now show that Conjecture 11 holds, with m = 4, for the important example
of orbit schemes. It is easy to see that the 2-scheme associated to a permutation group
G is antisymmetric if and only if |G| is odd. Assume that G is a nontrivial permutation

group of odd order on V = {1, . . . , n}. Let H be a subgroup minimally containing the
stabilizer G1 of G. Let B = Orb(H, 1) be the orbit of 1 under the action of H . Then

H acts as a primitive permutation group on B. Also, by [Ser96], there is a base of size
s ≤ 3 of H . This is a subset {b1, . . . , bs} ⊆ B such that Hb1 ∩ · · · ∩ Hbs = N , where

where N is the kernel of the permutation representation of H on B. We assume that this
base is irredundant, in particular K = Hb1 ∩ · · · ∩ Hbs−1

> N . Since Kbs = N < K there

exists bs+1 ∈ Orb(K, bs) \ {bs}. In order to simplify notation, we assume b1 = 1, b2 =
2, . . . , bs+1 = s + 1. The first equality b1 = 1 can be ensured using the transitivity of H

on B, while the others can be achieved by renumbering V . From G1 < H we infer that
N = H1∩· · ·∩Ht = G1∩· · ·∩Gt holds for every t ∈ {1, . . . , s+1}. Let P be the G-orbit of
(1, . . . , s+ 1). Since (1, . . . , s−1, s) and (1, . . . , s−1, s+ 1) are in the same orbit, we have

πs+1
s (P ) = πs+1

s+1(P ). Also, since the (1, . . . , s) and (1, . . . , s, s+ 1) both have stabilizer N ,
the size of the orbits of both tuples coincide with |G : N |. These properties imply that P

is a matching.

5 Factoring polynomials of smooth prime degree

We saw in Section 3 how to obtain a homogeneous m-scheme on n points from a given
polynomial of degree n and we also saw in Lemma 2 that a homogeneous 3-scheme is an as-
sociation scheme. We now use a recent interesting result of Hanaki and Uno [HU06] about

the structure of association schemes, on a prime number of points, to factor polynomials
when n is a smooth prime number.

Theorem 12. If n > 2 is prime, r is the largest prime factor of (n − 1) and f(x) is a

degree n polynomial over Fp then we can find a nontrivial factor of f(x) deterministically
in time poly(logp, nr) under GRH.

Proof. Wlog we can assume that f(x) has n distinct roots (αi’s) in Fp. From Section
3 we can again assume that we have constructed a homogeneous antisymmetric (r + 1)-

scheme on n points: (P1, . . . ,Pr+1). Now from Lemma 2 we know that (P1,P2) is an
antisymmetric association scheme. From [HU06]: ∃d|(n−1), ∀P ∈ P2, #P = dn. If d = 1

then we have matchings in P2 and hence by Lemma 9 we can find a nontrivial factor of
f(x).

On the other hand if d > 1 then the colors in (P2, . . . ,Pr+1) naturally induce homoge-
neous antisymmetric r-schemes on d points (for example, restrict the partitions to tuples

that have α1 in the first coordinate). As d has a prime divisor which is at most r there
do not exist such schemes by Remark 7.

The time complexity follows from our algorithm overview. 2
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6 Reducing the number of levels in Evdokimov’s algorithm

We saw in Lemma 10 that a homogeneous m-scheme on n points that is antisymmetric

at level 2 has a matching below the ⌈log2 n⌉-th level. Recall from Section 3 that from a
polynomial we can construct an m-scheme that is antisymmetric at every level > 1 and
not just at level 2. Are we then guaranteed to get a matching at a level less than log n?

We conjecture that there should be a matching at a much smaller level as intuitively
antisymmetricity reduces the subdegrees of the colors but we could prove only a constant

fraction of log n upper bound on the number of levels. First we prove a lemma:

Lemma 13. Let Π = (P1, . . . ,P4) be a homogeneous, antisymmetric 4-scheme on n > 8
points. Then there is a color P ∈ P2 and its π3

3-fiber Q ∈ P3 such that π3
2(Q) = π3

3(Q) = P

and the subdegree of Q over P is less than n
8 .

Proof. Clearly, P1 just has one color, say, [n]. If P2 has more than two colors then

by antisymmetry it has at least 4 colors and hence one of the colors P ∈ P2 will have
subdegree over [n] less than n

4 . Again by the antisymmetry a π3
3-fiber Q ∈ P3 of P will

have subdegree < n
8 and π3

2(Q) = π3
3(Q) = P .

In the case when P2 has just two colors - P and its “flipped” color PT - let us define:

Q1 := {x ∈ [n] | (1, x) ∈ P}
Q2 := {x ∈ [n] | (1, x) ∈ PT }

Then obviously Q1, Q2 are disjoint sets of size n1 := n−1
2 partitioning {2, . . . , n}. Clearly,

the image of the colors in P3 restricting the first coordinate to 1 gives us an antisymmetric

partition Γ of the sets Q
(2)
1 , Q1×Q2, Q2×Q1 and Q

(2)
2 ; which is an association scheme on

Q
(2)
1 and Q

(2)
2 . By the antisymmetricity of Π, the colors corresponding to Q2×Q1 are just

the transpose (i.e. swap the two coordinates) of those corresponding to Q1 × Q2. Each

color in Γ can be naturally viewed as a n1 × n1 zero/one matrix. For example, a color R
corresponding to Q1×Q2 can be represented as a matrix whose rows are indexed by Q1 and

whose columns are indexed by Q2 such that: for all (i, j) ∈ Q1 × Q2, Ri,j = 1 if (i, j) ∈ R
and Ri,j = 0 if (i, j) 6∈ R. Interestingly, in the matrix representation the composition
property of Lemma 2 simply means that the linear combinations of the identity matrix I

and the colors in the partition of Q1 × Q1 (or Q2 × Q2) by Γ is a matrix algebra, say A1

(or A2).

If Q
(2)
1 (or Q

(2)
2 ) is partitioned by Γ into more than two parts then by antisymmetry

there will be ≥ 4 parts which means that one of the parts will have subdegree < n
8 . This

gives us a required π3
3-fiber Q ∈ P3 of a P ∈ P2.

So we can assume that Q
(2)
1 and Q

(2)
2 are both partitioned into exactly two parts. Say,

• R and RT are the two matrices representing the partition of Q
(2)
1 by Γ.

• S and ST are the two matrices representing the partition of Q
(2)
2 by Γ.

Note that: R + RT = S + ST = J − I where I is the identity matrix and J is the all one

matrix of suitable dimensions.
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How do the partitions of Q1 × Q2 look like? Let U be a matrix in the partition of
Q1×Q2 by Γ. If U = J (i.e. Γ partitions Q1×Q2 in a trivial way) then by antisymmetricity

P3 has exactly 3! = 6 colors each of cardinality n ·#U = n ·n2
1. But this is a contradiction

as 6 · n · n2
1 is not n(n− 1)(n− 2). Thus, Γ partitions Q1 ×Q2 into at least 2 colors. Now

since by antisymmetricity the number of colors in P3 has to be a multiple of 6, we deduce

that Γ partitions Q1 × Q2 into at least 4 colors, say, {U1, . . . , U4}. By the composition
property of Γ, U1U

T
1 is in A1. In other words, there are positive integers α, β such that:

U1U
T
1 = αI + β(R + RT )

= βJ + (α − β)I

Thus, if U1 is a singular matrix then U1U
T
1 = βJ implying that U1 has equal rows. We

can repeat the same argument with UT
1 U1 (which is in A2) and deduce that U1 has equal

columns. Now a zero/one matrix U1 can have equal rows and equal columns iff U1 = J.

This contradiction implies that U1 is an invertible matrix. But then:

{U1U
T
1 , U1U

T
2 , U1U

T
3 , U1U

T
4 }

is a set of 4 linearly independent matrices in A1 which contradicts the fact that A1 is

a matrix algebra of dimension 3. This contradiction implies that one of Q
(2)
1 or Q

(2)
2 is

partitioned into at least four parts.

Thus, in all the cases the lemma is true. 2

From the above lemma we see that at 2 levels higher we get a suitable color with
subdegree reduced to a fraction of 2−3. This immediately gives us the following constant-

factor improvement to Lemma 10.

Proposition 14. If the m-scheme Π := {P1, . . . ,Pm} on n points is antisymmetric at

the first three levels, |P1| < n and m ≥ 2
3 log2 n then there is a matching in {P1, . . . ,Pm}.

7 Primitivity of m-schemes and further research

A 2-scheme Π = (P1,P2) on n points can be viewed as a complete directed colored graph
on n vertices, where vertices of one color correspond to a P ∈ P1 and the edges of one
color correspond to a Q ∈ P2. If an m-scheme is coming from a polynomial f(x), over

k, then we can try to relate graph properties of the m-scheme to the algebraic properties
of the ideals defining the m-scheme. It turns out that such m-schemes can be efficiently

tested for one such property: connectivity. One can introduce a related notion: primitivity
which is actually an extension of the primitivity of association schemes.

Let Π be a homogeneous 2-scheme on the points [n] with P2 = {P2,1, . . . , P2,t2}. For
every index i ∈ {1, . . . , t2} let G2,i denote the undirected graph on [n] whose edges are

unordered pairs {u, v} where either (u, v) ∈ P2,i or (v, u) ∈ P2,i. We say that Π is primitive
if all the graphs G2,1, . . . , G2,t2 are connected.

Let I2,i := I⊥(P2,i) be the ideal of A(2) corresponding to P2,i. We define a subset
S(I2,i) of A(1) whose meaning would be clear later:

S(I2,i) := {h ∈ A(1) | (h ⊗ 1 − 1 ⊗ h) ∈ I⊥2,i}
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It is easy to see that k ⊆ S(I2,i) is a subalgebra of A(1). The following lemma relates the
subalgebras S(I2,i) to the notion of primitivity.

Lemma 15. The dimension of the algebra S(I2,i) over k is equal to the number of the
connected components of the graph G2,i.

Proof. Let G2,i have c connected components. Observe that h(x) ∈ S(I2,i) iff (h(x1) −
h(x2))I2,i = 0 iff h(u) = h(v) for all (u, v) ∈ Supp(I2,i). The last condition precisely means
that h(x) is constant on the connected components of G2,i. It follows that the polynomials

hj(x), for j ∈ [c], that are 1 on all the vertices in the j-th connected component and 0 on
the rest, form a basis of S(I2,i). Thus, the dimension of S(I2,i) is c. 2

The above lemma shows that if for some i the graph G2,i is not connected (say, it has
c connected components) then (by solving a system of linear equations) we compute a

nontrivial subalgebra S(I2,i) of A(1). This in explicit terms means that if Π was obtained
from a polynomial f(x) of degree n then we can compute g(y) of degree c such that

S(I2,i) ∼= k[y]/(g(y)) and:

A(1) ∼= (k[y]/(g(y)))[x]/(f̃(y, x))

where, the degx of f̃(y, x) is n
c . Thus, we get two polynomials g(y) and f̃(y, x) of degrees

c and n
c

respectively to factor (the latter over the algebra S(I2,i) ∼= k[y]/(g(y)) rather
than over the base field k). If we succeed in finding a nontrivial factor of either of these

polynomials then we can find a zero divisor in A(1) and then a factor of f(x) therefrom.
In particular, if c ≤ √

n then it seems to be worth proceeding with factoring g(y).

We can generalize the notion of primitivity to higher levels as well.

Definition 16. Let Γ = (P1, . . . ,Pm) be a m-scheme. For a P ∈ Ps such that πs
s(P ) =

πs
s−1(P ) =: Q ∈ Ps−1, we fix (v1, . . . , vs−2) ∈ πs−1

s−1(Q). We define the graph G(P, v1, . . . , vs−2)

on the vertex set {v ∈ [n] : (v1, . . . , vs−2, v) ∈ Q} with edges {u, v} such that either
(v1, . . . , vs−2, u, v) ∈ P or (v1, . . . , vs−2, v, u) ∈ P . It turns out that connectedness of
G(P, v1, . . . , vs−2) is independent of the choice of the tuple (v1, . . . , vs−2). We say that Γ

is primitive at level s if for every P ∈ Ps with πs
s(P ) = πs

s−1(P ), the graph G(P, . . .) is
connected. We say that Γ is primitive if it is primitive at all levels 2 ≤ s ≤ m.

Put Is,i := I⊥(P ), Is−1,i′ := I⊥(Q), Is−2,i′′ := I⊥(πs−1
s−1(Q)) and define:

S(Is,i) := {h ∈ Is−1,i′ | (ιss(h) − ιss−1(h)) ∈ I⊥s,i}

One can show that S(Is,i) is a subalgebra of Is−1,i′ and the number of connected com-

ponents of G(P, . . .) is
dimkS(Is,i)
dimkIs−2,i′′

. Thus in case of imprimitivity, we can compute a

subalgebra ”between” Is−2,i′′ and Is−1,i′ by solving a system of linear equations. If

1 <
dimkS(Is,i)
dimkIs−2,i′′

≤
√

dimkIs−1,i′

dimkIs−2,i′′
, it seems to be worth proceeding with decomposing the

ideal Is−1,i′ by finding a zero divisor in the subalgebra S(Is,i).
We feel that primitivity imposes strong conditions on the parameters of an m-scheme

but we do not know how to exactly use primitivity or imprimitivity and leave that for
future research.
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[Ró88] L. Rónyai, Factoring Polynomials over finite fields, Journal of Algorithms 9,

(1988), 391-400.
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